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ABSTRACT

The most significant limitation of previous approaches to unsupervised learning
for object-oriented representation is its scalability. Most of the previous models
have been shown to work only on scenes with a few objects. In this paper, we
propose SCALOR, a generative model for Scalable Sequential Object-Oriented
Representation. With our spatially parallel attention and proposal-rejection mech-
anism, SCALOR is a scalable model that can deal with orders of magnitude more
objects than previous models. Besides, we introduce the background model so that
it can model the foreground objects and complex background together. In experi-
ments on large-scale MNIST and DSprite datasets, we demonstrate that SCALOR
can deal with scenes with near 100 objects as well as modeling complex natu-
ral background. Importantly, using SCALOR, we demonstrate for the first time a
result of modeling natural scenes with several tens of moving objects.

1 INTRODUCTION

Unsupervised learning of structured representations for visual scenes is a key challenge in machine
learning. When a scene is properly decomposed into meaningful entities such as foreground ob-
jects and background, we can benefit from numerous advantages of symbolic representation. These
include interpretability, sample efficiency, the ability of reasoning and of causal inference, as well
as compositionality and transferability for better generalization. In addition to symbols, another
essential dimension is time. Objects, agents, and spaces all operate under the governance of time.
Without accounting for temporal developments, it is often much harder if not impossible to discover
certain relationships in a scene.

Among a few methods (Kosiorek et al., 2018b; Hsieh et al., 2018) that have been proposed for
unsupervised object-oriented representation learning of temporal scenes, SQAIR (Kosiorek et al.,
2018b) is by far the most complete model. As a probabilistic temporal generative model, it can learn
object-wise structured representation while modeling underlying stochastic temporal transitions in
the observed data. Introducing the propagation and discovery model, SQAIR can also handle dy-
namic scenes where objects may disappear or be introduced in the middle of a sequence. Although
SQAIR provides promising ideas and shows the potential of this important direction, a few key chal-
lenges remain, limiting its applicability merely to synthetic toy tasks that are far simpler than typical
natural scenes.

The first and foremost limitation is scalability. Processing every object in an image sequentially,
SQAIR has a fundamental limitation in scaling up to scenes with a large number of objects. As
such, in the paper, the method is demonstrated for videos with only a few objects such as MNIST
digits. Considering the complexity of typical natural scenes, it is thus a challenge of the highest
priority to scale robustly to scenes with a large number of objects. Second, SQAIR conspicuously
lacks any form of background modeling and thus only copes with scenes without any background,
whereas natural scenes have a particularly complex background. Thus, a temporal generative model
that can deal with complex backgrounds along with many foreground objects is an important step
toward natural video scene understanding.

In this paper, we propose a model called SCALable Sequential Object-Oriented Representation
(SCALOR), which resolves the above key limitations and hence can model complex videos with
several tens of objects along with complex backgrounds, eventually making the model applicable to
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natural videos. In SCALOR, we achieve scalability with respect to the object density by paralleliz-
ing both the propagation and discovery processes, reducing the parallel time complexity per scene
image to O(1) from O(N) with N the number of objects in an image. We also observe that the
serial object processing in SQAIR based on an RNN not only increases the computation time but
also deteriorates discovery performance. To this end, we propose a parallel discovery model with
much better discovery capacity and performance. Temporally predicting and detecting trajectories
of objects, SCALOR can also be regarded as a generative tracking model. In our experiments, we
show that SCALOR can model videos with nearly one hundred moving objects along with dynamic
background on synthetic datasets. We evaluate and demonstrate SCALOR on natural videos as well
with tens of objects with complex background.

The contribution of this work are:
1. We propose the SCALOR model that significantly improves the scalability with regard to

the the object density (two orders of magnitude). It is applicable to nearly a hundred objects
with comparable computation time to SQAIR, which scales only to a few objects.

2. We parallelize the propagation–discovery process by introducing the propose–reject model,
reducing the time complexity to O(1).

3. The proposed model can model scenes with complex background.
4. As a stochastic generative model, we demonstrate the working of SCALOR not only on

natural images for the first time but also at a significantly high complexity with tens of
objects and background both moving.

2 PRELIMINARIES: SEQUENTIAL ATTEND INFER REPEAT (SQAIR)

Before introducing our novel SCALOR approach, we first review the existing SQAIR approach.
SQAIR models an observed sequence of images x = x1:T by assuming that the observation xt at
time t is generated from a set of object latent variables zOt = {zt,n}n∈Ot . Each latent variable zn
for an object n consists of the factors (zpres

n , zwhere
n , zwhat

n ), which represent the existence, pose, and
appearance of the object, respectively. SQAIR also assumes that an object can disappear or be intro-
duced in the middle of a sequence. To model this, it introduces the propagation–discovery model.
In propagation, a subset of currently existing object is propagated to the next time step and those
not propagated (e.g., because an object disappears) are deleted. In discovery, after deciding how
many objects Dt will be discovered, new Dt objects are introduced into the scene. Combining the
propagated Pt and discovered Dt, we obtain the set of currently existing objects Ot. The complete
process can be formalized as:

p(x1:T , z1:T , D1:T ) = p(D1, z
D
1 )

T∏
t=2

p(xt|zt)p(Dt, z
D
t |zPt )p(zPt |zt−1). (1)

Here, we use zt to denote zOt . Due to the intractable posterior, SQAIR is trained through variational
inference with the following posterior approximation:

q(D1:T , z1:T |x1:T ) =

T∏
t=1

qφ(Dt, z
D
t |xt, zPt )

∏
n∈Ot−1

q(zPt,n|zPt−1,n,x≤t) (2)

SQAIR is trained using an importance-weighted autoencoder (IWAE) objective (Burda et al., 2015).
The VIMCO estimator (Mnih & Rezende, 2016) is used to backpropagate through the discrete ran-
dom variables while using the reparameterization trick (Kingma & Welling, 2013; Williams, 1992)
for continuous variables.

SQAIR has two main limitations in scalability. First, for propagation, SQAIR relies on a relational
RNN. Thus, the propagation is performed sequentially by conditioning on previously processed
objects. Second, the discovery is also sequential because it uses RNN-based discovery based on
AIR (Eslami et al., 2016a). Consequently, SQAIR has O(|Ot|) time complexity per step t. In
previous work (Crawford & Pineau, 2019), it is demonstrated that this sequential approach fails
beyond the scale of a few objects. Moreover, SQAIR lacks any model for the background and its
temporal transitions.
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3 THE PROPOSED MODEL: SCALOR

3.1 GENERATIVE PROCESS

SCALOR assumes that an image xt is generated by two decomposed latent representations, the
background zBt and foreground zOt . The foreground representation is further factorized into
a set of object representations zOt = {zt,n}n∈Ot . SCALOR represents an object by zn =
(zpres
n , zwhere

n , zwhat
n , zdepthn ). The depth representation, which is missing in SQAIR, helps modeling

object occlusion, while the foreground mask computes from the zwhat
n model the distinction between

background and foreground. The appearance representation zwhat is a typical continuous vector rep-
resentation (e.g., as in VAE), and zwhere

n is further decomposed into position zposn and scale zscalen .
Following SQAIR, adopts a propagation–discovery model, but the version proposed for SCALOR
resolves the scalability problem of SQAIR. Based on this, the generative process of SCALOR can
be written as:

p(x1:T , z1:T ) = p(zD1 )(z
B
1 )

T∏
t=2

p(xt|zt)︸ ︷︷ ︸
rendering

p(zBt |zBt−1, zOt )︸ ︷︷ ︸
background transition

p(zDt |zPt )︸ ︷︷ ︸
discovery

p(zPt |zOt−1)︸ ︷︷ ︸
propagation

. (3)

As shown, the generation process is decomposed into the following four modules. In SCALOR, the
propagation is achieved by the following model

p(zPt |zt−1) =
∏
n∈Ot

p(zpres
t,n |z<t,n)

(
p(zwhere

t,n |z<t,n)p(zwhat
t,n |z<t,n)

)zpres
t,n , (4)

where p(zpres
t,n |zt−1,n) is a Bernoulli distribution with parameter βt,n. That is, the distribution of what

and where is only defined when it is propagated. To implement this, for each object n we assign a
tracker RNN denoted by its hidden state ht,n. The tracker RNN is updated by input zt,n for all t
where the object n is present in the scene. The parameter βt,n is obtained by βt,n = fnn(ht,n). If
zpres
t,n = 0, the object n is not propagated and the tracker RNN is deleted. Importantly, the propagation

in SCALOR is fully parallel, unlike SQAIR where the propagation is sequential, due to the use of a
relational RNN.

Discovery. The main contribution in making our model scalable with respect to the the number
of objects is our new discovery model that consists of two phases: proposal and rejection. In the
proposal phase, we assume the target image can be divided into H ×W grid cells and propose an
object latent variable z̃t,h,w per grid cell Then, the proposal phase can be written as:

p(z̃Dt ) =

HW∏
h,w=1

p(z̃Dt,h,w) =

HW∏
h,w=1

p(z̃pres
t,h,w)

(
p(z̃where

t,h,w)p(z̃
what
t,h,w)

)z̃pres
t,h,w . (5)

In the rejection phase, our goal is to reject some of the proposed objects if a proposed object largely
overlaps with a propagated object. In our model, each object representation contains a mask variable
mt,n, which is used to make the rejection decision. Specifically, if the overlap between the mask of
a proposed object and the mask of a propagated object is over a threshold τ , we reject the proposal.
This procedure can be described as (i) z̃Dt ∼ p(z̃Dt ) and (ii) zDt = freject(z̃

D
t , z

P
t , τ) and zDt ⊆ z̃Dt .

Even if we use a deterministic function to implement the rejection, it can be a design choice to
implement this as a stochastic decision. While the basic rationale behind this design is to reflect
an inductive bias from physics that two objects cannot coexist in the same position, we shall also
see later while discussing the inference procedure further reasons as to why this design is effective.
The final discovery model can be written as p(zDt |zPt ) = p(z̃Dt )

∏HW
h,w=1 p(z

D
t,h,w|zPt , z̃Dt ), where

p(zDt,h,w|zPt , z̃Dt ) = p(zpres
t,h,w|zPt , z̃Dt )p(z̃where

t,h,w)
zpres
t,h,wp(z̃what

t,h,w)
zpres
t,h,w .

Background Transition. Unlike SQAIR, SCALOR is endowed with a background model. The
background transition p(zBt |zBt−1) is conditioned on the background latent variable from the previous
time step.

Rendering. For rendering, SCALOR needs to combine the foreground and background. This is
done by learning foreground and background masks. Give the sampled zwhat,it and zwhere,it , the
model first computes oit,α

i
t = f(zwhat,it ), where oit is the RGB color of the object and αit is the one
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channel segmentation mask. Then, we invoke a spatial transformer network (Jaderberg et al., 2015)
to transform the local mask from patch size to image size α̃it = STN−1(αit, z

where,i
t ). The summa-

tion of the mask M = min(
∑O
i=1 α̃

i
t, 1) over all objects i is treated as the foreground mask for the

detection network. The background Xbg is generated directly from background decoder, while the
foreground is computed by aggregating the generation of all objects. Here, using the depth informa-
tion of objects zdepth,it , the model computes an importance weight on each pixel over the object that
appears at that pixel. This can be computed in parallel by first obtaining γit = α̃itz

pres,i
t σ(−zdepth,it )

and the normalization γ̃it =
γit∑O
j=1 γ

j
t

. To complete the rendering of the foreground image, the model

transforms the RGB local patches into full resolution õit = STN−1(oit, z
where,i
t ) and computes a

pixel-wise sum over all objectsXfg =
∑O
i=1 õ

i
tγ̃
i
t . The final output is the combination of foreground

and background X = Xfg + (1−M)Xbg.

3.2 LEARNING AND INFERENCE

Due to the intractability of the true posterior distribution p(z1:T |x1:T ), we train our model using
variational inference with the following posterior approximation:

q(z1:T |x1:T ) =

T∏
t=1

q(zt|z<t,x≤t) =
T∏
t=1

q(zBt |zB<t, zO<t,xt)q(zDt |zP<t,x≤t)q(zPt |z<t,x≤t). (6)

Posterior Propagation q(zPt |z<t,x≤t) is similar to the propagation in generation, except that now
observations x≤t are provided through an RNN encoding. Here, q(zit|zi<t,x≤t) = q(zit|zi<t,ait),
where ait is the attended convolutional feature for object i. To compute the attention for object i,
we use the previous position zpos,it−1 as the location and extract half the width and height of the con-
volutional feature map and resize it as the original size using bilinear interpolation. This attention
mechanism is inspired by the observation that only part of the image contains information for track-
ing the object, and the inductive bias that objects will not shift across a large distance within a short
time span.

Posterior Discovery. The posterior discovery also consists of proposal and rejection phases. The
main difference is that we now compute the proposal in spatially-parallel manner by conditioning
on the observations xt, i.e., q(z̃D<t|xt) =

∏HW
h,w=1Q(z̃Dt,h,w|xt). Here, the observation xt is encoded

into the feature map of dimensionality H×W ×D using a convolutional network. Then, from each
feature, we obtain z̃Dt,h,w. Importantly, this is done in parallel over all the feature cells. A similar
approach is used in SPAIR (Crawford & Pineau, 2019), but it infers the object latent representations
sequentially and thus is difficult to scale to a large number of objects (Anonymous, 2019).

Even if this spatially-parallel proposal plays a key role in making our model scalable, we also ob-
serve two challenges due to the power of the spatially-parallel discovery proposal: (i) the discovery
module dominates the propagation and thus all objects are often rediscovered at every time step
while propagating nothing, and (ii) the discovery module may detect anew an object that is already
propagated. These behaviors can easily be observed because they are actually helpful in obtaining
a good reconstruction error, despite not being helpful in obtaining the desired latent structure. That
is, in the case of (i), the reconstruction does not care from where (either from propagation or from
discovery) an object is sourced, as long as it can use it to reconstruct well. Similarly, for (ii), a
duplicate detection of an object allows overdrawing on top of the same object and this overdrawing
may improve the reconstruction.

We found that the first problem can rather easily be resolved by biasing the initial network param-
eter such that it has a high propagation probability at the beginning of the training. This makes the
model first try to explain the observation through propagation and then the discovery module takes
the remaining part as the training proceeds. The second problem is overcome by the rejection pro-
cedure, which is implemented the same way as in the generation. Thus, the final discovery model in
posterior form can be written as: q(zDt |zPt ,x≤t) = q(z̃D<t|x≤t)

∏HW
h,w=1 p(z

D
t,h,w|zPt , z̃D<t), where

p(zDt,h,w|zPt , z̃D<t) = p(zpres
t,h,w|zPt , z̃D<t)(p(z̃where

t,h,w)p(z̃
what
t,h,w))

zpres
t,h,w .
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We then train our model by maximizing the following evidence lower bound (ELBO) L(θ, φ) =
T∑
t=1

Eqφ(z<t|x<t)
[
Eqφ(zt|z<t,x≤t) [log pθ(xt|zt)]−DKL [qφ(zt|z<t,x≤t) ‖ pθ(zt|z<t)]

]
. (7)

We use the reparameterization trick (Williams, 1992; Kingma & Welling, 2013) for continuous ran-
dom variables such as zwhat, and the Gumbel-Softmax trick (Jang et al., 2016) for discrete variables
such as zpres. SQAIR uses the IWAE objective (Burda et al., 2015) and VIMCO gradient estima-
tor (Mnih & Rezende, 2016), whereas our model works well and is stable with a simpler training
method using the VAE ELBO objective and Gumbel-Softmax gradient estimation.

Posterior Background. The posterior of the background q(zBt |zBt−1,xt) is conditioned on the input
image and currently existing objects. The existing objects describe what part of the image should
already have been dealt with by the foreground object models.

4 RELATED WORK

Although conventional approaches to object tracking use supervised models Kosiorek et al. (2017),
more recent endeavors into the field have focused on exploiting certain inductive biases in the model
as a form of self-supervision to guide the learning procedure. AIR Eslami et al. (2016b), one of
the seminal works in the field of object detection, imposes a structure on the latent space of a deep
probabilistic model, making it more interpretable for object detection. In order to achieve this, the
model uses a VAE-like architecture combined with an RNN, which optimizes the Evidence Lower
Bound (ELBO). However AIR’s power is limited by its sequential inference procedure using RNNs.
Inspired by AIR, SPAIR Crawford & Pineau (2019) is more robust by using convolutional feature
maps to parallelize inference. Other interesting directions such as iterative inference for scnece
segmentataion has also been explored by Greff et al. (2019). However, their proposed method is
more computataionally demanding due to the iterative nature of their inference procedure. Another
interesting related work is that of Greff et al. (2017) where scenes are decomposed into objects using
a neual EM algorithm by inferring inferring parameters of spatial mixture models.

In case of multi-object tracking, most simialr work to ours is that of Kosiorek et al. (2018a) which
learns structured lateents for objects through time and is also a generative model. But their model
is inherently limited and less robust compared to this work, as the RNNs have less power compared
to convolutional features introduced in this work. Also their model is unable to detect complex
backgrounds or scale to highly dense scenes. van Steenkiste et al. (2018) builds upon the concepts
introduced in Neural Expectataion Maximization to track the objects in addition to modelling their
interaction. However they learn an unstructured latent variable which cannot be interpreted easily.
He et al. (2019) also discuss similar models, but their model is tracker-based instead of object based.
They also use a memory module to help learn the transition of the trackers.

5 EXPERIMENTS

We next describe a series of experiments that showcase several different aspects of our model. Fur-
thermore, we also provide quantitative results of how well the model performs in terms of tracking
as well as its ability to generalize to additional settings beyond what it has been trained for.

5.1 TASK 1: LARGE-SCALE MNIST AND DSPRITE SHAPES

The first task demonstrates our model’s performance when it is exposed to a relatively simple en-
vironment. Specifically, as in previous work Crawford & Pineau (2019), we consider a toy dataset
of moving DSprite shapes as well as a dataset consisting of moving MNIST digits. In all of our
experiments, the objects can move in and out of the scene. More specifically, the video is a specific
viewpoint of a larger environment, where the objects can bounce off the walls and re-enter the scene.
Therefore, while there is a fixed number of objects in the scene, only a subset of them are visible
in each time frame. The color of the bounding boxes in the qualitative image samples represent the
consistency of the bounding boxes over different time-steps.

Experiment 1: Measuring Tracking performance. The aim of this experiment is to evaluate our
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Experimental
Setting

NLL MSE Rcll Prcn MOTA MOTP Count
MAE

DSPRITES
(UHD)

117381 464.93 90% 99% 86% 1.16 0.11

DSPRITES (HD) 112331 83.49 98.7% 96% 91.6% 1.34 0.05
DSPRITES (MD) 99107 57.03 96% 97% 88.8% 1.22 0.05
DSPRITES (LD) 102076 20.46 99% 96.1% 91.7% 1.34 0.05
MNIST (MD) 97124 4.24 90.7% 90.5% 86.1% 1.21 0.09
MNIST (LD) 95415 - - - - - 0.22

Table 1: Quantitative results of our model tested on different experimental settings.

model’s tracking ability for simple moving objects in a simple environment where no background
is present. We experiment on 4 different settings, specified by the number of objects contained in
that experiment. Each setting is represented in a triplet format of (Min,Avg,Max) where Min
corresponds to the minimum, Avg to the average and Max to the maximum number of possible
objects in that experiment. Min and Max are in fact a lower and higher bound, respectively, on the
number of objects from the observer’s viewpoint. The 4 mentioned settings are called Low Density
(LD) [(10,9.2,11)], Medium Density (MD) [(24,21.9,27)], High Density (HD) [(50,64,54.5)] and
Ultra High Density (UHD) [(100,120,99)].

Different performance measures including Negative Log Likelihood (NLL), Evidence Lower Bound
(ELBO), test MSE as well as Normalized count Mean Absolute Error are evaluated for these differ-
ent settings. Furthermore, standard object tracking metrics such as Multi Object Tracking Accuracy
(MOTA), Multi Object Tracking Precision (MOTP) as well as Precision and Recall of the inferred
bounding boxes are also computed Bernardin & Stiefelhagen (2008).

As can be seen in Table 1, by increasing the number of objects, our model’s tracking accuracy only
drops moderately, which shows the superior power of our model in images with a high number of
objects.

Figures 1 and 2 qualitatively demonstrate the performance of our proposed model on the DSprites
(HD) and MNIST (MD) settings, respectively. As for the moving MNIST dataset, we did not explore
the high density and ultra high density scenarios, as the resolution of MNIST digits became too
small, thus making digits unidentifiable for that setting. As can be seen, a large number of bounding
boxes can be inferred in each time-step due to the power of the discovery module. Furthermore it is
interesting to note that SCALOR is much faster compared to RNN-based models such as SQAIR,
since it does not need to iterate over all the objects. In crowded videos, this can greatly speed up
inference and training, as it reduces the time from O(N) to O(1), due to the parallel computation
across different objects.

Figure 1: Qualitative samples from Moving DSprites (HD) setting: a) Original image sequence b) Reconstruc-
tion of the image by SCALOR c) Inferred bounding boxes
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Figure 2: Qualitative samples from Moving MNIST (MD) setting: a) Original image sequence b) Reconstruc-
tion of the image by SCALOR c) Inferred bounding boxes

Experiment 2: Frequent Dense Discovery. One key challenge in modern video processing is that
videos require substantial memory, inefficiently necessitating the use of advanced video compres-
sion. One such method is to represent videos with only the key-frames, which are the frames at
which significant changes happen in a scene. In the object tracking domain, one such example of
a key-frame is where many objects get introduced in the same frame due to a sudden change of
the observer’s view point or because of the lack of availability of the previous frames as a result of
compression.

Our model can be an ideal choice even for such challenging situations where there is a need to
discover many objects in a single frame. The powerful convolutional encoders of the discovery
module enable us to discover many objects at each single frame. This directs us towards another
application of SCALOR, since with the availability of such robust models, compression algorithms
can work even more aggressively on videos.

Fig. 6 in the Appendix represents one such instance where 10-15 objects are introduced at the first,
fourth, and seventh time-step, respectively, although it is still possible to have objects move in and
out of the scene at other time-steps as well.

Experiment 3: Complex Background Separation. Another interesting yet challenging aspect
of natural video processing is the presence of complex moving backgrounds. SCALOR is able to
successfully separate such complex moving natural scenes, since the background inference network
is explicitly designed to handle complex backgrounds. Fig. 3 provides one such instance, where the
model is provided with a dynamic environment consisting of moving objects on top of a complex
background. Fig. 3(c) shows the qualitative accuracy of the inferred bounding boxes, while Fig. 3(d)
represents the inferred complex background. As can be seen, SCALOR is successfully able to
disentangle foreground objects from a complex non-constant background and track them accurately.
Interestingly, the fact that the color of some objects are similar to regions of the background does
not limit its ability to detect and track them.

Experiment 4: Generalization ability. We conduct 3 sets of experiments to evaluate our model’s
ability to generalize to settings unseen at training time. In the first experiment, generalization to
longer sequences is shown, where the model is trained on a dataset having 8 time-steps while being
tested on 16 time-steps. In the second experiment, the model’s ability to generalize to more crowded
scenes is evaluated, where we train on scenes containing 10–15 objects while testing on 50–60
objects. This can be very beneficial in a real-world setting, as sometimes the dataset is only available
for less crowded instances of an environment, e.g., less crowded times of the day in a subway
station, while it should be able to be invoked in other more dense environments as well. The third
experiment is intended to assess the model’s ability to generalize to unseen objects. The model is
trained on MNIST digits from 0 to 5, while tested on images containing only 6 to 9. Samples from
these experiments are provided in the appendix.
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Figure 3: Complex Background Separation: a) The first row represents the original image. b) The second row
shows the model’s reconstruction. c) The third row provides the identified bounding boxes. d) The fourth row
provides the inferred background.

(a)

(b)

(c)

(d)

(e)

Figure 4: Qualitative result of SCALOR on Grand Central Station Dataset. (a) input sequence, (b) overall
reconstruction of objects and background, (c) reconstruction of the extracted background, (d) segmentation for
each object, colors indicate tracking ID, (e) extracted object trajectories.

5.2 TASK 2: REAL-WORLD DATASET TRACKING

This section showcases SCALOR’s capabilities when it is provided noisy real-world video-frames,
which previous work has not been able to handle. The challenges faced in this setting can be signifi-
cantly more difficult to overcome, due to the inherent difficulty present in such scenarios. SCALOR
is evaluated on the Crowded Grand Central Station Dataset (Zhou et al., 2012). The dataset is col-
lected from the CCTV data of New York City’s Grand Central Station. Due to the complexity of the
pedestrian behavior, the dataset can be considered a mixture of both low density and high density
objects settings. During the experiments, we spatially split the video into 8 parts and create a dataset
of 400k frames in total. We choose the first 360k frames for training, and 40k frames for testing.
The length of the input sequence is 10 and each image is resized to 128 × 128. We will make all
datasets available upon publication.
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(a)

(b)

(c)

(d)

Figure 5: Conditional generation on Grand Central Station Dataset. The first 5 frames are observed, the last 5
frames are generated (after the red line). (a) overall reconstruction and generation, (b) conditional generation
of background, (c) conditional generation of segmentation without background, (d) conditional generation of
trajectories without background.

Fig. 4 shows the qualitative results of the model. SCALOR performs reasonably well on this pedes-
trian tracking dataset, maintaining consistent temporal trajectories. As shown in Fig. 4(c), the back-
ground module infers the background composition and reconstructs the extracted background cor-
rectly. As for the object detection, SCALOR succeeds in accurate pedestrian detection and tracking.
It could also output the foreground mask produced by zwhat, which can represent the segmenta-
tion of the shape of individual pedestrians, as shown in Fig. 4(d). We draw extracted trajectories
in Fig. 4(e) for each pedestrian in the natural scene. Trajectories in different colors correspond to
different pedestrians. The color is given by the identity of the inferred latent variable of each object.

Fig. 5 shows qualitative results on conditional generation. The last 5 frames are generations condi-
tioned on the first 5 observations. Starting from the 6th frame, the latent transition of the propagation
trackers are modeled by the sequential prior network. The prior is also used in the discovery module
for introducing new objects emerging in the scene. As we can see in the figure, the model tends
to generate the same direction for the trajectories that are aligned in the previous frames. This also
applies to newly generated objects from the discovery phase, the movement of which appears highly
consistent. As shown in Fig. 5(f), objects generated in the discovery phase usually tend to choose a
single direction, and then follow that direction for the rest of the time frames. Although the trajecto-
ries’ movements are generated consistently, the appearance of some objects in the generation phase
sometimes varies across different time frames. Although the model’s generation is reasonable, in
some cases it is not ideal as the for some of the objects, the segmentation mask sometimes splits
into multiple parts without any connection between them. This may stem from errors during the
inference phase.

Since the ground truth trajectories of the Grand Central Station Dataset are no longer available at
the time the experiment is conducted, we instead compare the negative log-likelihood (NLL) of our
model with a baseline VAE as the quantitative result. Here we choose a VAE baseline that has one
latent variable z of dimensionality 64, and with a sequential prior p(zt | zt−1). It is similar to our
background module with the same number of latent variables for encoder and decoder. The NLL
value for our model is 28.30, and for the VAE baseline it is 27.59. The computation is per pixel for
the whole sequence. As we can see, our model has a very similar negative log-likelihood with the
baseline VAE on natural image scenes, but is capable of doing object-wise representation learning.

6 CONCLUSION

This paper introduces SCALOR (SCALable Sequential Object-Oriented Representation), an object-
centric method for tracking trajectories in videos. Our method requires no supervision from data
and is entirely self-supervised, which can be immensely beneficial, as many computer vision ap-
plications lack sufficient training data. SCALOR not only infers object-wise trajectories and seg-
mentation masks, but also models highly complex backgrounds present in the scene. The model’s
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performance and robustness is empirically assessed on real-world data settings as well as controlled
environments, achieving accurate results on scenes containing 50–60 objects and also reasonable
results for scenes containing up to a 100 objects. Furthermore, the model’s ability to generate con-
sistent trajectories as well for future timesteps is also assessed. The model is not only more robust
and scalable compared to the state-of-art iterative inference methods but also much faster in terms
of computation, since it infers object states in parallel. Although the model is reasonably robust, it
still has some limitations, e.g., the segmentation mask may sometimes partially overlap with the ac-
tual object, occasionally missing certain body parts such as hands. In the future, additional ablation
studies could be performed to identify techniques to further improve this aspect. Moreover, although
we have shown complex backgrounds, additional improvements could be made to fully scale to ar-
bitrary natural backgrounds, especially for noisy datasets. Finally, the learned latent variables can
be further examined to see their application in other downstream tasks. The authors hope this opens
a new avenue of research into unsupervised object-oriented tracking and representataion learning.
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Figure 6: Frequent Dense Discovery: a)) All the Bounding boxes obtained from SCALOR superimposed on
the original image. b) Bounding boxes only for the discovered objects. c) Reconstruction of the discovery step.
d) Reconstruction of the Propagation step.

A APPENDIX: ADDITIONAL EXPERIMENTAL RESULTS

A.1 FREQUENT DENSE DISCOVERY

Images for Experiment 2: Frequent Dense Discovery are provided in Fig. 6. SCALOR is able
to accurately introduce new bounding boxes for the newly discovered objects. 10–15 objects are
introduced at random places at certain time frames. Although the performance is reasonable, we
noticed some limitations when the newly introduced objects overlap significantly with the already
present objects. In such cases, sometimes the propagation detects the newly introduced object as part
of the previously overlapping object and infers a new zwhat instead of discovering a new object.

Figure 7: Generalization with respect to longer sequences. Top row represents the first 8 time steps, the bottom
row the next 8 time steps.

A.2 GENERALIZATION TO UNSEEN DATA

Results for the generalization experiment are provided in this section. Fig. 7 shows the ability of
SCALOR to scale to longer time steps. While it has been shown only 8 time steps during training,
it is tested on sequences of length 16 at test time. The first row shows the bounding boxes on the
first 8 frames, while the second row shows the next 8 frames. The model is able to still maintain the
ids of the objects over the longer sequences as well and also discover the newly introduced objects.
Fig. 7 assesses the model’s ability to generalize well to unseen objects or more crowded scenes. The
top row showcases the model’s performance trained on digits of shape 1–5 but tested on 6–9. The
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bottom row represents the case of it being trained on scenes containing 10-15 objects, but testing on
scenes containing 40–60 objects.

Figure 8: Generalization Experiment: a) Top image is the sample to demonstrate generalization with respect
to other shapes. b) The middle image is the sample to demonstrate generalization with respect to more objects.

A.3 ULTRA HIGH DENSITY

Fig. 9 represents some samples from the Ultra high density experiment. This experiment places 100–
120 objects in the overall scene, on average 99 of which are visible at every time step. However, due
to memory efficiency, the model only contains 64 cells for discovery at each time step. Interestingly,
it can be seen that the model tries its best to identify as many objects as possible in the first time
step, however, due to the lack of enough cells, it will discover whatever object remains in the second
time step. Furthermore, in the case of too many objects being densely packed in one region of the
space, this delayed discovery might again happen due to a lack of a sufficient number of cells in that
region of the space.

A.4 SOME INTERESTING CASES

In Fig. 10, multiple instances can be seen in which, although some objects might be severely oc-
cluded by one or multiple other objects, their identity is still preserved and identity swaps do not
occur. Fig. 11 showcases other such cases on MNIST, highlighting our model’s robustness.

A.5 QUANTITATIVE RESULTS FROM GRAND CENTRAL STATION DATASET

We provide quantitative results in Figures 12 to 16 and Figures 17 to 21.

B MODEL ARCHITECTURE DETAILS

Finally, we provide additional details of the architecture and hyperparameters for the SCALOR
model on pedestrian detection. For one input frame, the network uses a fully convolutional image
encoder to obtain a H ×W feature map. The feature map is input into a convolutional LSTM to
model the sequential information along the sequence. The extracted convolutional features are used
for both the propagation module to update the tracker hidden state, and for the discovery model
to propose new objects. The discovery module and propagation module share the same glimpse
encoder and decoder. The encoder has a convolutional network followed by one fully connected
layer, while the glimpse decoder uses a fully convolutional network with sub-pixel layer (Shi et al.,
2016) for upsampling. The background module shares a similar structure with the glimpse encoder
and decoder, while having a 4-dimensional input but producing a 3-dimensional output. We use
GRUs for trackers in propagation and all other temporal prior transition networks.

We choose a fixed learning rate of 4e-5 and use RMSProp optimization during training. The variance
of the image distribution is chosen to be 0.1. The prior for all Gaussian posteriors are set to standard
normal. We constrain the range of zscale to be 5.2 to 11.7 for the width, and 12.0 to 28.8 for the
height with a prior at the middle value in discovery. The prior for the zpres in discovery is set to be
0.1 at the beginning of training and to quickly anneal to 1e-3. The temperature used for modelling
zpres is set to be 1.0 at the beginning and anneal to 0.5 after 20k iterations.
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Figure 9: Ultra High Density setting: a) Original Image, b) Overall reconstruction, c) Discovery Reconstruc-
tion, c) Propagation Reconstruction, d) Bounding boxes obtained from Discovery phase, e) Bounding boxes of
propagation phase.

Figure 10: The top row shows a sequence where several objects overlap at a certain point; the bottom row
demonstrates the inferred bounding boxes.

The rest of the architecture details are described in the following tables.

Name Value Comment

zwhat dim 64
zscale dim 2 for x and y axis
zshift dim 2 for x and y axis
zdepth dim 1
zpres dim 1
glimpse shape (64, 64) for o,α
image shape (128, 128)
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Figure 11: Highly occlusion cases on Crowded Moving MNIST dataset.

Figure 12: Detection example 1.
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Figure 13: Detection example 2.

Figure 14: Detection example 3.
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Figure 15: Detection example 4.

Figure 16: Detection example 5.
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Figure 17: Generation example 1.

Figure 18: Generation example 2.

Figure 19: Generation example 3.
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Figure 20: Generation example 4.

Figure 21: Generation example 5.
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Image Encoder
Layer Size/Ch. Stride Norm./Act.

Input 3
Conv 4× 4 16 2 GN(4)/CELU
Conv 4× 4 32 2 GN(8)/CELU
Conv 4× 4 64 2 GN(8)/CELU
Conv 4× 4 64 2 GN(8)/CELU
Conv 1× 1 32 1 GN(8)/CELU

Glimpse Encoder
Layer Size/Ch. Stride Norm./Act.

Input 3
Conv 4× 4 16 2 GN(4)/CELU
Conv 4× 4 32 2 GN(8)/CELU
Conv 4× 4 64 2 GN(8)/CELU
Conv 4× 4 128 2 GN(16)/CELU
Conv 4× 4 128 1 GN(16)/CELU
Linear 128
Glimpse Decoder
Layer Size/Ch. Stride Norm./Act.

Input 64
Conv 1× 1 128 1 GN(16)/CELU
Conv 1× 1 1024 1 GN(16)/CELU
ConvSub(4) 64 1 GN(8)/CELU
Conv 3× 3 64 1 GN(8)/CELU
Conv 1× 1 1024 1 GN(8)/CELU
ConvSub(4) 64 1 GN(8)/CELU
Conv 3× 3 64 1 GN(8)/CELU
Conv 1× 1 128 1 GN(8)/CELU
ConvSub(2) 32 1 GN(8)/CELU
Conv 3× 3 32 1 GN(8)/CELU
Conv 1× 1 64 1 GN(8)/CELU
ConvSub(2) 16 1 GN(4)/CELU
Conv 3× 3 8 1 GN(4)/CELU
Conv 3× 3 3 1 GN(4)/CELU
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Background Encoder
Layer Size/Ch. Stride Norm./Act.

Input 4× 128× 128
Conv 4× 4 16 2 GN(4)/CELU
Conv 4× 4 32 2 GN(8)/CELU
Conv 4× 4 64 2 GN(8)/CELU
Conv 4× 4 64 2 GN(8)/CELU
Conv 4× 4 64 2 GN(8)/CELU
Conv 4× 4 20 1

Background Decoder
Layer Size/Ch. Stride Norm./Act.

Input 20
Conv 1× 1 256 1 GN(16)/CELU
Conv 1× 1 4096 1
ConvSub(4) 256 1 GN(16)/CELU
Conv 3× 3 256 1 GN(16)/CELU
Conv 1× 1 1024 1
ConvSub(4) 128 1 GN(16)/CELU
Conv 3× 3 128 1 GN(16)/CELU
Conv 1× 1 256 1
ConvSub(2) 64 1 GN(8)/CELU
Conv 3× 3 64 1 GN(8)/CELU
Conv 1× 1 256 1
ConvSub(4) 16 1 GN(4)/CELU
Conv 3× 3 16 1 GN(4)/CELU
Conv 3× 3 16 1 GN(4)/CELU
Conv 3× 3 3 1
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