Under review as a conference paper at ICLR 2021

SUPPLEMENTARY MATERIAL

Our unified analysis of ASYNC-RED is based on the monotone operator theory (Ryu & Boyd,
2016). In Supplement [A, we first clarify our setting for the access of the shared memory. In
Supplement[B] we present the proof of Theorem|I]and Theorem 2] proving the fixed-point convergence
of ASYNC-RED to zer(G) in both batch and stochastic settings. In Supplement we provide a brief
review of the related knowledge on monotone operators. In Supplement[D] we include additional
technical details and experiments omitted from the main paper due to space.

A MEMORY ACCESS WITHOUT GLOBAL LOCK

In the setting of ASYNC-RED, multiple cores may simultaneously read and update the blocks x; in
shared memory. We coordinate the memory access of different cores by imposing certain local locks.
For example, consider one work cycle of core ¢; for updating the block x;. First, a local read lock is
imposed to x; such that only read operations (by c¢; or others) can be performed on ;. If, at the same
time, other cores want to write x;, then they have to wait until the read lock is released by the last
one who finishes reading the block. However, if they want to write other blocks, their operations will
not be blocked. Secondly, core ¢; evaluates the RED update on x;, while other cores continuously
update x. Here, we assume that the number of updates by cores other than c; is bounded by some
positive integer, which is exactly what Assumption [T|refers to. After the evaluation finishes, core ¢;
imposes a local write lock, which prevents both read and write by other cores, on x; and write the
block with the computed update. Similarly, other cores have to wait until the lock is released before
operating on x;. Finally, when the update finishes, the local lock will be released and core c¢; will
restart a new cycle. Note that @ is never locked globally during the full update cycle, and the reads of
each block are always consistent.

In order to ensure the consistent read of &, we leverage the dual-memory strategy for block coordinate
settings proposed in (Peng et al.;, 2016) (see section 1.2.1 ‘Block coordinate’). Its key idea is that,
before every write to a block x;, a copy of the old version of the block is kept for reading. In this
way, there always exists some state of « in the memory for the cores to access.

B PROOF OF ANALYSIS

In this section, we first present the proof of Theorem [I] then followed by the proof of Theorem 2] For
a review of monotone operators, we refer to Supplement|C|

Throughout the proof, we consider the probability space (£, F, P), where) denotes the sample
space, F the o-algebra, and P the probability measure. «* is a random variable defined in R™. We
use || - || to denote the £o-norm. We define the sequence of sub o-algebra {X'*},.cry of F as

XF = o2, ..., x" A, ..., Ay),

where o generates the filtration (smallest o-algebra) from 2, ..., 2", and Ay, ..., A. Note that the
sequence {X'*} e is such that X* € X**! for any k € N. We use «* to denote some fixed point
in the set zer(G).

B.1 PROOF OF THEOREM[I]

Our proof needs the following lemma on the RED operator.

Lemma 1. Let Assumption |3 and{ hold for g and D,. The composite operator G is 1/(L + 27)-
cocoercive, that is

(G(z) - G(y)" (z —y) > 1G(z) — G(y)|1*.

L+ 271

Proof. This lemma is adapted from Lemma 3 in (Sun et al.,[2019a). Consider the following decom-
position

2 2 L 2 2 927 1
'_L+2TG_(L+27'§) {'_ng} +(L+2T'7) ['_TH]’ (16)

13

Under review as a conference paper at ICLR 2021

where we recall H = 7(I — D). According to Assumption [3, g is convex and Vg is L-Lipschitz
continuous. By PropositionEin Supplement Vg is 1/L-cocoercive. Hence, by Proposition [2 in
Supplement|[C| | — (2/L)Vg is nonexpansive. Since D, = | — (1/7)H, this means that | — (1/7)H
is nonexpansive. From Proposition [3 in Supplement|C] we know that the convex combination of
two nonexpansive operators is nonexpansive. Thus, | — (2/(L + 27))G is nonexpansive, which also
means that G is 1/(L + 27)-cocoercive according to Propositionin Supplement O

Now we can start the main proof. Under the fixed stepsize v > 0, we begin with the following
equations regarding the fixed point * € zer(G)

E “|wk+l _ w*||2‘Xk}
=E [[|* —1Gi(2*) — 2*|*|x*]
=E[|z* —*|?|x"] + 1B [|Gi(@")|1°|X*] + 24E [(Gi(a")) T (" — a*)| "] (17)

Since G; : R™ — R” is evaluated on a random block of x;, we have the following conditional
expectations

b
B [(Gi(3) (@ — 2")|¥*] = 1 S (6@ (@ —) = 5 (6@) (@ — o) (8)
i=1
and
~ 1< N 1,
E [||G:(&")|*|x*] = 3 dolGiE"|1? = EIIG(m’“)II2~ (19)
1=1
Thus, plugging the above results into
2
E [l — 2104 < lo* — 2| + 6@ + 21 (6E) (@ ~ab). o)
(1)
The term (1) can be expressed as
2 (6@ (@ ~ o)
9 k—1
= 6@) @ -3+ Y (@ —a)
s=k—Ay
9 9 k—1
= ZHG@) - 6@) (@ - &) + L (CE)T(Y (@ -2
s=k—Ay
= 2l(G(i’“) —G(z) " (a* —&") + L1 ki G(@")TG;, (&%) 21
b b b ’

Szkak

where in the second line we used the definition of the stale iterate £°*! = z° — G;_(Z*), and in the
third line the fact that G(x*) = 0. By using Lemma we obtain the upper bound for the first term in

equation

2Y iy Tk o 2V]IG(ER)]1?
, (G(@Y) — G(z) (x) < L) (22)
For the second term in (21)), we have
29 S ekt ae - MAIGED | S APIIGL (@)
—_r . S < L S L s
;- 2 @6 @) < — e,
s=k—Ay s=k—Ayg
MAGENI? | & 2IeE)|
S Sy S;k; — (23)

14

Under review as a conference paper at ICLR 2021

where in the first inequality we used the Young'’s inequality

1
x] Ty < [H«’BlH2 + [|2] %] (24)

and in the second inequality we use

k—1 k—1 k-1 k—1
Yo PIGL@)IP= Y et - i< Y et -2t 3= Y APlGE))*.
s=k—Ak s=k—Ak s=k—X s=k—X

Applying and in yields the overall upper bound for the term ()

27 i Trn ok L2 =2y APIG(E))?
S (@) @ —ab) < == o 6@ | +S§Af. (25)

Next, by plugging (25)) into (17) and re-arranging the terms, we obtain the following inequality
E [Hw’““ — 2| *]

% ||G H2 (L+21) A+ M)V =2y o
< 2y E G . 26
<k — 2| + 2 + (LT 200 IG(@"™)]| (26)
Taking the total expectation of equation (26]) and re-arranging the terms yields that

— (L4 27)(1 + \)y? ~
Tromp ELIS@EI]

E[|lz" — z*|?] - E [l**" — 2*|*] ++° Z 27)
s=k—X
We then telescope-sum equation over t > 0 iterations to have
t—1
2y — (L +27)(1 + A)v? k112
E Gl
Pt (L+27)b []
t—1 k-1 ~
E [IG(@*)|?]
E M2 — 2*12] — F [lat — 2* 12 2)
Nl —2*°] —Efll2* —2*]+ > > A (28)
k=0 s=k—A
where the index s always start at 0. Under the assumption of consistent read, it is true that
t—1 k-1)
E G G
Z Z H <)‘Z ||)l] (29)

k=0 s=k—

In the case of inconsistent read, the above inequality does not always hold. We refer to [Peng et al.
(2016) for a comprehensive analysis for asynchronous block-coordinate methods with inconsistent
reads. Now, we rewrite equation (28) as

t—1

> BB B (1667 < E[le® - o' 17] ~E[la’ =o' . GO

k=0

In order to ensure the convergence, we need the coefficient of E [[|G(z*)||?] to be positive. From
basic algebra, one feasible range for the stepsize v is

<
V<7s Tiamaray

which directly implies that

~ < 2y — (L +27)(1 + 2)\)4?

O<T+x2p = (L+2r)b

15

Under review as a conference paper at ICLR 2021

By simplifying (30) with the above result and dropping the negative term, we can derive the following
bound for the E [[[G(z*)[|] averaged over ¢ iterations

(L+27’)b “|w0 _ $*||2] < (L:tQT)bRg (31)

*ZE IG(@")]I?]

The above inequality establishes that the change of the stale iterate * converges to zero as ¢ increases.
Next, we will use the bound to establish the similar result for the actual iterate 2*. We know that

|G(*)||? can be bounded by
IG(")I* < (IG(=") - G(@")|| + [16(2")])®
= [1G(z") = G@E")|I* + [6(@")[* + 2[|G(=") — G(")|G(=")|
< 2|[G(a") - G(@")||* + 2| G(z")|?
< 2(L+27)%|la* — &°)? + 2| G(z") || (32)

where in the second inequality we used the Young’s inequality (24), and in the third inequality we
used the following result implied by Lemmal]

(L +27)[lz —y[> [|G(z) — G(y)||

By expressing the stale iterate 2, we can write equation (32) as

k—1
IG@*)|” <2(L+27)%| Y 26 (@) + 2] 6(@")|>
s=k—X\
k—1
S2AL+27)* Y G (@) + 2]16(@") | (33)
s=k—X\

where we use the fact
n n
1y ail? = ZII%H”Z% xp <ZH961||2 Z all® + llzo]?] = n Y i)
i=1 a#b a;éb i=1

Taking the expectation of equation (33)) leads to

E [IIG(=")]?]
k-1
< 2M\(L +27)? VE [[1G;, (@°)]1%] + 2E [||G(Z")[|?]
s=k—\
k=1 2@ M1G(%9)]2
< 2M(L +27)° M + 2B 6@, (34)
s=k—M\
By averaging over t > (iterations, we obtain that
=
7 2 Elle@"
k=0
A<L+2T)’ = = 7R ||G< N 2 -
< 2 2]+;ZE[IIG(w’“)H2J
k=0 s=k—\ k=0
2A2(L +2r)2 2 VE[IGEN]?] 2<A -
< ; + 3 2 E[IeEIP] (35)
o k=0
where we again used result in in the last inequality. Re-arranging the terms in (33) yields
t—1
1 ON2(L + 27)2 _
> B loeh?] < [P e 0] 2 ZE I6(@)]) 66)

k=0

16

Under review as a conference paper at ICLR 2021

We plug the result in into (36) and obtain

}iE[HG(mk)HQ] < M72+2 M

R? 37
b ’}/t 0> ()

Since it is always true that

1
L4242y = L2+ N

we can simplify the bound by using the above inequality related to the stepsize v

WS(

1« 272 (L+27)b
S lg [|G(z [(HA)% + 2} 771%0. (38)

Let D = 2)?/(1 + \)?2, and we derive the desired result.

tsz[llG(117]

~+ | =

min E[||G(z")|?] < RZ. (39)

0<k<t—1

IA
|
[\

B.2 PROOF OF THEOREM[2]

We prove Theorem [2]by following the procedure in the proof of Theorem [I] with the adaptation to the

block stochastic operator G;. In the key steps, we will highlight the difference between the two proofs.
In addition to Lemma [T} our second proof requires the following lemma related to the statistical

properties of G.
Lemma 2. Let Assumption [3 and i hold for g and D,. Then, we can establish the following
statements for operator G

E[6(@)| =G(x), E[|G()-G()|?| <
which further implies that

E[I6@)2] <2 + 6(@)|*

Proof. Since the the stochasticity happens only in the evaluation of the gradient, it is straightforward
to see that

E [6(@)| = EVg(@)] + D, (2) = G(a),
Similarly, we have that
1/2

E[IG(@) - 6(@)I3] =E [|Vg(e) - Vo@)I3] < =

w

Given that Tr(E [XTX]) = Tr(Cov [X]) + Tr(E [X]°), we obtain that

E [[G(@)”] = E [|6(e) - 6(@)|"] +E[C)] < 2 +[6@)IP,

v?

w
~ 2 ~ T o~

where we let E {G(m)} =E [G(az)} E [G(:c)} Note that Tr(-) and Cov(-) denote the computa-

tion of the trace and covariance of a matrix and a vector, respectively. O

Now we start the proof. Similar as (17), we write that
E [Hkarl o a:*||2|Xk]
—E [|l* —1Gi(3") - @ ||2|x*]

—E[la* - & [212"] +9°E [[[6:(@")|212*| + 29E [(6:(@") (@ —2h) x| @o)

17

Under review as a conference paper at ICLR 2021

Here, the conditional expectation is taken for al(w) = UZUZTa(a:) By using Lemma E, we can
compute conditional expectations as

E [(G(@) (" — 2h)|4*] = 1B [(6@) (@ - eh)at] = 2(6@) @ —ab) @

and) o
~ 1 ~ v G(z

E (16121 = 1k [j6@h Pt < 2 4 1920 @)
where we first compute the expectation corresponding to the randomized block and then the expecta-
tion for the stochastic measurements. We note that the expectation of the cross term (1)) remains
the same as the result in (18), while the expectation in (42) has one extra term related to the norm
variance of the stochastic operator compared with (19). As we shall see in the future steps, the
difference in the expectation of the operator’s squared norm leads to the most modifications. Using
the above results in equation (40) yields that

E “|$k+1 _ w*HZ‘Xk}

2 . vz 2 - .
<]t — @' |? + T NGEI7 + o + T GE) (@ — o). 3)
b wb b
()
By following (21)), we can express the term (1) as
2 ~
T(6(@) (@ —a*)
27~k S\ T (o ? TG, (&°
= ?(G(az) — G(z*) " (x* — z" Z G(x (@), (44)
s=k— Ak
The upper bound of the first term is the same as shown in (22)), which is
2 ek oW T (o k 29)|G(@") |12
6EY) -G _ gty < B I 45
7 (6(3") - 6@ (" -7 <) @s)
Similarly, our second term is bounded by
2 _ ~ by G 2 G 2
Z 6E5)TG (37) < 2 “IG@HI? Z PG (=*)* I 46)
s=k—Ayg s=k—M\
where we used the Young’s inequality together with the fact that
k=1 k=1 k-1
DG @< Y G @)IP< Y I6EN)
s=k—Ak s=k—X s=k—A\

Equation (#3)) and (46) together establish the overall upper bound for the term (1)

2Y ik Toox ok o (L 27)A% — 2y @) + Y ||G)”2
3 (@)@ —ah) < =5 6@ sijA (47)

By plugging into (40) and re-arranging the terms, we obtain that
E I:Hwk:—&-l o $*||2|Xk:|

22 R PIGEN)) | L2+ A -2y,

< Ik
<l b (L+27)b

Taking the total expectation of equation and re-arranging the terms yields that

— (L4 27)(1 + \)y? ~
(L +27)b E [”G(mk)”2]

k—1

E [la* - 2*|%] - B [la** - 2*|?] + W b

[IIG(wS)IIQ]])

18

Under review as a conference paper at ICLR 2021

where we use the following inequality derived by using the law of total expectation and Lemma 2]

2
~ S ~ S S v S
E[I6@)I?] = E [E[I6@)IF127)] < = +E[I6@")]- (50)
We telescope-sum equation over t > (iterations to obtain
t—1

Z 2y — (L+27)(1+ Ay E U|G(£k)||2]

(L+27)b
k=0
t—1 o o t—1 k-1 2 E ~3\ 112
. . v v G ()|
IE[H:BO—QJ||2]—E[|\wt—w||2}+z e +VQZ ﬁ+ [5)
k=0 k=0 s=k—\
(5D
By applying the same relaxation trick in (29) to (51
SRS Eflc@)?]| _ E (|G (")’
ij P [; ij ; , (52)
we then have that
t—1
2y = (L+27)(1 +20)7° T 0 _ o2y 4 LAYV
< — RS
2 Trap — BUSEII]<E[la’ —2" 7]+ —2=—-t 3

where we dropped the negative term. Recall that if 7 is in the range v € (0, 1/((L + 27)(1 + 2X))],
we have the inequality
vy < 2y — (L +27)(1 4+ 2X)y?
(L+27)b — (L+27)b
By relaxing the coefficient in the lefthand side, dividing the inequality by ¢, and re-arranging the
terms, we obtain the convergence in terms of the stale iterate *

t—1

1 ~k (L+27)b 0 21, (LF)22
- < _ .
E E[lG@")]?%] < " E[llz® —z|*] + b t
L+2
<LH20b e T (54)
vt w

where we used Assumption Rand let C = (L + 27)(1 + A2 Compared with the result in

equation (3I)),equation (54) has the extra term related to the variance of G; (x) Next, we establish the
convergence in terms of actual iterate *. Following the steps from (32 .) to (34), we directly obtain

the inequality related to G, (%)
k—1

E[IG")2) < 20(L+277 Y. 2B [IG.@)7] + 2B [J6@)?] 59)

s=k—\
By using the the result in (50), we derive from that

k—1
E[[|G(@")?] <2ML+27)* Y 4° L”Ub + M

s=k—X

+2E[|GE)]. (56)

By averaging (55)) over ¢ > 0 iterations, we obtain that

%iﬁ (")
k=0

2 t—1 k—1 T t—1
< L+27’ Z Z ’Y M +%ZE[HG('¥]€)”2]
k=0 s=k—\ k=0
2 2 e 2 Zk o =1 ~
BEAUL A M + 23 B [l6@)I] 57
k=0 k=0

19

Under review as a conference paper at ICLR 2021

where we again used the relaxation in the last inequality. Re-arranging the terms in yields
=
- Y E[I6E=")I’]
k=0

,)) 5 t—1
LA, [”) wa} IS EGEI o9

k=0

wb

We plug the result in into and obtain

-
|

1
E [IIG(z")]?]

0

< 2)\2(L +27)2 - v? 2y {2)\2(1/;— 27)?2 2

1
t

>
Il

A

2, 70
— R+ wc] (59)

Similarly, we can use the fact

1
TS TN

to simplify the bound in

t—1
L E [l
k=0

203(L +27)2 -2 1 222 (L+27)b
= wb .(L+27)(1+)\).7+[(1+)\)2b+2}{
202 (L4 20)(1+ A2 [22 2] [(L +27)b

NSV w (1+ A)2b Nt

S 22 (L4200,
B +{(1+)\)2b+2][por R0+w0] (60)

where we recall C' = (L + 27)(1 + A\)v2. Let D = 2)%/(1 +)\)? and we can derive the result of
Theorem 2]

R + 70}
w

R} + 70]
w

t—1
. 1 D (L+27)b 2D ~
kV[I12] < = k2] < |2 2 i A
B RICE R ICEE 5 e| B 224 20,
(61)
which immediately implies the result in remark 1 by setting v = 1/v/wt
t—1
: 1 D (L+27)b 2D C
k2] < = k2] < | 2 2 i]
o ELIGEHI] < § (I < e 2 220 2
(62)
From basic algebra, we can derive the condition for A
1§ 1 N)\Sl \/wt71.
Vwt = (L+27)(142X) 2 |L+27

C BACKGROUND ON MONOTONE OPERATORS

The results in our review can be found in different forms in standard textbooks (Rockafellar & Wets,
1998; Boyd & Vandenberghe, |2004; [Nesterov, [2004; Bauschke & Combettes, [2017), and we include
these results for completeness.

Definition 1. An operator T is Lipschitz continuous with constant L > 0 if
ITx —Ty|| < L|jz—y||, = yeR™

When L = 1, we say that T is nonexpansive. When L < 1, we say that T is a contraction.

20

Under review as a conference paper at ICLR 2021

1 64 64 64 64 64 1
Figure 5: Illustration of the architecture of DnCNN used in all experiments. The neural net is trained
to remove the AWGN from its noisy input image. We also constrains the Lipschitz constant of R, to

be smaller than 2 by using the spectral normalization technique in (Sedghi et al.,[2019). This provides
a necessary condition for the satisfaction of Assumption 4]

l.

Figure 6: Six test images used in the experiments on CS. From the left to right, there are cameraman,
house, pepper, starfish, butterfly, and jet.

Definition 2. T is monotone if
(T(z) - T(y) (x-y) >0, zyecR"
We say that it is strongly monotone or coercive with parameter (1 > 0 if
(T(x) = T(y) (@ —y) = pllz —ylI*, zyeR™
Definition 3. T is cocoercive with constant 8 > 0 if
(T(z) = T(y) (z —y) > BlITe — Tyl*, =,yecR™
When 8 = 1, we say that T is firmly nonexpansive.

The following results are derived from the definition above.
Proposition 1. For a convex and continuously differentiable function f, we have

V f is L-Lipschitz continuous <V f is (1/L)-cocoercive.

Proof The proof is a minor variation of the one presented as Theorem 2.1.5 in Section 2.1 of (Nes-

[2004). O

Proposition 2. Consider T : R™ — R™ and 3 > 0. Then, the following are equivalent

T is B-cocoercive < | — 25T is nonexpansive.

Proof. Let R = | — 26T, then T = 1/(28)(l — R). First suppose that T is S-cocoercive. Let
h = x — y for any x,y € R™. We then have

BIT(x) — T(W)|* < (T(x) — T(y)) h = —|| I -
We also have that
BlIT(x) - T(y)|I* = EIIhII2 - %(R(w) —R(y))"h+ —IIR() — R(y)|*.

By combining these two and simplifying the expression

[R(z) = R(y)ll <[]

The converse can be proved by following this logic in reverse.

1

25 R(@) - R(y)) h.

1 1

21

Under review as a conference paper at ICLR 2021

27.79 dB ; 25.32 dB 11.27 dB

-‘,. o ———————
“% e

“ ."’ ;

Async-RED-SG AsyNc-RED-BG Sync-RED GM-RED

Figure 7: Visualization of the recovered images from the compressed measurements by ASYNC-RED-
BG/SG, SYNC-RED, and GM-RED. Each algorithm is run with a time budget of 700 seconds.

The following characterization is also convenient.

Proposition 3. For nonexpansive operators T1 and Ty with a constant o € (0, 1), then the convex
combination of the two operators (1 — a)T1 + Ty is nonexpansive.

Proof. Let T := (1 —)Ty + aTs. For any x,y € R", we can write
[T(x) =Tyl < (1=)Ti(z) = Ti(y)]| + || Ta(z) — T2(y)|| < [z -y

D ADDITIONAL TECHNICAL DETAILS

This section presents several technical details that were omitted from the main paper for space.
Section [D.T|presents the architecture and training of our DnCNN prior. Section[D.2]provides extra
details and validations that compliment the experiments in Section 5| of the main paper.

D.1 ARCHITECTURE AND TRAINING OF THE DNCNN PRIOR

Our denoiser follows the standard architecture of DnCNN (Zhang et al., 20174). Fig.[5 visualizes
the architectural details of the DnCNN prior used in our experiments. Similar priors are extensively
used in various PnP and RED algorithms (Zhang et al.,[2017b; Ryu et al.,2019; [Sun et al.,[2019a).
In total, the network contains 7 layers, of which the first 6 layers consist of a convolutional layer
and a rectified linear unit (ReLU), while the last layer contains only a convolution operation. A skip
connection from the input to the output is used to enforce the residual network R, to predict the
noise residual. The output images of the first 6 layers have 64 feature maps, while that of the last
layer is a single-channel image. We set all convolutional kernels to be 3 x 3 with stride 1, which
indicates that intermediate images have the same spatial size as the input image. We generated 44700
training examples by adding AWGN to 400 images from the BSD400 dataset (Martin et al., 2001)
and extracting small patches of 128 x 128 pixels with stride 30. Our DnCNN denoiser is trained to
optimize the mean squared error by using the Adam optimizer (Kingma & Bal [2015).

Different approaches have been used to constrain the Lipschitz constant (LC) of the denoising
prior (Ryu et al.} 2019} [Sun et al.,[2019a). We adopt the spectral normalization technique in (Sedght]
let al.,[2019) to control the LC of our DnCNN prior. In the training, we constrain the residual network
R, such that its LC is smaller than 2. Since the non-expansiveness of D, implies that R, has LC
< 2, this provides a necessary condition for D, to satisfy Assumption4](Sun et al.,;[2019a).

D.2 EXTRA DETAILS AND VALIDATIONS

All experiments are run on the server equipped with 32 Intel(R) Xeon(R) CPU E5-2620 v4 processors
of 3.2 GHz and 264 GBs of DDR memory. We trained all neural nets using NVIDIA RTX 2080

22

Under review as a conference paper at ICLR 2021

Table 1: SNR values obtained by ASYNC-RED-BG using different block sizes on CS task.

Block size cameraman house pepper starfish butterfly jet Average
120 27.77 30.92 29.60 28.23 28.89 28.90 29.05
80 27.75 30.95 29.58 28.28 28.78 28.76 29.01
60 27.74 30.95 29.65 28.12 28.85 28.71 28.99

Table 2: SNR values obtained by ASYNC-RED-SG using different minibatch sizes on CS task.

minibatch cameraman house pepper starfish butterfly jet Average
size

1120 27.00 30.56 28.99 26.98 27.83

3360 27.56 30.87 29.53 28.24 28.72

GPUs. We define the SNR (dB) used in the experiments as

\]2
SNR(&,x) £ 201og,, <A)
’ [l — |
where & represents the reconstructed image and & denotes the ground truth. Note that our experimental
setup satisfies Assumption but provides a necessary condition for Assmption 4]

Fig. [6 shows the six test images used in the experiments of CS. They are resized to the size of
240 x 240 pixels by using the Matlab function imresize. As demonstrated in the middle figure
in Fig.[3, ASYNC-RED-SG converges faster than ASYNC-RED-BG given a fixed amount of time.
This is further visualized in Fig. [7, where each algorithm is run for roughly 700 seconds. Since
ASYNC-RED-SG uses only one-fourth of the total measurements, the per-iteration complexity is
lower than ASYNC-RED-BG, leading to the faster convergence speed. In particular, the final SNR
value obtained by ASYNC-RED-SG is roughly 2 dB higher than ASYNC-RED-BG. Additionally,
both ASYNC-RED-BG/SG achieves significantly better results than SYNC-RED and GM-RED due
to their adoption of asynchronous updates.

Table |1 and |2 illustrate the evolution of the reconstruction performance as the block size b and
minibatch size w changes, respectively. Table [I summarizes the SNR values obtained for three
block sizes b € {60, 80,120}. Async-RED-BG achieves almost the same SNR values under these
settings. Table é summarizes the SNR values for three minibatch sizes w € {1120, 2240, 3360},
which corresponds to 1/4, 1/2, and 3/4 of the full batch. As w increases, the final SNR performance
improves, which is consistent with our theory. On the other hand, the error term due to stochastic
processing in Theorem[2 is also proportional to the step size -y, which means that by using smaller
v, Async-RED-SG can approximate GM-RED as accurately as desired. However, a reduction in vy
would also lead to slower convergence. One thus needs to tradeoff the desired accuracy against the
desired speed to select a suitable configuration for Async-RED-SG.

The benefit of ASYNC-RED is fully explored when the denoiser acts like a block-wise denoiser,
which means that it can perform denoising on blocks as effective as on the full image. A simple
strategy for making denoisers block-effective is to include additional neighboring pixels at the input,
but use the exact block size at the output. Table [3|reports the results of experimenting with the idea of
input padding for DnCNN. The results indicate that by including a small number of pixels around
each block at the input of DnCNN, one can match the performance of using the full image at the
input of DnCNN.

The test image used in the experiment of CT is selected from the dataset of human protein at-
las (Williams et al.} [2017). We download 51 images that have the size of 3000 x 3000 pixels.
We select one image for test, which is cropped to 800 x 800 pixels. We extract 39000 patches

23

Under review as a conference paper at ICLR 2021

Table 3: SNR values obtained by ASYNC-RED-BG using different pad size on CS task.

Pad size cameraman house pepper starfish butterfly jet Average
0 27.64 30.86 29.44 28.09 28.64 28.69 28.89
10 27.72 30.99 29.56 28.25 28.79 28.73 29.00
20 27.72 30.99 29.57 28.27 28.79 28.75 29.01
full 27.75 30.95 29.58 28.28 28.78 28.76 29.01
25

0 time (second) 3600

Figure 8: Convergence Illustration of ASYNC-RED-BG/SG and GM-RED for CT reconstruction with
a time budget of 1 hour. Here, ASYNC-RED-SG randomly uses one-third of the total measurements
at every iteration.

from the rest 50 images to train five specific DnCNN denoisers for the removal of AWGN with
o € {5,10,15,20,25}. We report the result that has the highest SNR values. The Radon matrix used
in the experiments corresponds to 180 angles with 1131 detectors. We synthesize the measurements
by multiplying the Radom matrix with the vectorized image and add AWGN corresponding to 70
dB input SNR. In all tests, ASYNC-RED-SG randomly uses the measurements of 60 angles at each
iteration, while ASYNC-RED-BG uses the entire measurement set. Fig. [§ plots SNR against the
iteration number for Async-RED-BG/SG, Async-RED, and Gm-RED. Due to the lower per-iteration
complexity, Async-RED-SG achieves the highest SNR value within the time budget of 1 hour. Fig.[9]
provides a corresponding visual comparison between these methods. As reference, we also include
the proximal gradient method with total variation regularizer (PGM-TV). The visual result of each
method is obtained by running the algorithm with a time budget of 1 hour. Specifically, the per-
iteration time cost of ASYNC-RED-BG/SG, SYNC-RED, GM-RED, PGM-TV are 5.23, 3.21, and
13.13, 19.19, and 44.74 seconds, respectively. The results clearly demonstrate that ASYNC-RED are
indeed effective and efficient for a realistic, nontrivial imaging task on a large-scale image.

24

Under review as a conference paper at ICLR 2021

SYNC-RED (21.94 » ASYNC RED SG (23 29 dB)

Figure 9: Visualization of the reconstructed CT images by PGM-TV, GM-RED, SYNC-RED, and
ASYNC-RED-BG/SG. Each algorithm is run with a time budget of 1 hour. The colormap is adjusted
for the best visual quality.

25

