Keywords: LLM, LoRA
TL;DR: A scalable and efficient LoRA embedding framework for LLMs, enhanced with novel MoE forward acceleration strategies that significantly boost inference speed.
Abstract: The pretrain+fine-tune paradigm is foundational for deploying large language models (LLMs) across various downstream applications. Within this framework, Low-Rank Adaptation (LoRA) stands out for its parameter-efficient fine-tuning (PEFT), producing numerous reusable task-specific LoRA adapters. However, this approach requires explicit task intention selection, posing challenges for autonomous task sensing and switching during inference with multiple existing LoRA adapters embedded in a single LLM. In this work, we introduce MeteoRA (Multiple-Tasks embedded LoRA), a scalable and efficient framework that reuses multiple task-specific LoRA adapters into the base LLM via a full-mode Mixture-of-Experts (MoE) architecture. This framework also includes novel MoE forward acceleration strategies to address the efficiency challenges of traditional MoE implementations. Our evaluation, using the LlaMA2-13B and LlaMA3-8B base models equipped with 28 existing LoRA adapters through MeteoRA, demonstrates equivalent performance with the traditional PEFT method. Moreover, the LLM equipped with MeteoRA achieves superior performance in handling composite tasks, effectively solving ten sequential problems in a single inference pass, thereby demonstrating the framework's enhanced capability for timely adapter switching.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2482