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Abstract

Dual process theory divides cognitive processing into a fast, intuitive System 1 and
a slow, deliberative System 2. In reinforcement learning (RL), model-free learning,
in which the agent takes actions with a reactive policy, is reminiscent of System 1,
whereas model-based decision-time planning is reminiscent of System 2. This paper
presents the view that deliberative, System 2 behaviors ("thinking") can be considered
a form of mental action that an agent performs before taking an action that influences
its external environment. Under this view, we hypothesize that model-free RL alone
would be sufficient to produce deliberation if these mental actions ultimately led to
higher value actions being selected. We formalize the notion of a controllable “thought"
state, then prove conditions under which "thinking" emerges as a strategy for reward
maximization, and discuss how large language models serve as a proof-of-concept for
thinking as mental action. Finally, we conclude by discussing new opportunities for
research on model-free RL agents that learn both to think and act.

1 Introduction

Dual process theory divides cognitive processing into System 1 and System 2 processing (Wason &
Evans, 1974; Kahneman, 2003). System 1 processing is fast, effortless, but potentially imprecise,
whereas System 2 is slow, effortful, but potentially leads to better decisions. In artificial intelligence,
System 1 capabilities are often associated with sub-symbolic, pattern-matching methods such as
neural networks whereas System 2 capabilities are associated with symbolic, rule-based approaches
such as planners and logic engines. Specifically, in reinforcement learning (RL), model-free learning
is reminiscent of System 1 behavior; the agent observes the state of the environment and immediately
computes its next action from a policy or value function. Model-based decision-time planning on the
other hand is reminiscent of System 2 behavior; the agent observes the state of the environment and
then uses a predictive model of the environment’s dynamics to plan its next action. A widely-known
example of an RL agent that exhibits both System 1 and System 2 behavior is the AlphaGo agent
(Silver et al., 2016) that uses Monte Carlo tree search (Kocsis & Szepesvári, 2006) to plan actions
(System 2) while evaluating board positions with a neural network-based value function trained with
model-free RL (System 1).

Instead of distinct System 1 and System 2 modules, could a single mechanism produce both fast,
reactive behaviors and slower, deliberative behaviors? In this paper, we present the view that delib-
erating at decision-time is just another form of action and consequently, model-free reinforcement
learning (RL) can be sufficient to produce System 2 thinking in the absence of explicit search com-
putations. The idea behind this view is to first understand System 2 thinking as the agent choosing
to manipulate its own internal state before selecting an action. Though changing its internal state
will not directly affect the agent’s total reward, it may lead the agent to take a higher-value action
than it would have otherwise. The implication of our view is that no explicit search computation is
necessary for deliberative behavior to be realized in RL agents.



The Finding the Frame Workshop at the Reinforcement Learning Conference 2025

Recent work on large language models (LLMs) has produced a proof-of-concept that System 2
behavior can emerge when “thoughts" are simply another form of action (Guo et al., 2025). Specif-
ically, recent work by Guo et al. proposed a unified model whereby System 2 type deliberation
emerged as a consequence of model-free RL applied to solve mathematics problems (2025). While
this deliberation is anthropomorphized as reasoning or planning, these outputs arise solely for the
purpose of reward maximization without any constraints that they represent logic or search opera-
tors. The approach is interesting as it suggests that a form of System 2 processing can emerge from
simply reinforcing thought patterns that lead to reward.

To formalize our view and show theoretically when model-free RL can produce thinking, we first
introduce a minimal extension to the classical Markov decision process (MDP) model that we call a
thought MDP. A thought MDP is an MDP in which the agent has an internal thought state and has
access to thought actions that manipulate the thought state while leaving the state of the environ-
ment unchanged. In thought MDPs, policies choose whether to think or to act based upon both the
environment state and the thought state. Thus, while thought actions do not directly produce reward
or change the state of the environment, they can help the agent by manipulating the policy’s output
for the current state. Under this model, we will show that policy iteration can lead to thinking be-
havior and this thinking behavior can be viewed as the agent choosing to improve its current policy
before acting further. We then show how LLMs match the predictions of our theory. We conclude
by discussing open questions raised by our view of deliberative thinking in RL.

2 Related Work

In this section, we discuss the prior literature related to System 2 processing in RL as well as prior
models of “mental" actions an agent can take.

Decision-time Planning A hallmark of System 2 processing is deliberative planning as opposed
to reflexive action. Thus, a natural way to instantiate System 2 in artificial agents is to use decision-
time planning, e.g., Monte Carlo tree search (Kocsis & Szepesvári, 2006), and many works in the
RL literature have used this approach (e.g., Anthony et al., 2017; Silver et al., 2016; 2017; Silver,
2009; Schrittwieser et al., 2021; Shah et al., 2020). Decision-time planning is particularly effective
when the agent’s policy or value function is sub-optimal but the agent possesses an accurate model
of state transitions (Sutton & Barto, 2018). In this case, planning can be viewed as focused policy
improvement to improve the decision at the agent’s current state before it acts. As we will show,
the idea of thinking as local policy improvement also applies when an RL agent learns to think in a
thought MDP. The key difference is that we consider a more abstract model of thinking without any
notion of forward prediction and search. There is also no natural answer to the question of when to
stop planning and act with most decision-time planning methods. MCTS is an anytime algorithm
and the general practice is to allow as much search is possible in the application domain (Silver
et al., 2016; 2017). On the other hand, model-free learning in our thought MDP model will directly
relate the decision about when to stop thinking to the objective of return maximization. Some work
in the (non-learning) planning literature has also studied the question of when to think vs. when to
act (Cashmore et al., 2019; Coles et al., 2024).

Learning to Plan As neural networks are general-purpose function approximators, they can, in
principle, learn algorithmic planning or reasoning computations and prior work has attempted to
induce planning capabilities through specialized architectures (Tamar et al., 2017; Farquhar et al.,
2018; Guez et al., 2019; 2018; Niu et al., 2018; Weber et al., 2018; Sykora et al., 2020; Schleich et al.,
2019; Oh et al., 2017). Guez et al. showed that planning-like computations could emerge through
model-free learning (2019). Bush et al. (2025) applied mechanistic interpretability approaches to
show that the approach of Guez et al. (2019) did in fact learn planning computations (i.e., the network
internally learned to propose and evaluate future candidate action sequences). While such works also
show that model-free RL can produce thinking behavior, the main difference is that thinking refers
to the computation done by the agent’s policy, whereas we study thinking as an action selected by
the agent’s policy. More similar to this conception of thinking, Chung et al. (2023) introduce the



Thinking is Another Form of Control

thinker architecture in which a policy is trained to select actions both for environment interaction
and planning. However, they conduct thinking for a fixed number of steps per environment step and
thus the agent is learning how to think rather than when to think.

Reasoning in LLMs In the past couple of years, a large number of methods have been developed
to create System 2 capabilities in LLMs, with particular emphasis on math and coding problems.
One prominent approach is chain-of-thought (CoT) prompting in which a user changes their query
to include explicit examples of correct responses (Wei et al., 2023). A more basic variant of CoT is
just to prompt the model to “think step by step" (Kojima et al., 2023). Many other variations have
also been proposed (e.g., Yao et al., 2023a;b; Wang et al., 2023). Another paradigm has been to
augment output generation with an explicit search procedure (e.g., Khanov et al., 2024; Liu et al.,
2023; Zhou et al., 2023; Zhang et al., 2023; Chen et al., 2024). Finally, recent works have used
model-free RL to train LLMs to output CoT reasoning (Guo et al., 2025; OpenAI et al., 2024).
Our work takes inspiration from these works but aims to go beyond LLMs in understanding when
thinking-like behavior can emerge in RL agents.

Other Forms of Mental Action The idea of thinking as a form of action has a long history in AI
and RL. Minsky theorized on the mind as a society of agents whose collective actions produce both
cognition and action (Minsky, 1986). Klopf’s hedonistic neuron hypothesis modelled neurons as
individual RL agents (Klopf, 1982). This hypothesis has led to a line of work studying alternative
neural network architectures in which artificial neural activity is produced by the stochastic policies
of simple RL agents (Thomas, 2011; Kostas et al., 2019; Gupta et al., 2021). More similar to our
work, some prior work has considered augmenting the agent’s environment action-space with forms
of mental action. These works have focused on the challenge of memory in partially observable do-
mains and using explicit memory read or write actions as an alternative to recurrent neural networks.
For instance, Peshkin et al. (2001) augment an RL agent with a set of memory write actions and the
contents of the memory are then provided to the agent as an additional input along with the envi-
ronment state; Zhang et al. (2015) extend this approach to robot manipulation tasks. Various neural
architectures have been developed with external memory that can be written to and read from (e.g.,
Graves et al., 2014; Zaremba & Sutskever, 2016) and Oh et al. (2016) explored these architectures
for RL. The thought MDP model differs in that the agent has access to a Markov state representation
and so thought actions serve to manipulate the agent’s policy as opposed to remembering details of
the past.

The Options Framework Finally, thought MDPs are related to the options framework that is often
used in hierarchical RL (Sutton et al., 1999). In the options framework, the agent’s policy is over
a set of options where options are either primitive actions or sub-policies. The crucial difference
is that in the options framework, the selection of an option and the execution of that option’s first
action both occur within a single time step, whereas this execution would take at least two steps
in a thought MDP. This difference suggests that thought MDPs might naturally model the cost of
switching options, particularly when the agent cannot directly set its thought state and must instead
think for multiple steps to select the best option. Thus, thought MDPs might be particularly useful
as an alternative to the options with deliberation cost model (Harb et al., 2018).

3 A Formal Model of Thinking as Action

In this section, we first formalize the standard RL problem using the MDP formalism and then
introduce the thought MDP model to explicitly model thinking.

3.1 RL in Markov Decision Processes

RL environments are typically modeled as Markov decision processes (MDPs). Here, we will con-
sider an episodic MDP which is a tuple, 〈S,A, p, r, γ〉, where S is the environment state space, A
is the set of actions that the agent can take to influence the environment state, p : S × A → ∆(S)
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is a stochastic state transition function, r : S × A → R is a scalar-valued reward function, and γ
is a discount factor. At any moment in time, the agent is in state st, takes an action, at, receives a
reward, and transitions to a new state. Then the process repeats from st+1 until a terminal state, s∞,
is reached. The agent selects actions according to a policy, π : S → ∆(A). The value of using a
policy from a particular state, s, is defined to be vπ(s) := E[

∑∞
t=0 γ

tr(st, at)|s0 = s, at ∼ π(·|st)].
In RL, the agent’s objective is to find a policy that maximizes vπ(s) in all states.

3.2 Thought MDPs

We now extend the MDP model to explicitly model thinking. We formally define a thought MDP as
the tuple 〈S,A, p, r, γ, T , C, pT 〉, where S,A, p, r, γ are defined as they are for MDPs. We add T as
the set of thought states, C as the set of thought actions, and pT : S×T ×C → ∆(T ) as the thought
transition function. We emphasize that thought states and actions do not affect environment state
transitions and rewards. The agent’s objective remains to maximize cumulative discounted reward
across all environment states.

There are different ways to define the agent’s policy in a thought MDP. In this work, we formalize
policies as a mapping π : S × T → ∆(A ∪ C). This choice means that the agent can select either
an environment action or a thought action at any interaction time-step but not both. We make this
choice for initial discussion as it better connects to deliberation in LLMs but an alternative is that
the policy is a mapping π : S × T → ∆(A × C), i.e., the agent can think and act at the same
time. Such modelling might be more useful in real-time domains where the agent cannot simply
sit and think as the rest of the world evolves around it. There, of course, may be other alternatives
that could be considered in future work. Below, we will use the notation π(τ) to refer to the agent’s
state-dependent policy with the thought state fixed at τ .

In a thought MDP, interaction proceeds as follows. Episodes begin in an environment state, s0, and
thought state, τ0, and the agent chooses either an environment action or thought action according to
its policy. If a0 ∈ A then the environment state, s1, at the next time-step is sampled from p(s0, a0),
the thought state τ1 keeps the value of τ0, and the agent receives reward r0 := r(s0, a0). Conversely,
if a0 ∈ C, then s1 keeps the value of s0, τ1 is sampled from pT (s0, τ0, a0), and the agent receives
r0 = 0. Then the process repeats until the agent reaches s∞, with the agent selecting either an
environment or thought action from its policy. For thought MDPs, we define the value function to
be vπ(s, τ) := E[

∑∞
t=0 γ

tr(st, at)|s0 = s, τ0 = τ, at ∼ π(·|st, τt)].

We aim to introduce a generalized model of thinking in MDPs, however, our subsequent analysis will
make two assumptions which we state formally here. First, we assume that thought state transitions
are deterministic (as is the case for LLM agents).

Assumption 1 (Deterministic Thought Transitions). ∀s ∈ S, τ ∈ T , c ∈ C pT (τ ′|s, τ, c) = 1 for
one and only one τ ′ ∈ T . We will write pT (s, τ, c) ∈ T to denote the thought state that results from
taking c in (s, τ).

Second, we assume that all rewards are non-negative.

Assumption 2 (Non-negative Rewards). ∀s ∈ S, a ∈ A, r(s, a) ≥ 0.

Without Assumption 2, thinking could emerge as a strategy solely for the purpose of putting off
receiving a negative reward, i.e., if all rewards are negative then the agent will be incentivized to just
keep taking thought actions rather than environment actions. Finally, we assume reachable positive
reward from all states as otherwise thought actions may be just as good as environment ones.

Assumption 3 (Reachable Positive Reward). ∃s ∈ S, a ∈ A with r(s, a) > 0 and ∀s̃ ∈ S there
exists a policy such that the probability of transitioning from s̃ to s in a finite number of steps is
greater than zero.

Modeling of Time This modeling raises important questions about time. First, should the dis-
count factor be applied equally for both thinking and non-thinking time-steps? Equal application
discourages thinking as thought actions do not influence reward either directly or indirectly through
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Figure 1: (left) An example thought MDP with |T | = 2. We use |S| = 10 in our illustrative results.
The agent receives a reward when it reaches the goal environment state on the far right. The agent
can move left or right in the environment state space and up and down in the thought state space.
We use γ = 0.9 for both thinking and non-thinking time-steps. (right) Evolution of the policy and
state values for 1, 4, and 10 iterations of policy iteration. The policy is initialized as shown on the
left. Colors indicate value and arrows indicate the action that the policy would take.

the environment state. Nevertheless, as we shall see, thought actions still might be selected if they
ultimately cause the agent to choose a better environment action. Alternatively, we could apply a
different discount factor for thinking time-steps to reflect the actual time-delay of thinking com-
pared to acting in a given domain. For example, if thinking takes (1/k) the time of any environment
action then we could use a discount of γ

1
k . In this paper, we will assume that the discount is ap-

plied the same at both thinking and non-thinking time steps. The second related issue is that the
proposed model assumes that the environment state remains constant while the agent takes thought
actions. Such an assumption might be reasonable for relatively static environments (such as gener-
ative language or board games) but is problematic in dynamic environments (such as autonomous
driving) where waiting to act can be consequential. Again, for simplicity, we will focus on the static
environment case, but note this issue as another interesting direction to refine the model.

Optimality Thought MDPs are MDPs with state space S × T and action space A ∪ C and con-
sequently there will always be at least one deterministic optimal policy (Sutton & Barto, 2018).
Furthermore, we can show that this optimal policy will never select thought actions.

Proposition 4. Any optimal policy, π?, for a thought MDP does not take thought actions: π?(s, τ) ∈
A, ∀s ∈ S, τ ∈ T .

See Appendix A for proof.

4 Policy Initialization Determines Emergence of Thinking

If the optimal policy would never take a thought action, why should we expect thinking to emerge
as a strategy during policy improvement? In this section, we begin to answer this question by
showing the key role that policy initialization plays in determining the emergence of thinking. In
particular, we first consider exact policy iteration within a thought MDP and provide a formal result
and an illustrative example showing how thinking can emerge. We use policy iteration for analysis
as essentially all model-free RL algorithms can be understood as instances of generalized policy
iteration (Sutton & Barto, 2018). We then provide a second formal result showing that thought
actions can reduce the effective horizon (Laidlaw et al., 2023) for the special case of goal-MDPs.

An illustrative example For exposition’s sake, suppose T = {τ0, τ1}, in which case we can view
the agent’s policy, π, as consisting of two sub-policies, π(τ0) and π(τ1). Now consider the example
depicted in Figure 1 where π(τ0) is initialized sub-optimally (always takes an action that leads away
from the goal) while π(τ1) is initialized to be optimal. We show the progress of policy iteration in
this domain in Figure 1. After the first iteration of policy improvement, the policy has learned to
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first change the agent’s thought state to τ1 (top row) from which it then follows π(τ1) to reach the
goal. After four iterations, in environment states close to the goal, the policy just directly moves
right without changing its thought state while continuing to first take a thought action in states that
are far from the goal. Finally, after ten iterations, the policy converges to the optimal policy and
simply moves to the right without thinking. This example shows that, while thinking is sub-optimal
in the long-run, it can be beneficial early in learning by allowing the agent to use sub-policies already
contained in its policy function.

To formally understand how policy initialization determines the emergence of thinking, we analyze
the policy improvement step of policy iteration.

Theorem 5. Let π be a policy in a thought MDP such that π(s, τ) ∈ A for some environment state
s and thought state τ . If the policy improvement step of policy iteration sets π′(s, τ)← c for c ∈ C,
then vπ(s, τ ′) > vπ(s, τ), where τ ′ is the thought state resulting from taking c in (s, τ).

See Appendix A for the proof. Although, Theorem 5 does not directly say anything about policy
initialization, the condition for a thought action to be selected requires π(s, τ) and π(s, τ ′) to be
somehow set up as different such that there could be an advantage in shifting from τ to τ ′.

Thinking as a Policy Improvement Operator

One interpretation of Theorem 5 is that thought actions can function as policy improvement op-
erators applied to a particular state. This interpretation is interesting as it aligns with the use of
decision-time planning in RL to refine an agent’s choice of action in a way that focuses computation
on its current state (Sutton & Barto, 2018). While thought actions do not involve look-ahead search,
Theorem 5 shows that their utility is also in providing local policy improvement. While Theorem 5
shows this utility for the choice of a single thought action, we also present a corollary showing that
if policy improvement produces a policy that thinks for consecutive steps in s then each thinking
step will further improve upon the action π(s, τ).

Corollary 6. Let c be a thought action that leads from τ to τ ′ and c′ be a thought action that leads
from τ ′ to τ ′′. If, in some environment state s, the policy improvement step of policy iteration sets
π′(s, τ)← c and π′(s, τ ′)← c′, then vπ(s, τ ′′) > vπ(s, τ ′) > vπ(s, τ).

Proof. The inequality vπ(s, τ ′) > vπ(s, τ) immediately follows from Theorem 5 The inequality
vπ(s, τ ′′) > vπ(s, τ ′) follows from the same logic as the proof of Theorem 5 except applied to
improving the policy in (s, τ ′).

If each step of thinking in s improves the policy, π(s, ·), when should thinking terminate? From
the proof of Theorem 5, we can see that thinking will terminate when the increase in value from
thinking another step no longer compensates for the discounting of value caused by waiting a step
to begin taking environmental actions. This observation connects the “when to think" vs. “when to
act" decision directly to the agent’s objective to maximize its total reward.

5 Language Generation as a Thought MDP

Our work takes inspiration from recent work on large reasoning models (LRMs) that “think" by
generating additional text that is not part of the final answer but that somehow serves to improve the
final answer. In this section, we review two approaches to imbue LLMs with reasoning capabilities
and describe how they can be viewed as instantiating thought MDPs. We then show that forcing the
LLM to reason (in a manner similar to zero-shot chain-of-thought Kojima et al. (2023)) increases
the expected return from a given state. Thus Theorem 5 predicts that model-free RL applied to this
thought MDP would lead to thinking, which is in fact what recent work has found.

We first describe language generation as an MDP and then describe the thought states and actions of
LLMs. In language generation, each episode begins with a textual prompt, x and the agent’s actions
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are possible tokens from a fixed vocabulary. Let yt be the agent’s output at time t. The state at time t
is defined as the prompt concatenated with the agent’s outputs up to time t, st = (x, y1:t). Rewards
for RL applied to language generation have been defined in different ways. Much of the recent work
on reasoning models focuses on math and coding problems, which have verifiable solutions. Thus,
the reward is a terminal reward of 1 if a correct solution can be parsed and verified from y1:t.

Reasoning with Language as a Thought MDP The main difficulty in mapping language gener-
ation to a thought MDP is that thought states are intertwined with environment states in the typical
MDP formulation. Similarly, thought actions are simply from the same space as environment ac-
tions. To distinguish these components, we redefine the environment state as just the query and
tokens that function as part of the query response. Similarly, we define environment actions as just
the tokens that are part of the query response. Now, we will say that the entire sequence (x, y1:t) is
the thought state of the MDP (alternatively, one could view the activations of the transformer for this
sequence as the thought state). Thought actions are the tokens in y1:t that are not part of the query
response.

Different approaches to inducing reasoning in LLMs use different schemes for determining which
tokens are part of the final response and which only serve to improve the final response. For example,
Guo et al. (2025) augment the output vocabulary with two special functional tokens, <think> and
</think>. In addition to the sparse verifier reward, Guo et al. train DeepSeek-R1 with reward
shaping to encourage valid thinking blocks in which <think> is followed by </think>. Output
text in thinking blocks is not part of the final response that is passed to a verifier to determine reward.
Zero-shot prompting is another approach to encourage thinking-like behavior by appending “Let’s
think step-by-step" to the query (Kojima et al., 2023). In this approach, an answer parser is used to
separate the response (environment actions) from the additional prompt and subsequent reasoning
tokens (thought actions).

Model No Thinking (%) Thinking (%)

Qwen2.5-7B-Instruct 5.06± 3.10 96.10± 2.98
Qwen2.5-14B-Instruct 0.90± 0.33 95.20± 1.33
Tulu-2-7b 0.30± 0.33 28.50± 2.80
Tulu-2-13b 0.60± 0.47 49.00± 3.10
Llama-2-7b 0.00± 0.00 48.80± 3.10
Llama-2-13b 0.20± 0.27 60.70± 3.03
Gemma-3-4b-it 4.90± 1.33 91.50± 1.72
Mistral-7B-Instruct-v0.3 1.50± 0.74 85.20± 2.20

Figure 2: Response accuracy ± 95% confidence interval
when using thinking vs no thinking.

Do thought actions improve expected
return in LLMs? Recent work from
DeepSeek (and reportedly OpenAI) has
shown that thinking-like behavior can
emerge from RL. Based on our theory,
we hypothesize that a pre-condition for
this result is that thought actions in-
crease vπ(s, τ) by changing the thought
state τ . Because we lack a value func-
tion for each LLM, we instead approxi-
mate vπ(s, τ) with the Monte Carlo re-
turn or, equivalently, the accuracy of the
LLM’s response. To test our hypothesis, we take different pre-trained LLMs and apply them to
add series of five four-digit numbers. We test two conditions with each model: “No Thinking" and
“Thinking." Under both conditions, the prompt begins with “Compute the sum of [a], [b], [c], [d],
[e]." where [a], [b], [c], [d], and [e] correspond to four-digit integers. Under the “No Thinking"
condition we simply append “[a] + [b] + [c] + [d] + [e]=" to this query, whereas for “Thinking" we
append “[a] + [b] + [c] + [d] + [e] = [a + b] + [c] + [d] + [e] = [a + b + c] + [d] + [e]= [a + b +
c + d] + [e]" to the original query where [a + b] and [a + b + c] denote the partial sums a+b and
a+b+c. In essence, we force the model to first think under the “Thinking" condition. We constuct
100 “Thinking" and 100 “No Thinking" prompts like these using 100 different sequences of four
4-digit integers, each generated uniformly at random. Figure 2 shows the average accuracy for each
model, averaged over multiple five-number addition problems. For both models, we see that append-
ing the thinking tokens increases accuracy, which corresponds to increasing vπ(s, τ) by changing τ .
While we do not further apply model-free RL to try and learn to think in this way, our theory and
these results predict that these models are primed for thinking to further emerge as a strategy.
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6 Discussion and Future Work

In this section, we discuss possible extensions for research in thought MDPs. Due to space con-
straints, we only describe a few directions while briefly noting that further research should consider
extensions to partially observable worlds and connections to natural intelligence (?Klopf, 1982) and
the options framework (Sutton et al., 1999).

Where do thought MDPs come from? This work studied the question of why thinking actions
could be useful to an RL agent even though they leave their environment state unchanged and pro-
duce no reward. We formalized this abstract notion of thinking with the thought MDP model, but
left open the big question of how to define the thought states, actions, and thought dynamics in other
RL problems where thinking may be useful. Language generation is one example but it is an open
question as to how thought MDPs might arise outside the language domain. There is also the ques-
tion of where existing thought-conditioned policies come from, as our work showed their existence
to be a key enabler of emergent thinking.

Connecting to Models and Planning System 2 processing is reminiscent of decision-time plan-
ning using a model of the environment state transition function (Anthony et al., 2017). This work
has presented a more abstract model of thinking where the agent simply learns to control an internal
thought state. While distinct models, both decision-time planning and thinking in a thought MDP
are related in that they amount to locally focused policy improvement (Sutton & Barto, 2018). Fur-
thermore, having thought states and actions that are somehow grounded in environment states and
actions could explain how the agents’ thought dynamics should be structured.

Thinking in Dynamic and Time-constrained Domains This work has only considered the utility
of thinking in relatively static domains where the environment state remains the same during think-
ing. In reality, the environment state may change due to influences other than the agent’s actions,
and the choice to stop and think must factor in how the environment might change while it does so.
A natural extension would be to have thought states and environment states unfold in parallel to one
another, with the agent thinking and acting at the same time.

Agents with Bounded Capacity Could the utility of thinking be enhanced under constraints? We
take inspiration from the Big World Hypothesis (Javed & Sutton, 2024) which states that agents
will always have less capacity than what is required to learn all possible tasks. Consequently, when
an agent is faced with a new task it may have either never seen it or have forgotten how to do it.
Thinking might allow rapid repurposing of an agent’s present capabilities to learn quickly on a new
task. The sub-policies that are more frequently used would be repeatedly reinforced whereas less
frequently used sub-policies could be forgotten.

7 Conclusion

In this work, we investigated the question of when model-free RL will lead to “thinking" behavior.
We introduced the thought MDP model and then used this model to show that thinking emerges
as a strategy to improve an agent’s choice of environment action and will thus depend upon how
the agent’s policy is initialized. We then provided supporting evidence that step-by-step reasoning
in LLMs functions similarly to thinking. Finally, we developed a non-language domain in which
thinking would emerge as a strategy for reward maximization and discussed the many exciting next
steps for developing AI agents that learn to think.
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A Proofs of Theoretical Results

Proposition 4. Any optimal policy, π?, for a thought MDP does not take thought actions: π?(s, τ) ∈
A, ∀s ∈ S, τ ∈ T .

Proof. The proof is by contradiction. Suppose π? is an optimal policy and ∃s ∈ S, τ ∈ T
such that π(s, τ) ∈ C. Because thought actions cannot produce reward, the optimal policy must
eventually reach a thought state, τ̃ , where π?(s, τ̃) ∈ A. If that happens after k thought ac-
tions, then vπ?(s, τ) = γkvπ?(s, τ̃). But then the policy could be strictly improved by setting
π?(s, τ)← π?(s, τ̃). This contradicts the assumption that π? was optimal and completes the proof.

Theorem 5. Let π be a policy in a thought MDP such that π(s, τ) ∈ A for some environment state
s and thought state τ . If the policy improvement step of policy iteration sets π′(s, τ)← c for c ∈ C,
then vπ(s, τ ′) > vπ(s, τ), where τ ′ is the thought state resulting from taking c in (s, τ).

Proof. Policy iteration sets π′(s, τ)← arg maxx∈A∪C qπ(s, τ, x) where

qπ(s, τ, x) :=

{
r(s, x) + γEs′ [vπ(s′, τ)] if x ∈ A
γvπ(s, τ ′) if x ∈ C.

Since the policy improvement step is selecting a thought action, we have that:

∀a ∈ A, qπ(s, τ, a) < γvπ(s, τ ′).

Since π(s, τ) was in A before the update we have that:

vπ(s, τ) = qπ(s, τ, π(s, τ)) < γvπ(s, τ ′) < vπ(s, τ ′) = qπ(s, τ ′, π(s, τ ′)).

Thus, a thought action is selected when the policy is such that π(s, τ ′) is expected to lead to more
reward than π(s, τ).
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