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Abstract

We introduce a novel reinforcement learning (RL) framework that treats distribution
parameters as actions, redefining the boundary between agent and environment. This
reparameterization makes the new action space continuous, regardless of the original
action type (discrete, continuous, mixed, etc.). Under this new parameterization, we
develop a generalized deterministic policy gradient estimator, Distribution Parameter
Policy Gradient (DPPG), which has lower variance than the gradient in the original
action space. Although learning the critic over distribution parameters poses new chal-
lenges, we introduce interpolated critic learning (ICL), a simple yet effective strategy to
enhance learning, supported by insights from bandit settings. Building on TD3, a strong
baseline for continuous control, we propose a practical DPPG-based actor-critic algo-
rithm, Distribution Parameter Actor-Critic (DPAC). Empirically, DPAC outperforms
TD3 in MuJoCo continuous control tasks from OpenAI Gym and DeepMind Control
Suite, and demonstrates competitive performance on the same environments with dis-
cretized action spaces.

1 Introduction

Reinforcement learning (RL) algorithms are commonly categorized into value-based and policy-
based methods. Value-based methods, such as Q-learning (Watkins & Dayan, 1992) and its variants
like DQN (Mnih et al., 2015), are particularly effective in discrete action spaces due to the feasibility
of enumerating and comparing action values. In contrast, policy-based methods are typically used
for continuous actions, though they can be used for both discrete and continuous action spaces
(Williams, 1992; Sutton et al., 1999).

Policy-based methods are typically built around the policy gradient theorem (Sutton et al., 1999),
with different approaches to estimate this gradient. The likelihood-ratio (LR) estimator can be ap-
plied to arbitrary action distributions, including discrete ones. In continuous action spaces, one can
alternatively compute gradients via the action-value function (the critic), leveraging its differentia-
bility with respect to actions. This idea underlies the deterministic policy gradient (DPG) algorithms
(Silver et al., 2014) and the use of the reparameterization (RP) trick for stochastic policies (Heess
et al., 2015; Haarnoja et al., 2018). These approaches can produce lower-variance gradient estimates
by backpropagating through the critic and the policy (Xu et al., 2019).

Despite the flexibility of policy gradient methods, current algorithms remain tightly coupled to the
structure of the action space. In particular, different estimators and architectures are often required
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for discrete versus continuous actions, making it difficult to design unified algorithms that generalize
across domains. Although the LR estimator is always applicable, it often requires different critic
architectures for different action spaces and carefully designed baselines to manage high variance,
especially in continuous or high dimensional action spaces.

In this paper, we introduce the parameter-as-action framework, an alternative to the classical RL for-
mulation that treats distribution parameters as actions. For a Gaussian policy, for example, the dis-
tribution parameters are the mean and variance, and for a softmax policy, the distribution parameters
are the probability values. The RL agent outputs these distribution parameters to the environment,
and the sampling of the action is now part of the stochastic transition in the environment. Distribu-
tion parameters are typically continuous, even if the actions are discrete, mixed or structured. By
shifting this agent-environment boundary, therefore, we can develop one continuous-action algo-
rithm for a diverse class of action spaces.

We first propose the Distribution Parameter Policy Gradient (DPPG) estimator, and prove it has
lower variance than common estimators in the original action space. This reduction in variance can
increase the bias, as the critic can be harder to learn. We develop an augmentation approach, called
interpolated critic learning (ICL), to improve this critic learning. We then introduce a deep RL
algorithm based on TD3 (Fujimoto et al., 2018), called Distribution Parameter Actor-Critic (DPAC),
that incorporates the DPPG estimator and ICL. We evaluate DPAC empirically to assess the viability
of this new framework. Although our goal is not surpassing the performance of existing algorithms,
DPAC outperforms TD3 on 20 MuJoCo continuous control tasks from OpenAI Gym and DeepMind
Control Suite, and achieves competitive performance on the same environments with discretized
action spaces—without hyperparameter tuning. We also provide targeted experiments to understand
the bias-variance trade-off in DPAC, and show the utility of ICL for improving critic learning.

2 Problem formulation

We consider a Markov decision process (MDP) ⟨S,A, p, d0, r, γ⟩, where S is the state space, A
is the action space, p : S × A → ∆(S) is the transition function, d0 ∈ ∆(S) is the initial state
distribution, r : S × A → ∆(R) is the reward function, and γ is the discount factor. Here, ∆(X )
denotes the set of distributions over a set X . In this paper, we consider A to be either discrete or
continuous.1 We use π(a|s) to represent the probability of taking action a ∈ A under state s ∈ S for
policy π. The goal of the agent is to find a policy π under which the below objective is maximized:

J(π)
.
=

∑∞
t=0 ES0∼d0,At∼π(·|St),St+1∼p(·|St,At)

[
γtRt+1

]
=

∑∞
t=0 Eπ [γtRt+1] , (1)

where the second formula uses simplified notation that we follow in the rest of the paper. The
(state-)value function and action-value function of the policy are defined as follows:

vπ(s)
.
=

∑∞
t=0 Eπ [γtRt+1|S0 = s] , qπ(s, a)

.
= Eπ [R1 + γvπ(S1)|S0 = s,A0 = a] . (2)

In this paper, we consider actor-critic methods that learns a parameterized policy (the actor), denoted
by πθ, and a parameterized action-value function (the critic), denoted by Qw. Given a learned critic
Qw, the policy is typically optimized using a surrogate of Equation (1):

Ĵ(πθ) = ESt∼d,At∼πθ(·|St) [Qw(St, At)] , (3)

where d ∈ ∆(S) is some distribution over states. Given a sampled state St, we outline three typical
stochastic estimators for the gradient of this objective below.

The likelihood-ratio (LR) policy gradient estimator uses ∇̂θĴ(πθ;St, A) =
∇θ log πθ(A|St)Qw(St, A), where A ∼ πθ(·|St). Since the LR estimator suffers from high
variance, it is often used with the value function as a baseline:

∇̂LR
θ Ĵ(πθ;St, A) = ∇θ log πθ(A|St)(Qw(St, A)− V (St)), (4)

1Note that the framework and methods proposed in this paper also apply to other complex types of action spaces. We
focus on discrete and continuous action spaces in our presentation for simplicity.
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Figure 1: Comparison between the classical reinforcement learning (RL) framework and the
proposed parameters-as-actions framework. In the classical RL setting (col 1), the agent’s policy
πθ consists of π̄θ, which produces the distribution parameters, and a sampling function f that re-
turns an action given these parameters. In the parameters-as-actions framework (col 2), the sampling
function f is considered part of the environment, and the agent outputs the distribution parameters
π̄θ(St) as its action. This shift redefines the interface between agent and environment, potentially
simplifying learning and enabling new algorithmic perspectives.

where V (St) could either be parameterized and learned or be calculated analytically from Qw when
the action space is discrete and low dimensional.

The deterministic policy gradient (DPG) estimator (Silver et al., 2014) is used when the action
space is continuous and the policy is deterministic (πθ : S → A), and uses the gradient of Qw with
respect to the action:

∇̂DPG
θ Ĵ(πθ;St) = ∇θπθ(St)

⊤∇AQw(St, A)|A=πθ(St). (5)

The reparameterization (RP) policy gradient estimator (Heess et al., 2015) can be used if the
policy can be reparameterized (i.e., A = gθ(ϵ;St), ϵ ∼ p(·), where p(·) is a prior distribution):

∇̂RP
θ Ĵ(πθ;St, ϵ) = ∇θgθ(ϵ;St)

⊤∇AQw(St, A)|A=gθ(ϵ;St). (6)

3 Parameters-as-actions framework

The action space is typically defined by the environment designer based on domain-specific knowl-
edge. Depending on the problem, it may be more natural to model the action space as either discrete
or continuous. In both cases, the agent’s policy at a given state s can often be interpreted as first
producing distribution parameters π̄θ(s), followed by sampling an action A ∼ f(·|π̄θ(s)) from the
resulting distribution. With a slight abuse of notation, we denote π̄θ : S → U as the part of the
policy πθ that maps states to distribution parameters, and by f(·|u) the distribution over actions
defined by parameters u ∈ U .

In the classical RL framework, both π̄θ and f are considered part of the agent, as in the left of
Figure 1. In this work, we introduce the parameters-as-actions framework: the agent outputs distri-
bution parameters π̄θ(s) as its action, while the sampling process A ∼ f(·|π̄θ(s)) is treated as part
of the environment, as in the right of Figure 1. This reformulation leads to a new MDP in which the
action space is the parameter space U . The reward and transition functions in this MDP become:

p̄(s′|s, u) .
= Ea∼f(a|u)[p(s′|s, a)], r̄(s, u)

.
= Ea∼f(a|u)[r(s, a)]. (7)

This gives rise to the parameter-space MDP ⟨S,U , p̄, d0, r̄, γ⟩. As in classical RL, we can define
the corresponding value functions, which are connected to their classical counterparts:

v̄π̄(s)
.
=

∑∞
t=0 Eπ̄ [γtRt+1|S0 = s] , q̄π̄(s, u)

.
= Eπ̄ [R1 + γv̄π̄(S1)|S0 = s, U0 = u] . (8)
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Assumption 3.1. The set U is compact. Moreover, when S or A is continuous, the corresponding
set is also assumed to be compact.

Proposition 3.2. Under Assumption 3.1, v̄π̄(s) = vπ(s) and q̄π̄(s, u) = EA∼f(·|u)[qπ(s,A)].

The proofs of Proposition 3.2 and all other theoretical results are presented in Appendix A.

The main advantage of this framework is that it transforms the original action space into a continu-
ous parameter space U , regardless of whether the underlying action space A is discrete, continuous,
or structured. This unification allows us to develop generic RL algorithms that operate over a con-
tinuous transformed action space, enabling a single framework to accommodate a wide variety of
settings, including discrete-continuous hybrid action spaces (Masson et al., 2016). For example, we
can apply DPG methods even in discrete action domains, where they were not previously inapplica-
ble. We explore this direction in detail in Sections 4 and 5.

4 Distribution parameter policy gradient algorithms

In this section, we introduce the Distribution Parameter Policy Gradient (DPPG), a generalization
of DPG for the parameters-as-actions framework. We show this estimator has lower variance, and
then present a practical DPPG algorithm for deep RL based on TD3.

4.1 Distribution parameter policy gradient estimator

DPPG is the application of DPG to the parameter-space MDP. We need to slightly modify the as-
sumptions to reason about both the distribution parameter space and the original action space.

Assumption 4.1. The functions π̄θ(s), f(a|u), and their derivatives are continuous with respect to
the variables u and θ. Moreover, when S orA is continuous, the functions p(s′|s, a), d0(s), r(s, a),
π̄θ(s), f(a|u), and their derivatives are also continuous with respect to s, s′, or a, respectively.

Theorem 4.2 (Distribution parameter policy gradient theorem). Under Assumptions 3.1 and 4.1, the
gradient of the objective function J(π̄θ) =

∑∞
t=0 Eπ̄ [γtRt+1] with respect to θ can be expressed as

∇θJ(π̄θ) = Es∼dπ̄θ
[
∇θπ̄θ(s)

⊤∇uq̄π̄θ
(s, u)|u=π̄θ(s)

]
,

where dπ̄θ
(s)

.
=

∑∞
t=0 Eπ̄θ

[γtI(St = s)] is the (discounted) occupancy measure under π̄θ.

The resulting gradient estimator of the surrogate objective Ĵ(π̄θ) = ESt∼d
[
Q̄w(St, π̄θ(St))

]
is

∇̂DPPG
θ Ĵ(π̄θ;St) = ∇θπ̄θ(St)

⊤∇U Q̄w(St, U)|U=π̄θ(St), (9)

where Q̄w is a learned parameterized critic function. Note that the DPPG estimator shares the same
mathematical form as the DPG estimator (see Equation (5)). However, the roles of the components
differ: In DPPG, the policy outputs distribution parameters rather than a single action, and the critic
estimates the expected return over the entire action distribution, rather than for a specific action. In
fact, DPPG is a strict generalization of DPG. When the policy is restricted to be deterministic, the
distribution parameters effectively become the action, and the parameter-space critic reduces to the
classical action-value critic.

Proposition 4.3. If U = A and f(·|u) is the Dirac delta distribution centered at u, then π̄θ and Q̄w

are equivalent to πθ and Qw, respectively. Consequently, the DPPG gradient estimator becomes
equivalent to DPG: ∇̂DPPG

θ Ĵ(π̄θ;St) = ∇̂DPG
θ Ĵ(πθ;St).

Moreover, DPG’s theoretical analysis can also be extended to the parameter-as-action framework.
In Appendix A, we generalize the convergence analysis of DPG to DPPG, establishing a theoretical
guarantee that holds for MDPs with arbitrary action space types.
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Figure 2: Visualization of the reward function (col 1), expected rewards of distribution param-
eters (col 2), and learned critic functions using the standard update in Equation (10) (col 3) and
the interpolated critic learning (ICL) update in Equation (12) (col 4) in policy evaluation (PE). Top:
K-Armed Bandit. Bottom: Bimodal Continuous Bandit. With access only to samples from the PE
policy, the standard update estimates values accurately at the target policy but fails to generalize. In
contrast, the ICL update learns a critic that captures curvature useful for policy optimization.

4.2 Comparison to other estimators for stochastic policies

We now compare the proposed DPPG estimator with classical stochastic policy gradient (PG) meth-
ods, highlighting its variance and bias characteristics across action spaces.

DPPG can be seen as the conditional expectation of both the LR (see Equation (4)) and RP (see
Equation (6)) estimators. This leads to strictly lower variance.
Proposition 4.4. Assume Qw = qπθ

in ∇̂LR
θ Ĵ(πθ;St, A) and Q̄w = q̄π̄θ

in ∇̂DPPG
θ Ĵ(π̄θ;St).

Then, ∇̂DPPG
θ Ĵ(π̄θ;St) = EA∼πθ(·|St)[∇̂LR

θ Ĵ(πθ;St, A)]. Further, if the expectation of the action-
conditioned variance is greater than zero, then V(∇̂DPPG

θ Ĵ(π̄θ;St)) < V(∇̂LR
θ Ĵ(πθ;St, A)).

Proposition 4.5. Assume A is continuous, Qw = qπθ
in ∇̂RP

θ Ĵ(πθ;St, ϵ), and Q̄w = q̄π̄θ
in

∇̂DPPG
θ Ĵ(π̄θ;St). Then, ∇̂DPPG

θ Ĵ(π̄θ;St) = Eϵ∼p[∇̂RP
θ Ĵ(πθ;St, ϵ)]. Further, if the expectation of

the noise-induced variance is greater than zero, then V(∇̂DPPG
θ Ĵ(π̄θ;St)) < V(∇̂RP

θ Ĵ(πθ;St, ϵ)).

Another direction to reduce variance is expected policy gradient (EPG; Ciosek & Whiteson, 2018;
Allen et al., 2017). The idea is to integrate (or sum) over actions, yielding zero-variance gradients
conditioned on a state: ∇̂EPG

θ Ĵ(πθ;St) = ∇θEAt∼πθ(·|St) [Qw(St, At)]. However, this estimator
is only practical in low-dimensional discrete action spaces (Allen et al., 2017) or in special cases
within continuous settings—such as Gaussian policies with quadratic critics (Ciosek & Whiteson,
2020). In contrast, our estimator ∇̂DPPG

θ Ĵ(π̄θ;St) generalizes to a wider range of settings, including
high-dimensional discrete, general continuous, and even hybrid action spaces.

Despite its lower variance, DPPG may suffer from increased bias due to the increased complexity
of the critic’s input space. For discrete actions, the critic Q̄w inputs a vector of probabilities corre-
sponding to discrete outcomes. For continuous actions, with Gaussian policies, the critic Q̄w inputs
both the mean and standard deviation. This increased input dimensionality makes it harder to ap-
proximate the true value function, and if the critic is inaccurate, the overall benefit of lower gradient
variance may be diminished—an effect we examine empirically in Section 5.2.

4.3 Interpolated parameter-space critic learning

In this section, we propose a method to improve learning the parameter-space critic Q̄w. Given a
transition ⟨St, Ut, At, Rt+1, St+1⟩, the standard TD update for Q̄w is

w← w + α(Rt+1 + γQ̄w(St+1, π̄θ(St+1))− Q̄w(St, Ut))∇Q̄w(St, Ut). (10)
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This update, however, does not make use of the sampled action At, and its relationship to the out-
come state and reward. One direction to leverage this knowledge is to recognize that the transition
can also be used to update the value at alternative parameters Ût. This is possible because the action
At could have been sampled from distributions parameterized by many other Ût. As a result, the
value at Ût can be learned off-policy.

What, then, should we choose for Ût? To answer this, we ask: what properties should the critic have
to support effective policy optimization in parameter space? Our answer is that the critic should
provide informative gradient directions that guide the policy toward optimality. For MDPs, there
always exists a deterministic optimal policy (Puterman, 2014). Therefore, we assume the existence
of some UA∗

t
∈ U , a deterministic distribution corresponding to the optimal action A∗

t for state St.
Ideally, the critic should exhibit curvature that points toward such optimal parameters U∗

t .

One candidate for Ût is UAt , the deterministic distribution parameters associated with the sampled
action At. However, merely learning accurate values at UAt does not ensure that the critic has
smooth curvature from Ut toward these potentially high-value points. To encourage the critic to
provide smoother gradients, we propose using a linearly interpolated point between Ut and UAt :

Ût = ωtUt + (1− ωt)UAt , ωt ∼ Uniform[0, 1]. (11)

The critic is then trained to predict the value at Ût using the following update:

w← w + α(Rt+1 + γQ̄w(St+1, π̄θ(St+1))− Q̄w(St, Ût))∇Q̄w(St, Ût). (12)

We refer to this approach as interpolated critic learning (ICL). To further provide intuition on ICL,
we conduct a policy evaluation experiment in bandit problems, shown in Figure 2 (column 1). Fig-
ure 2 (column 3) and (column 4) show the learned critic functions using the standard update in
Equation (10) and the ICL update in Equation (12), respectively. The critic learned by ICL has more
informative curvature. In the continuous setting, the learned critic is sufficient to identify the optimal
distribution parameters. More experiment details are in Appendix B.2.

4.4 Distribution parameter actor-critic

Since the DPPG estimator is derived from DPG, we base our practical algorithm on TD3 (Fujimoto
et al., 2018), a strong DPG-based off-policy actor-critic algorithm for continuous control. We replace
the classical actor and critic with their parameter-space counterparts and use the DPPG gradient es-
timator (Equation (9)) and the ICL critic loss (Equation (12)) to update them, respectively. We omit
the actor target network, as it does not improve performance (see Appendix B.4). The pseudocode
for the algorithm, which we call Distribution Parameter Actor-Critic (DPAC), is in Appendix D.

5 Experiments

In this section, we empirically investigate DPAC in both continuous and discrete action settings.

5.1 Continuous and discrete control on common benchmarks

We use OpenAI Gym MuJoCo (Brockman et al., 2016) and the DeepMind Control (DMC) Suite
(Tunyasuvunakool et al., 2020) for our experiments. From MuJoCo, we use the most commonly
used 5 environments; from DMC, we use the same 15 environments as D’Oro et al. (2023). De-
tails about them are in Appendix B.4. While these continuous control environments are defined
with continuous action spaces, we also discretize the action spaces to test DPAC’s performance for
discrete control. Specifically, we discretize each action dimension into 7 bins with uniform spac-
ing. For example, the original action space in Humanoid-v4 is [−0.4, 0.4]17, which is discretized to
0.4× {−1,− 2

3 ,−
1
3 , 0,

1
3 ,

2
3 , 1}

17. We run each environment for 1M steps and 10 seeds.

Baselines for continuous control We use TD3 (Fujimoto et al., 2018) as our primary baseline,
as DPAC is based on it. We also include an off-policy actor-critic baseline that uses the reparame-
terization (RP) estimator. This AC-RP algorithm closely resembles DPAC but learns in the original
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Figure 3: Average normalized returns of DPAC and baselines on 5 MuJoCo tasks (col 1), 15
DMC tasks (col 2), and their discretized variants (col 3–4). Values are averaged over 10 seeds and 5
(MuJoCo) or 15 (DMC) tasks. Error bars show 95% bootstrapped CIs. DPAC demonstrates robust
and competitive performance in both benchmarks under both settings.

action space and updates the policy using the RP estimator. For consistency, all algorithms use the
default hyperparameters of TD3 and a Gaussian policy parameterization.

Baselines for discrete control Since the likelihood-ratio (LR) estimator is the most common for
discrete actions, we include an off-policy actor-critic baseline, AC-LR, similar to AC-RP but with the
LR estimator. We learn a separate value function for the baseline, because analytically computing it
from the action-value function is prohibitive for these high-dimensional action spaces. Additionally,
although not commonly used in prior work, we include a variant that replaces the LR estimator in
AC-LR with the straight-through (ST) estimator (Bengio et al., 2013), denoted as AC-ST. We use
the same hyperparameters as the TD3 defaults and a categorical policy parameterization.

More details and pseudocode of these algorithms can be found in Appendices B.5 and D.

Results Figure 3 shows the average normalized returns of DPAC and the baselines in both con-
tinuous and discrete settings. For the continuous case (columns 1–2), DPAC achieves better overall
performance, outperforming AC-RP and TD3 significantly in the DMC Suite. For the discrete set-
ting (columns 3–4), DPAC’s average performance is higher than AC-ST, despite overlapping confi-
dence intervals, while AC-LR exhibits poor performance across both benchmarks. Learning curves
in individual environments are in Appendix C.

5.2 Effectiveness of interpolated critic learning

We investigate the impact of using ICL (Equation (12)). We compare DPAC and DPAC w/o ICL,
an ablated version that uses the standard critic update (Equation (10)). In Figure 5, we can see that
DPAC w/o ICL is generally worse than DPAC for both continuous and discrete control.

To provide further insights into ICL’s effectiveness, we move to a bandit setting where visualization
and analysis are intuitive. In addition to DPAC and DPAC w/o ICL, we also include AC-LR and
AC-RP as a reference, as they should be quite effective in these settings because of a much simpler
critic function. Note that our goal is not to show that DPAC can outperform other baselines in these
toy settings, but rather to illustrate how ICL substantially improves critic learning in DPAC. We also
include PG-LR, PG-RP, and DPPG, variants of AC-LR, AC-RP, and DPAC that have access to their
corresponding true value functions to remove the confounding factor of learning the critic. We use
the same bandits from Figure 2. See Appendix B.3 for hyperparameters and other details.

As shown in Figure 6, DPPG exhibits slightly faster convergence than PG-LR and PG-RP—albeit
marginal—highlighting the advantage of using a lower-variance estimator when no bias is present.
However, when the critic must be learned, DPAC w/o ICL performs significantly worse than both
AC-LR and AC-RP, achieving highly suboptimal returns even by the end of training. This reflects
the difficulty of learning an effective critic using the standard update, as discussed in Section 4.2.
In contrast, although DPAC initially learns more slowly than AC-LR and AC-RP, it substantially
outperforms DPAC w/o ICL and eventually matches the performance of AC-LR and AC-RP in the
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Figure 4: Initial critic (col 1) and learned critic functions and policies at different training stages
using DPAC w/o ICL (cols 2 and 4) and DPAC (cols 3 and 5). Top: K-Armed Bandit. Bottom:
Bimodal Continuous Bandit. DPAC produces more accurate value estimates at deterministic distri-
bution parameters—corresponding to the vertices in the discrete case and the x-axis in the continuous
case—and offers stronger gradient signals for policy optimization.
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Figure 6: Learning curves of DPAC, DPAC w/o ICL,
and baselines on the K-Armed Bandit (col 1) and Bi-
modal Continuous Bandit (col 2) tasks. Results are av-
eraged over 50 seeds. Shaded regions show 95% boot-
strapped CIs. ICL substantially improves DPAC’s perfor-
mance, enabling it to match AC-LR and AC-RP in these
simple settings.

later stages of training. To assess the impact of ICL on critic quality, we visualize the learned critics
from a representative training run of DPAC and DPAC w/o ICL in Figure 4. In both discrete and
continuous action settings, DPAC yields a significantly improved critic landscape early in training.

6 Conclusions

We introduced the parameters-as-actions framework, redefining the agent-environment boundary to
treat distribution parameters as actions. We showed that the policy gradient update has theoretically
lower variance, and developed a practical deep RL algorithm called Distribution Parameter Actor-
Critic (DPAC) based on this estimator and an improved critic learning update, ICL, tailored to this
new setting. We showed better or comparable performance to TD3 across 20 environments.

This reframing allowed us to develop a continuous action algorithm that applies to diverse underly-
ing action types: discrete, continuous, or otherwise structured. A key next step is test the algorithm
in mixed spaces, and further exploit this reframing for new algorithmic avenues, including model-
based methods, hierarchical control, or novel hybrid approaches. There are also key open questions
around critic learning in this new framework. More advanced strategies for training the parameter-
space critic could be explored, including off-policy updates at diverse regions of the parameter space
or using a learned action-value function Qw(s, a) to guide updates of Q̄w′(s, u). This will also open
up new questions about convergence properties for these new variants.
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Supplementary Materials
The following content was not necessarily subject to peer review.

A Theoretical analysis of DPPG

We provide the proofs of the theoretical results for the parameters-as-actions framework and distri-
bution parameter policy gradient (DPPG) in the main text in Appendices A.1 and A.2. In addition,
we also extend a convergence proof of DPG from Xiong et al. (2022) to DPPG in Appendix A.3.

A.1 Proofs of theoretical results in Section 3

Assumption 3.1. The set U is compact. Moreover, when S or A is continuous, the corresponding
set is also assumed to be compact.

Proposition 3.2. Under Assumption 3.1, v̄π̄(s) = vπ(s) and q̄π̄(s, u) = EA∼f(·|u)[qπ(s,A)].

Proof. Let π be the policy in the original MDP that first maps s to u = π̄(s) and then samples
A ∼ f(·|u). The state-value function v̄π̄(s) in the parameter-space MDP is defined as:

v̄π̄(s) =

∞∑
k=0

Eπ̄
[
γkr̄(Sk, Uk) | S0 = s

]
,

where Uk = π̄(Sk). From Equation (7), r̄(s, u) = EA∼f(·|u)[r(s,A)]. Also, the transition
p̄(s′|s, u) = EA∼f(·|u)[p(s

′|s,A)]. Consider a trajectory S0, U0, S1, U1, . . . in the parameter-space
MDP. This corresponds to a trajectory S0, A0, S1, A1, . . . in the original MDP where Ak ∼ f(·|Uk).
The expected reward at time k in the parameter-space MDP, given Sk and Uk = π̄(Sk), is
r̄(Sk, π̄(Sk)) = EAk∼f(·|π̄(Sk))[r(Sk, Ak)]. The dynamics are also equivalent in expectation:
E[Sk+1|Sk, Uk] = ES′∼p̄(·|Sk,Uk)[S

′] = EAk∼f(·|Uk)[ES′∼p(·|Sk,Ak)[S
′]]. Thus, the sequence of

states and expected rewards generated under π̄ in the parameter-space MDP is identical in distribu-
tion to the sequence of states and rewards under π in the original MDP. Therefore, v̄π̄(s) = vπ(s).

For the action-value function q̄π̄(s, u):

q̄π̄(s, u) = Eπ̄ [r̄(S0, U0) + γv̄π̄(S1) | S0 = s, U0 = u]

= r̄(s, u) + γES1∼p̄(·|s,u)[v̄π̄(S1)]

= EA∼f(·|u)[r(s,A)] + γEA∼f(·|u)
[
ES1∼p(·|s,A)[vπ(S1)]

]
(using v̄π̄ = vπ)

= EA∼f(·|u)
[
r(s,A) + γES1∼p(·|s,A)[vπ(S1)]

]
= EA∼f(·|u) [Eπ[R1 + γvπ(S1)|S0 = s,A0 = A]]

= EA∼f(·|u)[qπ(s,A)].

The compactness assumption in Assumption 3.1 along with continuity from Assumption 4.1 ensures
these expectations and value functions are well-defined.

A.2 Proofs of theoretical results in Section 4

Assumption 4.1. The functions π̄θ(s), f(a|u), and their derivatives are continuous with respect to
the variables u and θ. Moreover, when S orA is continuous, the functions p(s′|s, a), d0(s), r(s, a),
π̄θ(s), f(a|u), and their derivatives are also continuous with respect to s, s′, or a, respectively.

Theorem 4.2 (Distribution parameter policy gradient theorem). Under Assumptions 3.1 and 4.1,
the gradient of the objective function J(π̄θ) =

∑∞
t=0 Eπ̄ [γtRt+1] with respect to θ can be expressed

as
∇θJ(π̄θ) = Es∼dπ̄θ

[
∇θπ̄θ(s)

⊤∇uQ̄π̄θ
(s, u)|u=π̄θ(s)

]
,

where dπ̄θ
(s)

.
=

∑∞
t=0 Eπ̄θ

[γtI(St = s)] is the (discounted) occupancy measure under π̄θ.
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Proof. This theorem results from applying the deterministic policy gradient (DPG) theorem to the
parameter-space MDP ⟨S,U , p̄, d0, r̄, γ⟩, where π̄θ : S → U acts as a deterministic policy. The
objective function is J(π̄θ) = ES0∼d0 [v̄π̄θ

(S0)].

Following the DPG theorem derivation (Silver et al. (2014), Theorem 1), for a general deterministic
policy µθ : S → A, the policy gradient is:

∇θJ(µθ) = Es∼dµθ
[
∇θµθ(s)

⊤∇aqµθ
(s, a)

∣∣
a=µθ(s)

]
.

In our context:

• The policy in the parameter-space MDP is π̄θ(s).

• The action space is U , and actions are denoted by u.

• The critic q̄π̄θ
(s, u) is the action-value function in this parameter-space MDP.

• The state distribution dπ̄θ
(s) is the discounted state occupancy measure under policy π̄θ.

Assumptions 3.1 and 4.1 ensure that π̄θ(s) and q̄π̄θ
(s, u) are appropriately differentiable and that

the interchange of expectation and differentiation is valid. Substituting π̄θ for µθ and q̄π̄θ
for qµθ

yields the theorem’s result:

∇θJ(π̄θ) = Es∼dπ̄θ
[
∇θπ̄θ(s)

⊤∇uq̄π̄θ
(s, u)|u=π̄θ(s)

]
.

The notation ∇θπ̄θ(s)
⊤∇uq̄π̄θ

in the theorem statement implies the appropriate vector or matrix
product. If θ ∈ Rk and u ∈ Rm, then ∇θπ̄θ(s) is an m × k Jacobian, ∇uq̄π̄θ

is an m × 1 vector,
and the product (∇θπ̄θ(s))

⊤∇uq̄π̄θ
results in the k × 1 gradient vector for J(π̄θ).

Proposition 4.3. If U = A and f(· | u) is the Dirac delta distribution centered at u, then π̄θ and
Q̄w are equivalent to πθ and Qw, respectively. Consequently, the DPPG gradient estimator becomes
equivalent to DPG:

∇̂DPPG
θ Ĵ(π̄θ;St) = ∇̂DPG

θ Ĵ(πθ;St).

Proof. The DPPG gradient estimator is given by Equation (9):

∇̂DPPG
θ Ĵ(π̄θ;St) = ∇θπ̄θ(St)

⊤∇U Q̄w(St, U)|U=π̄θ(St).

Given the conditions:

1. U = A: The parameter space is the action space.

2. f(·|u) = δ(· − u): Sampling A ∼ f(·|u) yields A = u.

Under these conditions, π̄θ(St) outputs parameters U ∈ U , which are directly actions in A. Thus,
we can write πθ(St) = π̄θ(St), where πθ(St) ∈ A.

Next, consider the parameter-space value function q̄π̄θ
(St, U). From Proposition 3.2, q̄π̄θ

(St, U) =
EA∼f(·|U)[qπθ

(St, A)]. Since f(A|U) = δ(A − U), the expectation becomes qπθ
(St, U). So,

q̄π̄θ
(St, U) = qπθ

(St, U), where U ∈ U = A.

This means the parameter-space critic Q̄w(St, U) is estimating the action-value function qπθ
(St, U).

Thus, we can write Q̄w(St, U) = Qw(St, U), where U ∈ A.

Substituting these equivalences into the DPPG gradient estimator:

∇̂DPPG
θ Ĵ(π̄θ;St) = ∇θπθ(St)

⊤∇AQw(St, A)|A=πθ(St).

This is precisely the DPG gradient estimator (Equation (5)). Thus, ∇̂DPPG
θ Ĵ(π̄θ;St) =

∇̂DPG
θ Ĵ(πθ;St).
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Proposition 4.4. Assume Qw = qπθ
in ∇̂LR

θ Ĵ(πθ;St, A) and Q̄w = q̄π̄θ
in ∇̂DPPG

θ Ĵ(π̄θ;St). Then,

∇̂DPPG
θ Ĵ(π̄θ;St) = EA∼πθ(·|St)

[
∇̂LR

θ Ĵ(πθ;St, A)
]
.

Further, if the expectation of the action-conditioned variance is greater than zero, then

V
(
∇̂DPPG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂LR

θ Ĵ(πθ;St, A)
)
.

Proof. Proposition 3.2 states q̄π̄θ
(St, U) = EA∼f(·|U)[qπθ

(St, A)]. Given Q̄w = q̄π̄θ
and Qw =

qπθ
, this becomes Q̄w(St, U) = EA∼f(·|U)[Qw(St, A)]. Note that Qw(St, A) and Q̄w(St, U) are

distinct critic functions. The use of w for both signifies that they are learned approximators. In
the context of this proof, we can think of Qw and Q̄w as separate approximators, each utilizing a
corresponding subset of w.

Starting with the DPPG estimator (assuming continuous A; discrete case is analogous with sums):

∇̂DPPG
θ Ĵ(π̄θ;St) = ∇θπ̄θ(St)

⊤∇U Q̄w(St, U)|U=π̄θ(St)

= ∇θπ̄θ(St)
⊤∇UEA∼f(·|U)[Qw(St, A)]|U=π̄θ(St)

= ∇θπ̄θ(St)
⊤
(
∇U

∫
A
f(A|U)Qw(St, A) dA

)∣∣∣∣
U=π̄θ(St)

= ∇θπ̄θ(St)
⊤
(∫

A
∇Uf(A|U)Qw(St, A) dA

)∣∣∣∣
U=π̄θ(St)

= ∇θπ̄θ(St)
⊤
∫
A
∇Uf(A|U)|U=π̄θ(St)Qw(St, A) dA

=

∫
A
∇θπ̄θ(St)

⊤∇Uf(A|U)|U=π̄θ(St)Qw(St, A) dA

=

∫
A
∇θf(A|π̄θ(St))Qw(St, A) dA.

The differentiability under the integral sign is justified by Assumption 4.1. The last line follows
from the chain rule, where∇θf(A|π̄θ(St)) = ∇θπ̄θ(St)

⊤∇Uf(A|U)|U=π̄θ(St).

Using πθ(A|St) = f(A|π̄θ(St)) and the log-derivative trick, we can express the DPPG estimator
as:

∇̂DPPG
θ Ĵ(π̄θ;St) =

∫
A
∇θπθ(A|St)Qw(St, A) dA

=

∫
A
∇θ log πθ(A|St)πθ(A|St)Qw(St, A) dA

= EA∼πθ(·|St) [∇θ log πθ(A|St)Qw(St, A)] .

The LR estimator is ∇̂LR
θ Ĵ(πθ;St, A) = ∇θ log πθ(A|St)(Qw(St, A)− V (St)). Its expectation is

EA∼πθ(·|St)

[
∇̂LR

θ Ĵ(πθ;St, A)
]
. The term involving the baseline V (St) vanishes in expectation:

EA∼πθ(·|St) [∇θ log πθ(A|St)V (St)] = V (St)EA∼πθ(·|St) [∇θ log πθ(A|St)]

= V (St)

∫
A
∇θπθ(A|St) dA

= V (St)∇θ

∫
A
πθ(A|St) dA = V (St)∇θ(1) = 0.

Thus, EA∼πθ(·|St)

[
∇̂LR

θ Ĵ(πθ;St, A)
]

= EA∼πθ(·|St) [∇θ log πθ(A|St)Qw(St, A)]. This shows

∇̂DPPG
θ Ĵ(π̄θ;St) = EA∼πθ(·|St)

[
∇̂LR

θ Ĵ(πθ;St, A)
]
.
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For variance reduction, let X = ∇̂LR
θ Ĵ(πθ;St, A) and Y = ∇̂DPPG

θ Ĵ(π̄θ;St). We have Y =
E[X|St, π̄θ(St)] (expectation over A). By the law of total variance: V(X) = E[V(X|St, π̄θ(St))]+
V(E[X|St, π̄θ(St)]). This translates to

V
(
∇̂LR

θ Ĵ(πθ;St, A)
)
= ESt

[
VA

(
∇̂LR

θ Ĵ(πθ;St, A)
∣∣∣St)]+ V

(
∇̂DPPG

θ Ĵ(π̄θ;St)
)
.

If ESt
[
VA

(
∇̂LR

θ Ĵ(πθ;St, A)
∣∣∣St)] > 0 (i.e., the action-conditioned variance is positive on aver-

age), then V
(
∇̂DPPG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂LR

θ Ĵ(πθ;St, A)
)

.

Proposition 4.5. Assume A is continuous, Qw = qπθ
in ∇̂RP

θ Ĵ(πθ;St, ϵ), and Q̄w = q̄π̄θ
in

∇̂DPPG
θ Ĵ(π̄θ;St). Then,

∇̂DPPG
θ Ĵ(π̄θ;St) = Eϵ∼p

[
∇̂RP

θ Ĵ(πθ;St, ϵ)
]
.

Further, if the expectation of the noise-induced variance is greater than zero, then

V
(
∇̂DPPG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
)
.

Proof. For the RP estimator, the action is generated as A = gθ(ϵ;St), where ϵ ∼ p(·). For con-
sistency with DPPG notation, we can write A = g(ϵ;U), where U = π̄θ(St) ∈ U represents all
relevant learnable distribution parameters. Thus, the distribution f(·|U) of the random variable A is
induced by g(ϵ;U) with ϵ ∼ p(·).

Similar to the proof of Proposition 4.4, given the critics are the corresponding true action-value
functions, we have:

Q̄w(St, U) = EA∼f(·|U)[Qw(St, A)] = Eϵ∼p [Qw(St, g(ϵ; π̄θ(St)))] ,

where we use a change of variables to express the expectation in terms of the noise ϵ.

Now, we can express the DPPG gradient as:

∇̂DPPG
θ Ĵ(π̄θ;St) = ∇θπ̄θ(St)

⊤∇U Q̄w(St, U)|U=π̄θ(St)

= ∇θπ̄θ(St)
⊤∇UEϵ∼p[Qw(St, g(ϵ;U))]|U=π̄θ(St)

= ∇θπ̄θ(St)
⊤Eϵ∼p

[
∇UQw(St, g(ϵ;U))|U=π̄θ(St)

]
= Eϵ∼p

[
∇θπ̄θ(St)

⊤∇UQw(St, g(ϵ;U))|U=π̄θ(St)

]
= Eϵ∼p [∇θQw(St, g(ϵ; π̄θ(St)))] .

The differentiability under the integral sign is justified by Assumption 4.1. The last line follows
from the chain rule, where∇θQw(St, g(ϵ; π̄θ(St))) = ∇θπ̄θ(St)

⊤∇UQw(St, g(ϵ;U))|U=π̄θ(St).

On the other hand, the RP gradient is:

∇̂RP
θ Ĵ(πθ;St, ϵ) = ∇θgθ(ϵ;St)

⊤∇AQw(St, A)|A=gθ(ϵ;St)

= ∇θg(ϵ; π̄θ(St))
⊤∇AQw(St, A)|A=g(ϵ;π̄θ(St))

= ∇θQw(St, g(ϵ; π̄θ(St))),

where we use the chain rule again in the last equation: ∇θQw(St, g(ϵ; π̄θ(St))) =
∇θg(ϵ; π̄θ(St))

⊤∇AQw(St, A)|A=g(ϵ;π̄θ(St)). Thus, we have:

∇̂DPPG
θ Ĵ(π̄θ;St) = Eϵ∼p

[
∇̂RP

θ Ĵ(πθ;St, ϵ)
]
.
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The variance reduction argument is similar to that in Proposition 4.4. Let X = ∇̂RP
θ Ĵ(πθ;St, ϵ) and

Y = ∇̂DPPG
θ Ĵ(π̄θ;St). We have Y = E[X|St, ϵ] (expectation over ϵ). By the law of total variance:

V(X) = E[V(X|St, ϵ)] + V(E[X|St, ϵ]). This translates to

V
(
∇̂RP

θ Ĵ(πθ;St, ϵ)
)
= ESt

[
Vϵ

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
∣∣∣St)]+ V

(
∇̂DPPG

θ Ĵ(π̄θ;St)
)
.

If ESt
[
Vϵ

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
∣∣∣St)] > 0 (i.e., the noise-induced variance is positive on average), then

V
(
∇̂DPPG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
)

.

A.3 Convergence analysis for DPPG

We present a convergence result for the distribution parameter policy gradient (DPPG), which is a
direct application of the convergence of the deterministic policy gradient (DPG; Xiong et al., 2022).
We assume an on-policy linear function approximation setting and use TD learning to learn the
critic. See Algorithm 1 for the analyzed DPPG-TD algorithm. We follow the notation of Xiong
et al. as much as possible for comparison with their results.

Algorithm 1 DPPG-TD

1: Input: αw, αθ, w0, θ0, batch size M .
2: for t = 0, 1, . . . , T do
3: for j = 0, 1, . . . ,M − 1 do
4: Sample st,j ∼ dθt .
5: Generate ut,j = π̄θt(st,j).
6: Sample st+1,j ∼ p̄(·|st,j , ut,j) and rt,j .
7: Generate ut+1,j = π̄θt(st+1,j).
8: Denote xt,j = (st,j , ut,j).
9: δt,j = rt,j + γϕ(xt+1,j)

⊤wt − ϕ(xt,j)
⊤wt.

10: end for
11: wt+1 = wt +

αw
M

∑M−1
j=0 δt,jϕ(xt,j).

12: for j = 0, 1, . . . ,M − 1 do
13: Sample s′t,j ∼ νθt .
14: end for
15: θt+1 = θt +

αθ
M

∑M−1
j=0 ∇θπ̄θt(s′t,j)∇θπ̄θt(s′t,j)⊤wt.

16: end for

Following their notation, the parameterized policy is denoted as π̄θ and the objective function J(π̄θ)
(Equation (1)) is denoted as J(θ). The distribution parameter policy gradient is

∇θJ(θ) = Es∼νθ
[
∇θπ̄θ(s)∇uq̄π̄θ (s, u)|u=π̄θ(s)

]
, (13)

where νθ(s)
.
=

∑∞
t=0 Eπ̄θ [γtI(St = s)] is the discounted occupancy measure under π̄θ. We also

define the stationary distribution of π̄θ to be dθ(s) = limT→∞
1
T

∑T−1
t=0 Eπ̄θ [I(St = s)]. Under

linear function approximation for the critic function, the parameterized critic can be expressed as
Q̄w(s, u) = ϕ(s, u)⊤w, where ϕ : S × U → Rd is the feature function.

We will first list the full set of assumptions needed for the convergence result, followed by the
convergence theorem. In addition, we incorporate the corrections to the result of Xiong et al. from
Vasan et al. (2024), which extends the result to the reparameterization policy gradient. Following
Vasan et al., the corrections are highlighted in red.

Assumption A.1. For any θ1, θ2, θ ∈ Rd, there exist positive constants Lπ̄, Lϕ and λΦ, such that (1)
∥π̄θ1(s)−π̄θ2(s)∥ ≤ Lπ̄∥θ1−θ2∥,∀s ∈ S; (2) ∥∇θπ̄θ1(s)−∇θπ̄θ2(s)∥ ≤ Lψ∥θ1−θ2∥,∀s ∈ S; (3)

the matrix Ψθ := Eνθ
[
∇θπ̄θ(s)∇θπ̄θ(s)⊤

]
is non-singular with the minimal eigenvalue uniformly

lower-bounded as σmin(Ψθ) ≥ λΨ.
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Assumption A.2. For any u1, u2 ∈ U , there exist positive constants Lp̄, Lr̄, such that (1) the
parameter-space transition kernel satisfies |p̄(s′|s, u1)− p̄(s′|s, u2)| ≤ Lp̄∥u1−u2∥,∀s, s′ ∈ S; (2)
the parameter-space reward function satisfies |r̄(s, u1)− r̄(s, u2)| ≤ Lr̄∥u1 − u2∥,∀s, s′ ∈ S.

Assumption A.3. For any u1, u2 ∈ U , there exists a positive constant Lq̄ , such that ∥∇uq̄π̄θ (s, u1)−
∇uq̄π̄θ (s, u2)∥ ≤ Lq̄∥u1 − u2∥,∀θ ∈ Rd, s ∈ S.

Assumption A.4. The feature function ϕ : S × U → Rd is uniformly bounded, i.e., ∥ϕ(·, ·)∥ ≤ Cϕ
for some positive constant Cϕ. In addition, we define A = Edθ

[
ϕ(x)(γϕ(x′)− ϕ(x))⊤

]
and D =

Edθ
[
ϕ(x)ϕ(x)⊤

]
, and assume that A and D are non-singular. We further assume that the absolute

value of the eigenvalues of A are uniformly lower bounded, i.e., |σ(A)| ≥ λA for some positive
constant λA.

Proposition A.5 (Compatible function approximation). A function estimator Q̄w(s, u) is compatible
with a policy π̄θ, i.e., ∇J(θ) = Eνθ

[
∇θπ̄θ(s)∇uQ̄w(s, u)|u=π̄θ(s)

]
, if it satisfies the following two

conditions:

1. ∇uQ̄w(s, u)|u=π̄θ(s) = ∇θπ̄θ(s)⊤w;

2. w = w∗
ξθ

minimizes the mean square error Eνθ
[
ξ(s; θ, w)⊤ξ(s; θ, w)

]
, where ξ(s; θ, w) =

∇uQ̄w(s, u)|u=π̄θ(s)−∇uq̄π̄θ (s, u)|u=π̄θ(s).

Given the above assumption, one can show that the distribution parameter policy gradient is smooth
(Lemma A.6), and that Algorithm 1 converges (Theorem A.7).

Lemma A.6. Suppose Assumptions A.1-A.3 hold. Then the distribution parameter policy gradient
∇J(θ) defined in Equation (13) is Lipschitz continuous with the parameter LJ , i.e., ∀θ1, θ2 ∈ Rd,

∥∇J(θ1)−∇J(θ2)∥ ≤ LJ∥θ1 − θ2∥, (14)

where LJ=
(

1
2Lp̄L

2
π̄LνCν+

Lψ
1−γ

)(
Lr̄+

γRmaxLp̄
1−γ

)
+ Lπ̄

1−γ

(
Lq̄Lπ̄+

γ
2L

2
p̄RmaxLπ̄Cν+

γLp̄Lr̄Lπ̄
1−γ

)
.

Theorem A.7. Suppose that Assumptions A.1-A.4 hold. Let αw ≤ λ
2C2

A
;M ≥ 48αwC

2
A

λ ;αθ ≤

min
{

1
4LJ

, λαw
24

√
6LhLw

}
. Then the output of DPPG-TD in Algorithm 1 satisfies

min
t∈[T ]

E∥∇J(θt)∥2 ≤
c1
T

+
c2
M

+ c3κ
2,

where c1 = 8Rmax

αθ(1−γ) +
144L2

h

λαw
∥w0−w∗

θ0
∥2, c2 =

[
48α2

w(C
2
AC

2
w + C2

b ) +
96L2

wL
4
π̄C

2
wξ
α2
θ

λαw

]
· 144L

2
h

λαw
+

72L4
π̄C

2
wξ

, c3 = 18L2
h +

[
24L2

wL
2
hα

2
θ

λαw
+ 24

λαw

]
· 144L

2
h

λαw
with CA = 2C2

ϕ, Cb = RmaxCϕ, Cw =

RmaxCϕ
λA

, Cwξ =
Lπ̄Cq̄

λΨ(1−γ) , Lw = LJ
λΨ

+
Lπ̄Cq̄

λ2
Ψ(1−γ)

(
L2
π̄Lν +

2Lπ̄Lψ
1−γ

)
, Lh = L2

π̄, Cq̄ = Lr̄ + Lp̄ ·
γRmax

1−γ , Lν = 1
2CνLp̄Lπ̄ , and LJ defined in Lemma A.6, and we define

κ := max
θ
∥w∗

θ − w∗
ξθ
∥. (15)

Remark A.8. Apart from the corrections highlighted in red, the convergence result retains the same
mathematical form as the DPG convergence result (see Theorem 1 of Xiong et al. (2022)). However,
the associated constants differ, as they are defined with respect to the parameter-space formulations
of the MDP, policy, and critic. Notably, the parameter-space policy class strictly generalizes the
deterministic policy class. Consequently, this convergence result constitutes a strict generalization
of the DPG convergence result.

The proofs of Lemma A.6 and Theorem A.7 follow the same lines as that of Lemma 1 and Theorem
1 of Xiong et al.. We refer the reader to Xiong et al. for proofs and discussion and Vasan et al. for
details about the corrections.
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B Experimental details

Our implementation builds upon a PyTorch (Paszke, 2019) implementation of TD3 from CleanRL
(Huang et al., 2022), distributed under the MIT license.

Since the performance distribution in reinforcement learning (RL) is often not Gaussian, we use 95%
bootstrapped confidence intervals (CIs) for reporting the statistical significance whenever applicable,
as recommended by Patterson et al. (2024). We use scipy.stats.bootstrap with 10, 000 resamples
from SciPy to calculate the bootstrapped CIs. For all bar plots, we plot the final performance, which
is computed using the average of the return collected during the final 10% training steps.

B.1 Policy parameterization and action sampling

When the action space is multidimensional, we treat each dimension independently. For simplicity,
our exposition will focus on the unidimensional case in the remaining of the paper.

Discrete action spaces We use the categorical policy parameterization: A ∼
f(·|[p1, · · · , pN ]⊤), where f(x|[p1, · · · , pN ]⊤) =

∏N
i=1 p

I(x=i)
i is the probability mass function for

the categorical distribution. For DPAC, we choose the probability vector u = [p1, · · · , pN ]⊤ as the
distribution parameters. We define the distribution parameters corresponding to an action A to be
the one-hot vector UA = one_hot(A).

Continuous action spaces Assume the action space is [amin, amax]. We use the Gaussian policy
parameterization that is used in TD3: A = clip(µ+ ϵ, amin, amax), ϵ ∼ N (0, σ). Same as TD3, we
restrict the mean µ to be within [amin, amax] using a squashing function:

µ =
uµ + 1

2
(amax − amin) + amin, uµ = tanh(logitµ),

where logitµ ∈ R is the actor network’s output for µ. While TD3 uses a fixed σTD3 = 0.1 ∗
amax−amin

2 , we allow the learnable standard deviation to be within a range σ ∈ [σmin, σmax]:

log σ =
uσ + 1

2
∗ (log σmax − log σmin) + log σmin, uσ = tanh(logitσ),

where logitσ ∈ R is the actor network’s output for σ. For AC-RP, the reparameterization function is
gθ(ϵ;St) = clip(µθ(St)+σθ(St)ϵ, amin, amax), ϵ ∼ N (0, 1). This setup may slightly disadvantage
AC-RP, as the policy gradient becomes zero when sampled actions fall outside the support of the
action space. For DPAC, we choose the distribution parameters to be u = [uµ, uσ]

⊤ ∈ [−1, 1]2
so that the parameter space is consistent across the mean and standard deviation dimensions. Since
we lower bound the standard deviation space to encourage exploration, we define the distribution
parameters corresponding to an action A to be UA = [ 2A

amax−amin
,−1]⊤ to approximate the Dirac

delta distribution, which corresponds to µ = A and σ = σmin.

B.2 Policy evaluation in bandits

K-Armed Bandit We use a K-armed bandit with K = 3 and a deterministic reward function:

r(a1) = 0, r(a2) = 0.5, r(a3) = 1.

Bimodal Continuous Bandit We use a continuous bandit with a deterministic bimodal reward
function. Specifically, the reward function is the normalized summation of two Gaussians’ density
functions whose standard deviations are both 0.5 and whose means are −1 and 1, respectively:

r(a) = e−
(a+1)2

0.5 + e−
(a−1)2

0.5 .

We restrict the action space to be [amin, amax] = [−2, 2]. The standard standard deviation is con-
strained to [σmin, σmax] = [e−3, e].
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Figure 7: Learning curves of DPAC, DPAC w/o ICL, and baselines using learning rates 0.001
(cols 1–2) and 0.1 (cols 3–4). Results are averaged over 50 seeds. Shaded regions show 95% boot-
strapped CIs. An aggressive learning rate of 0.1 often leads to premature convergence to suboptimal
points for most algorithms. Consistent with Figure 6, ICL demonstrates improved performance for
DPAC when a more conservative learning rate is employed.

Critic network architecture To be consistent with the RL settings, we use the same critic
network architecture as those in Appendices B.4 and B.5. Specifically, we use a two-layer MLP
network with the concatenated state and action vector as input. We reduce the hidden size from 256
to 16 and use a dummy state vector with a value of 1.

Experimental details We keep the policy evaluation (PE) policy fixed and update the
parameter-space critic function for 2000 steps using either Equation (10) or Equation (12). In K-
Armed Bandit, the PE policy is π̄PE = uPE = [1/3, 1/3, 1/3]; in Bimodal Continuous Bandit, the
PE policy is π̄PE = uPE = [0, 0.5] (corresponding to µ = 0 and log σ = 0.0). The hyperparameters
are the same as those of DPAC in Table 3, except that the batch size is 32, and the actor is kept fixed
to the corresponding PE policy.

B.3 Policy optimization in bandits

Details We use the same K-Armed Bandit and Bimodal Continuous Bandit environments as
Appendix B.2. We use the same critic network architecture as in Appendix B.2. Similarly, we use
the same actor network architecture as those in Appendices B.4 and B.5. Specifically, we use a
two-layer MLP network with the state vector as input. We reduce the hidden size from 256 to 16
and use a dummy state tensor with a value of 1. The hyperparameters are in Table 3. For PG-LR,
PG-RP, and DPPG, the critic function is calculated analytically; otherwise, their hyperparameters
are the same as their counterparts with a learned critic function.

Results with alternative learning rates While we choose a fixed learning rate for all algorithms
for a more controlled comparison in Section 5.2, we note that interpolated critic learning (ICL) also
improves the performance of DPAC under other learning rates. Apart from 0.01, we report the
results with learning rates 0.001 and 0.1 in Figure 7.

B.4 Continuous control

Environments From OpenAI Gym MuJoCo, we use the most commonly used 5 environments
(see Table 1). From DeepMind Control Suite, we use the same 15 environments as D’Oro et al.
(2023), which are mentioned to be neither immediately solvable nor unsolvable by common deep
RL algorithms. The full list of environments and their corresponding observation and action space
dimensions are in Table 2. Returns for bar plots are normalized by dividing the episodic return by
the maximum possible return for a given task. In DMC environments, the maximum return is 1000
(Tunyasuvunakool et al., 2020). For MuJoCo environments, we establish maximum returns based on
the highest values observed from proficient RL algorithms (Bhatt et al., 2024): 4000 for Hopper-v4,
7000 for Walker2d-v4, 8000 for Ant-v4, 16000 for HalfCheetah-v4, and 12000 for Humanoid-v4.

Experimental details Similar to TD3, DPAC and AC-RP also adopt a uniform exploration
phase. During the uniform exploration phase, the distribution parameters u = [uµ, uσ]

⊤ are uni-
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Figure 8: Learning curves in four DeepMind Control tasks with high-dimensional action
spaces. Results are averaged over 10 seeds. shaded regions show 95% bootstrapped CIs.
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Figure 9: Average normalized returns with and without actor target network (ATN) on MuJoCo
(col 1) and DMC (col 2) tasks. Values are averaged over 10 seeds and 5 (MuJoCo) or 10 (DMC)
tasks. Error bars show 95% bootstrapped CIs.

formly sampled from [−1, 1]2. All algorithms use the default hyperparameters of TD3 (see Table 4).
See Figure 11 for learning curves in each individual environment.

Impact of the actor target network We also investigate the impact of using an actor target
network (ATN) in DPAC and the baselines. While TD3 already employs an ATN, both DPAC and
AC-RP do not. We additionally test DPAC w/ ATN and AC-RP w/ ATN and TD3 w/o ATN. From
Figure 9, we can see that the actor target network does not have a significant impact in general.

B.5 Discrete control

Details We use the same 20 environments as Appendix B.4. Similar to the continuous control
case, we also include a uninform exploration phase for all discrete control algorithms. For AC-LR
and AC-ST, the action is randomly sampled from a uniform categorical distribution. For DPAC, the
logits of the distribution parameters (in this case, the probability vector) are sampled fromN (0, 1)N ,
where N is the number of possible discrete outcomes. All algorithms use the default hyperparame-
ters of TD3 (see Table 4). See Figure 12 for learning curves in each individual environment.

Comparison to continuous control We plot the relative final performance of DPAC with con-
tinuous actions versus with discrete actions in Figure 10. We can see that the performance of DPAC
with discrete actions can often compete with DPAC with continuous actions.

B.6 Computational resource requirement

All training for bandits was conducted on a local machine with AMD Ryzen 9 5900X 12-Core
Processor. Each training run was executed using a single CPU core and consumed less than 256MB
of RAM. Most runs completed 2000 training steps within 10 seconds.

All training for the MuJoCo simulation tasks was conducted on CPU servers. These servers were
equipped with a diverse range of Intel Xeon processors, including Intel E5-2683 v4 Broadwell
@ 2.1GHz, Intel Platinum 8160F Skylake @ 2.1GHz, and Intel Platinum 8260 Cascade Lake @
2.4GHz. Each training run was executed using a single CPU core and consumed less than 2GB of
RAM. The training duration varied considerably across environments, primarily influenced by the
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Figure 10: Relative final performance of DPAC with continuous actions versus with discrete
actions across 20 individual control tasks. Results are averaged over 10 seeds per task.

dimensionality of the observation space, the complexity of the physics simulation, and, in the dis-
crete action case, the dimensionality of the action space. Most algorithms typically completed 1M
training steps in approximately 7 hours per run. However, AC-LR required a longer training period
of roughly 9 hours due to the additional computational overhead of learning an extra neural network.

Table 1: Observation and action dimensions of OpenAI Gym MuJoCo environments.

Environment Observation dimension Action dimension

Hopper-v3 11 3
Walker2d-v3 17 6
HalfCheetah-v3 17 6
Ant-v3 111 8
Humanoid-v3 376 17

Table 2: Observation and action dimensions of DeepMind Control Suite environments.

Domain Task(s) Observation dimension Action dimension

pendulum swingup 3 1
acrobot swingup 6 1
reacher hard 6 2
finger turn_hard 12 2
hopper stand, hop 15 4
fish swim 24 5
swimmer swimmer6 25 5
cheetah run 17 6
walker run 24 6
quadruped walk, run 58 12
humanoid stand, walk, run 67 24
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Table 3: Hyperparameters of actor-critic algorithms for both continuous (col 2) and discrete (col 3)
bandits. DPAC is applied to both settings, denoted as DPAC-C and DPAC-D, respectively.

Hyperparameter AC-RP / DPAC-C AC-LR / DPAC-D

Batch size 8

Optimizer Adam

Learning rate (actor & critic) 0.01

Target network update rate (τ ) 0.005

Gradient steps per env step 1

Number of hidden layers 2

Neurons per hidden layer 16

Activation function ReLU

Discount factor (γ) N/A

Replay buffer size 2000

Uniform exploration steps N/A

Policy update delay (Nd) 1

Learnable σ range ([σmin, σmax]) [e−3, e] N/A

Table 4: Hyperparameters of actor-critic algorithms for both continuous (cols 2–3) and discrete (col
4) control RL environments. DPAC is applied to both settings, denoted as DPAC-C and DPAC-D,
respectively. For simplicity, we assume [amin, amax] = [−1, 1] for continuous control algorithms.

Hyperparameter TD3 AC-RP / DPAC-C AC-LR / AC-ST / DPAC-D

Batch size 256

Optimizer Adam

Learning rate (actor & critic) 3× 10−4

Target network update rate (τ ) 0.005

Gradient steps per env step 1

Number of hidden layers 2

Neurons per hidden layer 256

Activation function ReLU

Discount factor (γ) 0.99

Replay buffer size 1× 106

Uniform exploration steps 25, 000

Policy update delay (Nd) 2

Target policy noise clip (c) 0.5 N/A

Target policy noise (σ̃TD3) 0.2 N/A

Exploration policy noise (σTD3) 0.1 N/A

Learnable σ range ([σmin, σmax]) N/A [0.05, 0.2] N/A
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C Additional plots

We present the learning curves for individual continuous and discrete tasks in Figures 11 and 12,
respectively.
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Figure 11: Learning curves of DPAC, DPAC w/o ICL, and baselines in 20 individual continuous
control tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrapped CIs.
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Figure 12: Learning curves of DPAC, DPAC w/o ICL, and baselines in 20 individual discrete
control tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrapped CIs.



DPAC: Shifting the Agent-Environment Boundary for Diverse Action Spaces

D Pseudocode

Algorithm 2 DPAC for diverse action spaces

Input action sampling function f : U → ∆(A) (see Appendix B.1 for f in different action spaces)

Initialize parameters w1,w2,θ, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At ∼ f(·|Ut) with Ut = π̄θ(St), observe Rt+1, St+1

Add ⟨St, Ut, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample Û = ωU + (1− ω)UA, ω ∼ Uniform[0, 1], for each transition ⟨S,U,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt(R+ γminj∈{1,2} Qw̄j (S
′, π̄θ(S

′))−Qwi(S, Û))∇Qwi(S, Û)

if t ≡ 0 (mod Nd) then
Update policy on B:

θ ← θ − αt∇θπ̄θ(S)
⊤∇ŨQw1

(S, Ũ)|Ũ=π̄θ(S)

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for
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Algorithm 3 TD3 for continuous action spaces

Input exploration noise σTD3, target policy noise σ̃TD3, target noise clipping c
Initialize parameters w1,w2,θ, w̄1 ← w1, w̄2 ← w2, θ̄ ← θ, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At = πθ(St) + ϵ, ϵ ∼ N (0, σTD3), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample A′ = πθ̄(S

′) + ϵ, ϵ ∼ clip(N (0, σ̃TD3),−c, c), for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt(R+ γminj∈{1,2} Qw̄j (S
′, A′)−Qwi(S,A))∇Qwi(S,A)

if t ≡ 0 (mod Nd) then
Update policy on B:

θ ← θ − αt∇θπθ(S)
⊤∇ÃQw1

(S, Ã)|Ã=πθ(S)

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

θ̄ ← τθ + (1− τ)θ̄

end if
end for

Algorithm 4 AC-RP for continuous action spaces

Input reparameterization function gθ : S × R→ A (for Gaussian policies, see Appendix B.1)
Initialize parameters w1,w2,θ, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At = gθ(ϵ;St), ϵ ∼ N (0, 1), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample A′ = gθ(ϵ;S

′), ϵ ∼ N (0, 1), for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt(R+ γminj∈{1,2} Qw̄j (S
′, A′)−Qwi(S,A))∇Qwi(S,A)

if t ≡ 0 (mod Nd) then
Sample ϵ ∼ N (0, 1) for each transition ⟨S,A, S′, R⟩ in B
Update policy on B:

θ ← θ − αt∇θgθ(ϵ;S)
⊤∇ÃQw1(S, Ã)|Ã=gθ(ϵ;S)

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for
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Algorithm 5 AC-LR for discrete action spaces

Initialize parameters w1,w2,θ, v, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At ∼ πθ(·|St), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample Ã ∼ πθ(·|S) and A′ ∼ πθ(·|S′) for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt(R+ γminj∈{1,2} Qw̄j (S
′, A′)−Qwi(S,A))∇Qwi(S,A)

v← v + αt(Qw1(S, Ã)− Vv(S))∇Vv(S)

if t ≡ 0 (mod Nd) then
Sample Ã ∼ πθ(·|S), for each transition ⟨S,A, S′, R⟩ in B
Update policy on B:

θ ← θ − αt∇θ log πθ(Ã|S)(Qw1(S, Ã)− Vv(S))

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for

Algorithm 6 AC-ST for discrete action spaces

Initialize parameters w1,w2,θ, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At ∼ πθ(·|St), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample A′ ∼ πθ(·|S′) for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt(R+ γminj∈{1,2} Qw̄j (S
′, A′)−Qwi(S,A))∇Qwi(S,A)

if t ≡ 0 (mod Nd) then
Sample Ã ∼ πθ(·|S), for each transition ⟨S,A, S′, R⟩ in B
Use the straight-through trick to compute Ãθ = one_hot(Ã) + πθ(·|S)− πϕ(·|S)|ϕ=θ

Update policy on B:

θ ← θ − αt∇θπθ(·|S)⊤∇ÃQw1(S, Ã)|Ã=Ãθ

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for


