
Published as a conference paper at ICLR 2021

ZERO-SHOT SYNTHESIS WITH GROUP-SUPERVISED
LEARNING

Yunhao Ge, Sami Abu-El-Haija, Gan Xin, Laurent Itti
University of Southern California
yunhaoge@usc.edu, sami@haija.org, gxin@usc.edu, itti@usc.edu

APPENDIX

A FONTS DATASET

Figure 1: Samples from the Fonts dataset, a new parametric dataset we created by rendering characters
under 5 distinct attributes. In each row, we keep all attributes the same but vary one.

Fonts is a computer-generated RGB image datasets. Each image, with 128× 128 pixels, contains
an alphabet letter rendered using 5 independent generating attributes: letter identity, size, font color,
background color and font. Fig.1 shows some samples: in each row, we keep all attributes values the
same but vary one attribute value. Attribute details are shown in Table 1. The dataset contains all
possible combinations of these attributes, totaling to 1560000 images. Generating attributes for all
images are contained within the dataset. Our primary motive for creating the Fonts dataset, is that it
allows fast testing and idea iteration, on disentangled representation learning and zero-shot synthesis.

You can download the dataset and its generating code from: http://ilab.usc.edu/
datasets/fonts , which we plan to keep up-to-date with contributions from ourselves and
the community.

B BASELINES

B.1 EXHAUSTIVE SEARCH (ES) AFTER TRAINING AUTO-ENCODER BASED METHODS

After training the baselines: standard Autoencoder, a β-VAE (Higgins et al., 2017), and TC-VAE
(Chen et al., 2018). We want to search for the assignment between latent variables and attributes, as

1

http://ilab.usc.edu/datasets/fonts
http://ilab.usc.edu/datasets/fonts


Published as a conference paper at ICLR 2021

Table 1: Attributes generating the Fonts dataset

Attribute Number of Attribute Values Attribute Value Details

Letter 52 Uppercase Letters (A-Z)
Lowercase Letters (a-z)

Size 3 Small, Medium, Large
(80, 100, 120 pixel height respectively)

Font color 10 Red, Orange, Yellow, Green, Cyan
Blue, Purple, Pink, Chocolate, Silver

Background color 10 Red, Orange, Yellow, Green, Cyan
Blue, Purple, Pink, Chocolate, Silver

Font 100 Ubuntu system fonts
e.g. aakar, chilanka, sarai, etc.

Figure 2: Zero-shot synthesis performance on dSprites. Columns 6-10 are input group images: from
each, we want to extract one attribute (title of column). The goal is to combine the attributes to
synthesize an new images. Columns 1-4 are synthesized images, respectively using: auto-encoder
+ Exhaustive Search (AE+ES), β-VAE + Exhaustive Search (β-VAE+ES), TC-VAE + Exhaustive
Search (TC-VAE+ES) and GZS-Net respectively. The 5th column are ground truth (GT), which none
of the methods saw during training or synthesis

these VAEs do not make explicit the assignment. This knowing the assignment should hypothetically
allow us to trade attributes between two images by swapping feature values belonging to the attribute
we desire to swap.

To discover the assignment from latent dimension to attribute, we map all n training images
through the encoder, giving a 100D vector per training sample ∈ Rn×100. We make an 80:20
split on the vectors, obtaining XtrainES ∈ R0.8n×100 and XtestES ∈ R0.2n×100. Then, we ran-
domly sample K different partitionings P of the 100D space evenly among the 5 attributes. For
each partitioning p ∈ P , we create 5 classification tasks, one task per attribute, according to p:

2



Published as a conference paper at ICLR 2021

{(
XtrainES [:, pj ] ∈ R0.8n×20, XtestES [:, pj ] ∈ R0.2n×20

)}5

j=1
. For each task j, we train a 3-layer MLP

to map XtrainES [:, pj ] to their known attribute values and measure its performance on XtestES [:, pj ].
Finally, we commit to the partitioning p ∈ P with highest average performance on the 5 attribute
tasks. This p represents our best effort to determine which latent feature dimensions correspond to
which attributes. For zero-shot synthesis with baselines, we swap latent dimensions indicated by
partitioning p. We denote three baselines with this Exhaustive Search, using suffix +ES (Fig. ??).

B.2 DIRECT SUPERVISION (DS) ON AUTO-ENCODER LATENT SPACE

The last baseline (AE+DS) directly uses attribute labels to supervise the latent disentangled repre-
sentation of the auto-encoder by adding auxiliary classification modules. Specifically, the encoder
maps an image sample x(i) to a 100-d latent vector z(i) = E(x(i)), equally divided into 5 partitions
corresponding to 5 attributes: z(i) = [g

(i)
1 , g

(i)
2 , . . . , g

(i)
5 ]. Each attribute partition has a attribute

label, [y(i)1 , y
(i)
2 , . . . , y

(i)
5 ], which represent the attribute value (e.g. for font color attribute, the label

represent different colors: red, green, blue,.etc). We use 5 auxiliary classification modules to predict
the corresponding class label given each latent attribute partitions as input. We use Cross Entropy
loss as the classification loss and the training goal is to minimize both the reconstruction loss and
classification loss.

After training, we have assignment between latent variables and attributes, so we can achieve
attribute swapping and controlled synthesis (Fig. 4 (AE+DS)). The inferior synthesis performance
demonstrates that: The supervision (classification task) preserves discriminative information that
is insufficient for photo-realistic generation. While our GZS-Net uses one attribute swap and cross
swap which enforce disentangled information to be sufficient for photo-realistic synthesis.

B.3 ELEGANT (XIAO ET AL., 2018)

We utilize the author’s open-sourced code: https://github.com/Prinsphield/ELEGANT.
For ELEGANT and starGAN (Section B.4), we want to synthesis a target image has same identity as
id provider image, same background as background provider image, and same pose as pose provider
image. To achieve this, we want to change the background and pose attribute of id image.

Although ELEGANT is strong in making image transformations that are local to relatively-small
neighborhoods, however, it does not work well for our datasets, where image-wide transformations
are required for meaningful synthesis. This can be confirmed by their model design: their final
output is a pixel-wise addition of a residual map, plus the input image. Further, ELEGANT treats all
attribute values as binary: they represent each attribute value in a different part of the latent space,
whereas our method devotes part of the latent space to represents all values for an attribute.
For investigation, we train dozens of ELEGANT models with different hyperparameters, detailed as:

• For iLab-20M, the pose and background contain a total of 117 attribute values (6 for pose,
111 for background). As such, we tried training it on all attribute values (dividing their latent
space among 117 attribute values). We note that this training regime was too slow and the
loss values do not seem to change much during training, even with various learning rate
choices (listed below).

• To reduce the difficulty of the task for ELEGANT, we ran further experiments restricting
attribute variation to only 17 attribute values (6 for pose, 11 for background) and this
shows more qualitative promise than 117 attributes. This is what we report.

• Fig 3 shows that ELEGANT finds more challenge in changing the pose than in changing the
background. We now explain how we generated Columns 3 and 4 of Fig 3 for modifying the
background. We modify the latent features for the identity image before decoding. Since the
Identity input image and the Background input image have known but different background
values, their background latent features are represented in two different latent spaces. One
can swap on one or on both of these latent spaces. Column 3 and 4 of Fig.3 swap only on
one latent space. However, in Fig. ?? of the main paper, we swap on both positions. We also
show swapping only the pose attribute (across 2 latent spaces) in Column 1 of Fig.3 and
swapping both pose and background in Column 2.

3

https://github.com/Prinsphield/ELEGANT


Published as a conference paper at ICLR 2021

Figure 3: Zero-shot synthesis for ELEGANT, investigating the modification of pose and background
attributes on an identity image. Details are in Section B.3.

• To investigate if the model’s performance is due to poor convergence of the generator, we
qualitatively assess its performance on the training set. Fig. 4 shows output of ELEGANT
on training samples. We see that the reconstruction (right) of input images (left) shows decent
quality, suggesting that the generator network has converged to decently good parameters.
Nonetheless, we see artefacts in its outputs when amending attributes, particularly located in
pixel locations where a change is required. This shows that the model setup of ELEGANT
is aware that these pixel values need to be updated, but the actual change is not coherent
across the image.
• For the above, we applied a generous sweep of training hyperparameters, including:

– Learning rate: author’s original is 2e-4, we tried several values between 1e-5 and
1e-3, including different rates for generator and discriminator.

– Objective term coefficients: There are multiple loss terms for the generator, adver-
sarial loss and reconstruction loss. We used a grid search method by multiplying the
original parameters by a number from [0.2, 0.5, 2, 5] for each of the loss terms and
tried several combinations.

– The update frequency of weights on generator (G) and discriminator (D). Since D is
easier to learn, we performing k update steps on G for every update step on D. We tried
k = 5, 10, 15, 20, 30, 40, 50.

We report ELEGANT results showing best qualitative performance.

Overall, ELEGANT does not work well for holistic image manipulation (though works well for local
image edits, per experiments by authors (Xiao et al., 2018)).

B.4 STARGAN (CHOI ET AL., 2018)

We utilize the author’s open-sourced code: https://github.com/yunjey/stargan. Unlike
ELEGANT (Xiao et al., 2018) and our method, starGAN only accepts one input image and an edit
information: the edit information, is not extracted from another image – this is following their
method and published code.

4

https://github.com/yunjey/stargan


Published as a conference paper at ICLR 2021

Figure 4: Training performance of ELEGANT. The left 2 columns (A and B) are input image. The
following 4 columns are the generated synthesized images: A’ and B’ are reconstructions of the
input (acceptable quality, suggesting convergence of generator), whereas C and D are the result of
swapping features before the generator: C (/ D) uses the latent features of A (/ B) except by swapping
background with B (/ A). All (C, D, A’, B’) share the same generator.

C ZERO-SHOT SYNTHESIS PERFORMANCE ON DSPRITES DATASET

We qualitatively evaluate our method, Group-Supervised Zero-Shot Synthesis Network (GZS-Net),
against three baseline methods, on zero-shot synthesis tasks on the dSprites dataset.

C.1 DSPRITES

dSprites (Matthey et al., 2017) is a dataset of 2D shapes procedurally generated from 6 ground truth
independent latent factors. These factors are color, shape, scale, rotation, x- and y-positions of a
sprite. All possible combinations of these latents are present exactly once, generating 737280 total
images. Latent factor values (Color: white; Shape: square, ellipse, heart; Scale: 6 values linearly
spaced in [0.5, 1]; Orientation: 40 values in [0, 2 pi]; Position X: 32 values in [0, 1]; Position Y: 32
values in [0, 1])

C.2 EXPERIMENTS OF BASELINES AND GZS-NET

We train a 10-dimensional latent space and partition the it equally among the 5 attributes: 2 for shape,
2 for scale, 2 for orientation, 2 for position X , and 2 for position Y . We use a train:test split of 75:25.

We train 3 baselines: a standard Autoencoder, a β-VAE (Higgins et al., 2017), and TC-VAE (Chen
et al., 2018). To recover the latent-to-attribute assignment for these baselines, we utilize the Exhaustive
Search best-effort strategy, described in the main paper: the only difference is that we change the
dimension of Z space from 100 to 10. Once assignments are known, we utilize these baseline VAEs
by attribute swapping to do controlled synthesis. We denote these baselines using suffix +ES.

5



Published as a conference paper at ICLR 2021

As is shown in Figure 2, GZS-Net can precisely synthesize zero-shot images with new combinations
of attributes, producing images similar to the groud truth. The baselines β-VAE and TC-VAE produce
realistic images of good visual quality, however, not satisfying the requested query: therefore, they
cannot do controllable synthesis even when equipped with our best-effort Exhaustive Search to
discover the disentanglement. Standard auto-encoders can not synthesis meaningful images when
combining latents from different examples, giving images outside the distribution of training samples
(e.g. showing multiple sprites per image).

REFERENCES

Ricky T. Q. Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of
disentanglement in variational autoencoders. In Advances in Neural Information Processing
Systems, 2018.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Star-
gan: Unified generative adversarial networks for multi-domain image-to-image translation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner.
β-vae: Learning basic visual concepts with a constrained variational framework. In International
Conference on Learning Representations, 2017.

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement
testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

Taihong Xiao, Jiapeng Hong, and Jinwen Ma. Elegant: Exchanging latent encodings with gan for
transferring multiple face attributes. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 172–187, September 2018.

6


	Fonts Dataset
	Baselines
	Exhaustive Search (ES) after training Auto-Encoder based methods
	Direct Supervision (DS) on Auto-encoder latent space
	ELEGANT xiao2018elegant
	starGAN choi2018stargan

	Zero-shot synthesis Performance on dSprites dataset
	dSprites
	Experiments of Baselines and GZS-Net


