Human Action Recognition without HumanDownload PDF

25 Apr 2025 (modified: 30 Aug 2016)ECCV2016 BNMWReaders: Everyone
Submit For Proceedings: yes
Abstract: The objective of this paper is to evaluate “human action recognition without human”. Motion representation is frequently discussed in human action recognition. We have examined several sophisticated options, such as dense trajectories (DT) and the two-stream convolutional neural network (CNN). However, some features from the background could be too strong, as shown in some recent studies on human action recognition. Therefore, we considered whether a background sequence alone can classify human actions in current large-scale action datasets (e.g., UCF101). In this paper, we propose a novel concept for human action analysis that is named “human action recognition without human”. An experiment clearly shows the effect of a background sequence for understanding an action label.
Conflicts: cs.tsukuba.ac.jp, tsukuba.ac.jp, aist.go.jp
2 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview