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Abstract

Massively parallel GPU simulation environments have accelerated reinforcement learn-
ing (RL) research by enabling fast data collection for on-policy RL algorithms like
Proximal Policy Optimization (PPO). To maximize throughput, it is common to use
short rollouts per policy update, increasing the update-to-data (UTD) ratio. However,
we find that, in this setting, standard synchronous resets introduce harmful nonstation-
arity, skewing the learning signal and destabilizing training. We introduce staggered
resets, a simple yet effective technique where environments are initialized and reset at
varied points within the task horizon. This yields training batches with greater temporal
diversity, reducing the nonstationarity induced by synchronized rollouts. We character-
ize dimensions along which RL environments can benefit significantly from staggered
resets through illustrative toy environments. We then apply this technique to challeng-
ing high-dimensional robotics environments, achieving significantly higher sample ef-
ficiency, faster wall-clock convergence, and stronger final performance. Finally, this
technique scales better with more parallel environments compared to naive synchro-
nized rollouts.

1 Introduction

Reinforcement Learning (RL) has emerged as a powerful paradigm for tackling complex sequential
decision-making problems, particularly in continuous control domains like robotics (Kober et al.,
2013; Levine et al., 2016; Lee et al., 2019). However, RL often depends on vast quantities of interac-
tion data, a requirement that can be prohibitively expensive or slow to acquire in real-world settings.
Massively parallel simulation environments, especially those accelerated on GPUs (Makoviychuk
et al., 2021; Freeman et al., 2021; Nikulin et al., 2023; Mittal et al., 2023), have enabled data-
generation throughput on orders of magnitude greater than traditional CPU-based setups. The in-
crease in data throughput has enabled far faster training of robotics models with successful sim2real
deployments of locomotion (Rudin et al., 2022; Margolis et al., 2022), state-based manipulation
(Handa et al., 2022; Lin et al., 2025), and vision-based manipulation (Tao et al., 2025; Zakka et al.,
2025; Singh et al., 2025).

Despite this paradigm shift in data generation capabilities, the core algorithms, particularly on-policy
methods like Proximal Policy Optimization (PPO) (Schulman et al., 2017), have often been adapted
with only superficial changes—typically larger batch sizes and shorter per-environment rollouts
(K) to increase the update-to-data (UTD) ratio (Rudin et al., 2022). This strategy, while seemingly
maximizing hardware utilization, overlooks a critical interaction between the data collection process
and the learning algorithm’s stability when the task horizon (H) significantly exceeds the rollout
length (K ≪ H).
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In this work, we identify a subtle yet pervasive issue: cyclical batch nonstationarity. When thousands
of environments are simulated synchronously and reset only after completing a full H-step episode,
the data batches fed to the RL agent become temporally homogeneous but cycle predictably through
different segments of the episode. One PPO update might see data exclusively from early-episode
states, the next from mid-episode, and so on, before abruptly returning to early-episode data after
a mass reset. This rapid, cyclical shift in the input data distribution can destabilize value function
learning, induce policy oscillations, and hinder the agent’s ability to consolidate knowledge across
the entire task horizon. Essentially, the high-throughput data stream becomes a "moving target" for
the learner, undermining the benefits of parallelization.

We argue that stable and efficient learning in this massively parallel regime requires more than just
algorithmic re-tuning; it necessitates a modification to the environment interaction protocol itself.
We introduce staggered resets, a simple yet highly effective technique that breaks this harmful syn-
chronicity. By initializing parallel environments at diverse effective time steps distributed across the
task horizon H , staggered resets ensure that each training batch contains a rich, temporally hetero-
geneous mix of experiences. This provides the learner with a more stationary and representative
view of the overall task dynamics within every gradient update. To summarize our contributions:

• We precisely identify and articulate the problem of cyclical batch nonstationarity stemming from
synchronous full-episode resets combined with short rollouts (K ≪ H) in massively parallel
on-policy RL, explaining its detrimental impact on learning dynamics.

• We propose staggered resets, an elegant and easily implementable mechanism independent of the
RL algorithm itself to ensure temporal diversity within training batches by desynchronizing the
effective starting points of parallel environments across the task horizon.

• Through illustrative toy environments, we characterize the conditions under which this nonsta-
tionarity is most severe and staggered resets offer maximal benefit.

• We provide compelling empirical evidence on challenging, high-dimensional robotics tasks,
demonstrating that staggered resets significantly improve sample efficiency, wall-clock conver-
gence speed, final policy performance, and scalability with increasing parallelism compared to
standard synchronous reset protocols.

2 Related Work

Massively Parallel RL The inherent sample inefficiency of many reinforcement learning algo-
rithms has significant research into scaling and parallelization to improve training time and perfor-
mance. Early approaches, such as IMPALA and others (Mnih et al., 2016; Espeholt et al., 2018; Nair
et al., 2015; Horgan et al., 2018), utilized multiple CPU workers to achieve parallelism and scalabil-
ity. These typically relied on benchmarks (Yu et al., 2019; Gu et al., 2023; Tunyasuvunakool et al.,
2020) built on top of CPU-based simulators like MuJoCo (Todorov et al., 2012), PyBullet (Coumans
& Bai, 2016–2021), PhysX etc. More recently, GPU-accelerated simulators (Makoviychuk et al.,
2021; Freeman et al., 2021) and other JAX-based GPU-accelerated environments (Nikulin et al.,
2023; Lange, 2022) have enabled a much greater degree of parallelism, resulting in considerable
speedups for training complex policies. Recent work has sought to replace the popular choice of
PPO as an RL algorithm by improving scalability (Li et al., 2023; Singla et al., 2024). In con-
trast our work is algorithm-agnostic and addresses the challenge of handling non-stationary data in
synchronous highly-parallel regimes for on-policy algorithms like PPO.

Nonstationarity in RL Nonstationarity in the data distribution is a recognized challenge within
reinforcement learning. Such nonstationarity can stem from various sources, including changes in
environment dynamics, the reward function, or, as pertinent to our work, the data collection process
itself. Previous research has explored related issues such as catastrophic forgetting in continual
learning scenarios (Kirkpatrick et al., 2017) and representation collapse arising from biased data.
The "primacy bias," wherein early experiences exert a disproportionate influence on RL training,
has also been documented (Nikishin et al., 2022; Schwarzer et al., 2023). Our work specifically
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highlights and aims to mitigate the cyclical nonstationarity induced by the interplay of synchronous
resets and short rollouts in massively parallel RL settings.

Short Rollouts in Parallel RL The use of short rollouts (K ≪ H) in parallel RL is frequently mo-
tivated by the desire to increase update frequency (achieving a high update-to-data ratio) and maxi-
mize wall-clock training speed (Xu et al., 2021; Li et al., 2023). While this strategy can be effective,
underlying issues related to data distribution bias are often overlooked. Some implementations in-
corporate partial resets—resetting environments upon task success, failure, or termination—which
can introduce some eventual desynchronization. However, this process can be slow and may prove
insufficient to counteract the initial bias, particularly when K is very small. Furthermore, while
some simulation environment implementations include versions of the reset staggering technique
we propose (Rudin et al., 2022), these are typically not detailed in accompanying publications. To
our knowledge, our work is the first to thoroughly investigate and analyze this method, as well as to
characterize the environmental conditions under which it proves most effective.

3 Methodology

3.1 Cyclical Nonstationarity in Massively Parallel PPO

We consider a standard MDP setting where the goal is to learn a policy πθ to maximize the expected
return over a horizon H . On-policy algorithms like PPO (Schulman et al., 2017) are often trained
in a massively parallel setup with N synchronous environments. Data is collected for K steps (the
rollout length) from all environments, creating a batch of N ×K transitions which is then used for
policy and value function updates.

In massively parallel RL, a common strategy to increase the update-to-data (UTD) ratio is to use
a short rollout length K much smaller than the task horizon H (K ≪ H). When combined with
standard synchronous resets (where all environments are reset together at the start and after com-
pleting an episode), this creates a harmful cyclical nonstationarity in the training data. As illustrated
in Figure 1(a), all environments start at t = 0. The first training batch thus contains data exclusively
from the time window [0,K − 1]. The next batch contains data from [K, 2K − 1], and so on. After
approximately H/K updates, all environments complete their episodes and are reset synchronously,
causing the next batch to abruptly revert to containing data only from [0,K − 1].

This process feeds the learner a data stream where the state distribution shifts predictably and dra-
matically from one batch to the next. The learner is forced to chase a "moving target," which can
destabilize value function learning, hinder credit assignment over long horizons, and undermine the
benefits of parallelization.

To counteract this detrimental cyclical nonstationarity, we introduce staggered resets. The core
principle is to desynchronize the parallel environments such that each training batch contains expe-
riences from diverse segments of the task horizon, as illustrated in Figure 1(b).

The mechanism is implemented efficiently. Before training begins, the N parallel environments
are partitioned into NB distinct groups. Each group is advanced for a specific number of offset
steps, toffset, using random actions or the initial policy. To make this process efficient, especially
in GPU-based simulators where individual reset operations can be costly, these offsets are chosen
from a discrete set. A practical choice is to set the offset for group i ∈ {0, . . . , NB − 1} to be
i · K, where K is the PPO rollout length and NB ≈ H/K. This pre-initialization phase positions
environments at different effective starting points. Consequently, when the standard synchronous
PPO data collection proceeds for K steps, the aggregated batch naturally contains a temporally
heterogeneous mix of transitions from across the task horizon.

Reset Management During Training: To maintain this temporal diversity while preserving com-
putational efficiency, we handle resets as follows:
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Figure 1: Data collection in massively parallel RL. Rows are environments, columns are time within
task horizon H . Colors (red, orange, etc.) mark distinct task stages. (a) Synchronous Resets
(Naive): All environments start at t = 0 (red stage). Each rollout batch is temporally homogeneous.
Batch content cycles, causing nonstationarity. (b) Staggered Resets: Environments start at varied
points. Each rollout batch contains a mix of task stages. This yields a more stationary and represen-
tative data distribution.

• End-of-Horizon Resets: When an environment completes its full H-step lifetime, it is reset to a
new initial state s0 ∼ ρ0 at effective time t = 0. Since environments were initially staggered into
groups, these resets occur in batches, maximizing efficiency.

• Partial Resets (Early Termination): If an environment terminates early (e.g., due to task success
or failure), it is flagged for reset. To avoid costly un-batched operations, it waits for the next
scheduled "reset gate"—the moment when any group of environments is undergoing a batched
end-of-horizon reset. At this point, all flagged environments are reset together. This strategy
maintains the benefits of staggering with minimal wall-clock overhead.

By ensuring temporal diversity within each batch, staggered resets provide the learner with a data
distribution that better approximates the true state visitation distribution ρ

(0:H−1)
π encountered over

complete episodes. This stabilization is crucial for allowing the use of short rollouts K (and thus
high update-to-data ratios) without succumbing to the cyclical nonstationarity bias that plagues naive
synchronous reset schemes. The improved data quality promotes more stable learning, better value
estimates for states across the entire task, and ultimately, enhanced performance on long-horizon
tasks, as our empirical results corroborate.

4 Characterizing the Problem in Toy Environments

To isolate the factors that amplify the harm of cyclical nonstationarity, we designed 1D toy envi-
ronments where we could control for: (1) the ratio of rollout length to task horizon (K/H), (2) the
stochasticity of reset states, and (3) the presence of "skill gates" that force mastery of early-stage
skills to progress. Full details of the environment design and results are in the appendix.

As shown in Figure 2, staggered resets consistently outperform naive synchronous resets. The per-
formance gap widens significantly as: (a) the horizon H increases relative to K, lengthening the
data-distribution cycle; (b) resets become more deterministic (homogeneous), synchronizing the en-
vironments more strongly; and (c) skill gates are relaxed, meaning the environment provides less of
a natural curriculum. These results confirm that staggered resets are most crucial in long-horizon
tasks where the data from synchronous rollouts is least representative of the full state space on a
per-batch basis.
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Figure 2: PPO with Non-Staggered (blue) vs. Staggered (red) resets on toy environments (mean ±
1 std dev). Staggered resets show robust performance as (a) horizon H increases, (b) reset homo-
geneity increases, and (c) progression probability varies, unlike non-staggered PPO which degrades
especially with longer horizons, more deterministic resets, and easier skill gates.

5 Experiments on High-Dimensional Robotics Tasks

5.1 Experimental Setup

Our evaluation suite includes several challenging robotics tasks from ManiSkill3 (Tao et al.,
2025), a GPU-accelerated robotics framework based on SAPIEN (Xiang et al., 2020). We test on
StackCube-v1, a manipulation task requiring an agent to stack one cube onto another; PushT,
where a T-shaped block must be pushed to a target pose; TwoRobotPushCube, where two robots
work together to move a cube to a goal; Unitree Transport Box, a humanoid task where a
box must be transported to a table; and Anymal Reach C, where an Anymal C robot must move
to a specific goal location. We also test on MS-HumanoidWalk, a humanoid walking control
task. These environments involve high-dimensional continuous state and action spaces, providing a
suitable testbed for evaluating the effectiveness of staggered resets.

5.2 State Visitation Dynamics in High-Dimensional Robotics

Figure 3: State visitation KDEs in StackCube-v1 over five rollouts. (a) Long Rollout (K = 100):
stable, broad coverage. (b) Naive Short Rollout (K = 25): cyclical non-stationarity, narrow/erratic
coverage. (c) Staggered Short Rollout (K = 25): stable, diverse coverage, emulating (a) despite
short trajectories.
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We hypothesize that staggered resets create a more stable and informative data distribution. To test
this, we visualize the state visitation distributions for StackCube-v1 over consecutive rollouts
using KDE plots (Figure 3). A long rollout (K = 100) policy (a) serves as our "ideal" baseline,
showing broad and stable state coverage. In contrast, the naive short rollout (K = 25) approach (b)
exhibits the predicted cyclical nonstationarity: the distribution is narrow, shifts erratically between
rollouts, and snaps back to the initial state distribution after a mass reset (compare Rollout 5 to 1).
Our staggered short rollout (K = 25) method (c) successfully mitigates this. Its state coverage
remains broad and stable across rollouts, qualitatively matching the long-rollout baseline. This
provides strong evidence that staggered resets restore the data quality lost when using short rollouts
with synchronous resets.

5.3 Performance on High-Dimensional Robotics Tasks

Figure 4: Staggered Resets (Ours, red) vs. Synchronous Resets (blue) on robotics tasks. Plots show
the average evaluation metric (success rate or reward) vs. environment steps. Shaded area show the
standard deviation over 3 seeds. Staggered resets consistently improve learning speed, final perfor-
mance, and stability on diverse manipulation tasks (StackCube, PushT, TwoRobotPickCube,
UnitreeG1Transport-Box, AnymalC-Reach). Performance is comparable on the locomo-
tion task MS-HumanoidWalk, where cyclical batch nonstationarity is less salient due to the repet-
itive nature of short horizon skills.

As shown in Figure 4, across manipulation tasks like PushT, StackCube-v1,
UnitreeG1Transport-Box, AnymalC-Reach, and TwoRobotPickCube, staggered
resets achieve substantially faster convergence, higher final success rates, and greater stability. For
instance, in PushT and StackCube-v1, staggering leads to significantly higher and more stable
success rates. Similarly, in AnymalC-Reach and TwoRobotPickCube, learning is markedly
quicker and reaches better asymptotic performance with staggered resets. The variance across seeds
(n = 3) is also lower with staggered resets, indicating higher overall training stability.

Interestingly, on the locomotion task MS-HumanoidWalk, both methods perform comparably.
Locomotion tasks often feature shorter effective skill horizons per cycle. Concretely, locomotion
environments feature extremely large task horizons (sometimes H ≈ 1000), but the actual loco-
motion skill itself is much shorter horizon. Additionally, locomotion environments feature highly
stochastic dynamics and reset behaviors (i.e. partially resetting by falling down early). These fac-
tors can induce a degree of natural desynchronization, making the cyclical batch nonstationarity less
severe and thereby reducing the marginal benefit of explicit staggered resets. These observations
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align with our toy environment findings, where higher reset stochasticity and shorter effective skill
horizons diminish the advantages of staggering. It is noteworthy that prior work which employs a
form of staggering (Rudin et al., 2022) primarily applies it in such locomotion contexts—scenarios
where, as our analysis suggests, the benefits of staggering are less pronounced compared to more
complex, longer-horizon manipulation tasks.

5.4 Scaling with Parallel Environments and Overcoming Performance Saturation

Figure 5: Wall-clock time to conver-
gence versus number of parallel envi-
ronments (N ) for (a) StackCube-v1
and (b) Unitree G1 Transport
Box. Staggered PPO (red) scales more
efficiently than Naive PPO (blue).

A key challenge in massively parallel RL is effectively
utilizing the increased parallelism, as performance gains
can saturate or even reverse with more environments
(Singla et al., 2024). We show that staggered resets di-
rectly address this by improving the marginal utility of
each added environment.

Figure 5 plots wall-clock time to reach a 70% success
rate versus the number of parallel environments N . While
Naive PPO’s convergence speed saturates at high N , stag-
gered resets enable continued performance gains. This
demonstrates that by ensuring data diversity, our method
scales more effectively and makes better use of parallel
compute, overcoming the diminishing returns caused by
the temporally redundant data generated by naive syn-
chronous resets.

6 Discussion

Our investigation reveals a significant challenge in mod-
ern massively parallel on-policy RL. The cyclical non-
stationarity introduced by synchronous environment re-
sets when coupled with short rollouts (K ≪ H) inadver-
tently biases the learning signal by repeatedly oversam-
pling states from the initial segments of episodes. This
bias can detrimentally affect learning stability, conver-
gence speed, and ultimate policy quality.

Staggered resets directly address this nonstationarity without any changes to the core learning al-
gorithm. By deliberately initializing parallel environments at varied effective time steps within the
task horizon, we ensure that each training batch encompasses a temporally diverse set of experi-
ences. This creates a more stationary and representative data distribution for the learner. The state
visitation KDEs (Figure 3) offer compelling visual evidence: staggered resets with short rollouts
yield broad and stable state coverage, closely emulating the desirable properties of much longer
rollouts, whereas naive short rollouts suffer from erratic, cycling state distributions.

The illustrative toy experiments (Section 4) further characterize the conditions where staggered re-
sets are most impactful. Specifically, tasks with longer horizons relative to the rollout length, more
deterministic (homogeneous) reset states, and weaker intrinsic task curricula (e.g., where agents are
not strictly forced to master early skills to progress) show pronounced benefits from the explicit
temporal diversification that staggering provides.

A key practical advantage of staggered resets is their ability to enhance the scalability of on-policy
RL in massively parallel settings (Section , Figure 5). While naive PPO often encounters diminishing
returns or even performance degradation as the number of parallel environments grows—likely due
to increasingly redundant data—staggered resets facilitate continued improvements in wall-clock
convergence time. This indicates a more effective utilization of parallel compute resources, as the
increased data volume is also more diverse and informative.
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In conclusion, staggered resets provide a robust, easily implementable, and computationally inex-
pensive method to significantly enhance the performance and scalability of on-policy RL in common
high-throughput, short-rollout regimes. By directly addressing the issue of cyclical data nonstation-
arity, this technique allows for more stable value estimation, faster convergence, and better final
policies, paving the way for more effective learning in complex, long-horizon tasks.
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A Implementation Details

A.1 Implementation Details and Hyperparameters for ManiSkill Experiments

This section details the Proximal Policy Optimization (PPO) configuration for experiments on Man-
iSkill robotics tasks (Section 5), utilizing ManiSkill3 Tao et al. (2025) for GPU-accelerated simula-
tion. The exact PPO implementation is based on the one provided by ManiSkill3 baselines, which
is based on LeanRL and CleanRL. Table 1 provides a comprehensive list of hyperparameters.
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Table 1: PPO Hyperparameters for ManiSkill Experiments. Common settings are listed first, fol-
lowed by per-environment variations where applicable. Shaded rows categorize parameters.

gray!30 Hyperparameter Value / Per-Environment Specification
gray!10 PPO Algorithm Core Settings
Learning Rate 3× 10−4

Update Epochs 4
Number of Minibatches 32
PPO Clipping Coefficient (ϵ) 0.2
Value Function Loss Coefficient 0.5
Entropy Bonus Coefficient 0.005
Max Gradient Norm 0.5
Advantage Normalization True (Per minibatch)
Target KL for Early Stopping 0.1
gray!10 Network Architecture (Actor & Critic MLP)
Hidden Layers 3
Units per Hidden Layer [256, 256, 256]
Activation Function Tanh
Weight Initialization Orthogonal
Policy Output Gaussian mean, learnable state-independent log std. dev.
gray!10 Optimization
Optimizer Adam
Adam Epsilon 1× 10−5

Learning Rate Annealing False
gray!10 Environment Interaction & Data Collection (Common)
Total Training Timesteps 2× 108

Partial Resets (Training) True
Evaluation Environments 128
Evaluation Partial Resets False
Observation Normalization Via environment wrappers / running mean & std
Reward Scaling Environment-dependent (aim for std approx. 1)
gray!10 Staggered Resets Mechanism (When Enabled)
Staggering Mode Uniform distribution of start times
Number of Stagger Blocks (NB) ⌈H/K⌉ (Task Horizon / Rollout Length)
Stagger Step Size (S) K (Rollout Length)
gray!10 Per-Environment Specific Hyperparameters
Parameter Values for: StackCube / PushT / AnymalC / HumanoidWalk

/ TwoRobotCube / UnitreeBox
Rollout Length (K) 8 / 8 / 16 / 64 / 16 / 32
Task Horizon (H) 100 / 100 / 200 / 1000 / 100 / 500
Discount Factor (γ) 0.8 / 0.99 / 0.99 / 0.97 / 0.8 / 0.8
GAE Lambda (λ) 0.9 / 0.9 / 0.95 / 0.9 / 0.9 / 0.9
Num. Parallel Env. (N ) 4096 / 4096 / 512 / 4096 / 2048 / 1024

A.2 Staggered Reset Implementation Details

The staggered reset mechanism aims to distribute the effective starting timesteps of the N parallel
environments across the task horizon H . This was achieved by dividing environments into NB =
⌈H/K⌉ groups, with each group j starting its first "effective" episode step after an initial offset of
j ·K simulation steps (typically performed with random actions or the initial policy). This ensures
that each PPO batch contains data from various segments of the task horizon.

A.3 Details on Toy Environments

The toy environments described in Section 4 were designed to isolate and study the effects of data
nonstationarity under different environmental conditions. See Table 2 for the hyperparameters cho-
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sen for PPO in the toy environment. We describe more concretely the ablation and environment
implementation details below.

A.3.1 Environment Dynamics

The environment is a 1-dimensional chain of B discrete levels or "blocks". An episode lasts for a
maximum of H time steps. Each level b ∈ {0, . . . , B − 1} covers L = H/B steps. The agent’s
state st is its current level index bt = ⌊elapsed_stepst/L⌋. At each time step t, the agent, being in
level bt, chooses an action at from a discrete set of Ac categories (e.g., Ac = 20). Each level b has
a pre-assigned target action a∗b ∈ {0, . . . , Ac − 1}. The reward function is:

r(st, at) =

{
+0.5 if at = a∗bt
−0.5 if at ̸= a∗bt

The episode terminates if elapsed_stepst ≥ H . Success in an episode is defined as being in the final
block (bt = B − 1) when the episode terminates.

A.3.2 Further Details on Ablations on Toy Environments

The following parameters were varied to create the different experimental conditions shown in Fig-
ure 2:

• Horizon Length (H vs. K): (Figure 2a) The task horizon H (max_steps in code) was varied
across values [50, 100, 200, 300, 400, 500]. The PPO rollout length K (num_steps in PPO loop,
i.e., buffer size per environment before update) was kept fixed at K = 5. The block length L was
also fixed at 5. For this experiment, skill gating was moderate (pprog = 0.5, kmastery = 3) and reset
was deterministic (λR = 0).

• Reset Stochasticity/Homogeneity (λR): (Figure 2b) Upon episode termination, the reset mecha-
nism was varied. The parameter λR (reset_stochasticity_lambda in code) controls the mean of a
Poisson distribution from which the starting block b0 is sampled, i.e., b0 ∼ Poisson(λR), clamped
to [0, B − 1]. λR = 0 corresponds to a deterministic reset to b0 = 0. The "Reset Homogeneity"
axis in the plot is 2.0 − λR for visualization purposes (higher values = more deterministic starts
at b0 = 0). λR was varied in [0.0, 0.1, . . . , 1.0]. For this experiment, H = 50, L = 5, K = 5,
pprog = 1.0 (easy progression), kmastery = 3.

• Skill Gating Dynamics (pprog): (Figure 2c) Progression from the current block b to b + 1 (when
enough steps within block b have nominally passed to enter b+ 1) occurs if either:

1. The agent has achieved "mastery" in block b, defined as making at least kmastery correct actions
a∗b within block b during the current episode. (kmastery = 3 was used).

2. A random chance pprog for unconditional progression succeeds.

The probability pprog (progression_prob in code) was varied in [0.0, 0.1, . . . , 1.0]. pprog = 0 means
hard gating requiring mastery. For this experiment, H = 200, L = 5, K = 5, λR = 0.

B Additional Results on Toy Environments

To further illustrate the impact of synchronous versus staggered resets on the data distribution and
learning progress, we visualize the training dynamics in one of the toy environments (specifically,
H = 200, L = 5,K = 5, pprog = 0.5, λR = 0). Figure 6 shows the training average accuracy
and the mean distribution of environments across different blocks (states) over the course of training
updates. For these experiments, we define accuracy as the rolling percentage of correct one-hot
action guesses from the PPO agent.

Subplots (c) and (d) in Figure 6 are heatmaps where the x-axis represents the PPO training update
index, the y-axis represents the block index (state) within the toy environment’s episode, and the
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Table 2: PPO and Environment Hyperparameters for Toy Environment Experiments. Shaded rows
categorize parameters. Values listed are defaults; specific sweeps varied H , pprog, or λR as detailed
in text and figures.

gray!30 Hyperparameter Value
gray!10 PPO Algorithm Core Settings
Learning Rate 3× 10−4

Discount Factor (γ) 0.99
GAE Lambda (λ) 0.95
PPO Rollout Length (K) 5 steps per environment
Number of Parallel Environments (N ) 512
Total Training Updates 150
Update Epochs 4
Number of Minibatches 4 (Minibatch size: (512× 5)/4 = 640)
PPO Clipping Coefficient (ϵ) 0.2
Value Function Loss Coefficient 0.5
Entropy Bonus Coefficient 0.01
Max Gradient Norm 0.5
gray!10 Network Architecture (Actor & Critic MLP)
Input Current block index (integer state)
Embedding Layer Input block index to 64-dim embedding
Hidden Layers 4
Units per Hidden Layer 256
Activation Function ReLU
Policy Output Categorical distribution over actions
Value Output Scalar state value
gray!10 Optimization
Optimizer Adam
gray!10 Toy Environment Base Parameters (Defaults for Sweeps)
Episode Horizon (H) Varied (e.g., 50, 100, 200, 375 for specific experiments)
Block Length (L) 5 steps
Number of Action Categories (Ac) 20
Reward for Correct Action +0.5
Reward for Incorrect Action -0.5
Success Definition Agent is in the final block at episode end
Skill Gating: Progression Prob. (pprog) Varied (0.0 to 1.0)
Skill Gating: Mastery Threshold (kmastery) 3 correct actions
Reset Stochasticity (λR) Varied (Poisson mean for start block, 0.0 for deterministic)
gray!10 Staggered Resets Mechanism (When Enabled)
Number of Stagger Blocks (NB) ⌈H/K⌉ = ⌈Episode Horizon/5⌉
Stagger Step Size (S) K = 5

color intensity indicates the mean number of parallel environments present in that block at that
specific training update.

Naive Synchronous Resets (Figure 6c) The heatmap for naive synchronous resets clearly shows
distinct diagonal bands. Each band signifies that the cohort of parallel environments is syn-
chronously progressing through the episode’s blocks. A crucial observation is the abrupt termination
of these bands followed by an immediate restart from block 0 (the bottom of the y-axis). This oc-
curs approximately every 40 updates, corresponding to the episode horizon (H = 200) divided by
the rollout length (K = 5). This pattern visually confirms the cyclical nonstationarity discussed
in Section ??: at any given update, the training batch is predominantly composed of states from a
narrow segment of the episode, and this segment predictably cycles. For instance, for updates 1-5,
data is from blocks near 0-4; for updates 35-40, data is from blocks near 35-39; then at update 41,
data abruptly shifts back to blocks 0-4.



Reinforcement Learning Journal 2025

Figure 6: Comparison of training dynamics in a toy environment with (a, c) naive synchronous re-
sets versus (b, d) staggered resets. (a) & (b): Training average accuracy over 150 PPO updates.
With naive resets (a), accuracy is unstable and struggles to converge. With staggered resets (b),
accuracy rises quickly and stabilizes at a high level. (c) & (d): Heatmaps showing the mean number
of environments occupying each block (y-axis) at each PPO update index (x-axis). (c) With naive
synchronous resets, environments progress through blocks in tight, synchronized waves. After ap-
proximately 40 updates (when H/K = 200/5 = 40 rollouts complete an episode), all environments
abruptly reset to block 0, leading to a cyclical pattern where training batches are temporally homo-
geneous (all early-episode, then all mid-episode, etc.). (d) With staggered resets, the distribution of
environments across blocks is far more uniform at any given update index. This indicates that each
training batch contains a mix of experiences from different stages of the episode, leading to a more
stationary data distribution for the learner.

Staggered Resets (Figure 6d) In contrast, the heatmap for staggered resets shows a much more
diffuse and uniform pattern. While environments still progress through blocks (indicated by the
general upward-right trend), there is no global, abrupt reset of all environments. At any given PPO
update index, environments are distributed across a wide range of blocks. This means that each
training batch collected under staggered resets contains a temporally diverse mix of experiences—
some from early parts of episodes, some from middle, and some from later parts. This significantly
reduces the cyclical nonstationarity of the data fed to the PPO algorithm.

Impact on Learning (Figure 6a and 6b) The consequences of these different state visitation
dynamics are evident in the training accuracy plots. With naive synchronous resets (Figure 6a),
the learning curve for average accuracy is highly erratic, exhibiting periodic dips and slow overall
improvement, struggling to consistently achieve high accuracy. This instability likely results from
the PPO learner trying to adapt to the rapidly shifting data distributions. Conversely, with staggered
resets (Figure 6b), the average accuracy rises smoothly and rapidly, quickly converging to a high
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and stable level. This demonstrates that providing the learner with more temporally diverse and
stationary batches facilitates more effective and stable learning.

B.1 State Visitation Distribution Analysis

We provide further detail on the state visitation dynamics in our toy environments by visualizing
the mean environment block distribution over training updates (similar to Figure 6c and 6d) while
systematically varying key environmental parameters. For all visualizations in this section, the PPO
rollout length K = 5, number of parallel environments N = 512, total training updates shown are
150, environment block length L = 5, number of action categories Ac = 20, and mastery threshold
kmastery = 3, unless specified otherwise. Base PPO hyperparameters are detailed in Appendix A.3.
Each figure’s top row shows results for naive synchronous resets, and the bottom row shows results
for staggered resets.

B.2 Impact of Progression Probability (pprog)

Figure 7 illustrates how the probability of unconditional progression, pprog, affects state visitation.
The experiment uses a fixed horizon H = 200 and deterministic resets (λR = 0).

Figure 7: Mean environment block distribution over training for varying progression probabilities
(pprog). Top Row (Non-Staggered): From left to right, pprog = 0.0, 0.5, 1.0. Bottom Row (Stag-
gered): From left to right, pprog = 0.0, 0.5, 1.0. With non-staggered resets, low pprog (hard skill
gating) leads to environments bunching at early blocks, with sparse exploration of later stages. As
pprog increases, environments progress more freely, but the strong cyclical reset pattern remains.
With staggered resets, coverage is more uniform across updates regardless of pprog, though higher
pprog allows environments to explore the full range of blocks more rapidly within their individual
(staggered) episode timelines.

Non-Staggered Resets (Top Row):

• pprog = 0.0 (Left): With hard skill gating, environments get stuck at early blocks if they fail to
achieve mastery. The heatmap shows most environments concentrated at very low block indices,
with only very few managing to progress. The cyclical reset pattern is still evident for those that
do run the full course or get reset.
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• pprog = 0.5 (Center): Partial random progression allows more environments to reach later blocks,
but the density remains higher at earlier stages due to the gating. The cyclical nature of resets is
clear.

• pprog = 1.0 (Right): Environments progress freely through blocks irrespective of mastery. This
results in the most pronounced cyclical bands, as all environments synchronously march through
the episode blocks and reset together.

Staggered Resets (Bottom Row): Across all values of pprog, staggered resets maintain a signifi-
cantly more uniform distribution of environments across different blocks at any given training up-
date. While a lower pprog means individual environments might take longer or struggle more to
traverse all blocks within their own episode lifetime, the staggering ensures that the batch fed to the
learner still contains diverse experiences. The overall "texture" of the heatmap becomes denser as
pprog increases, indicating that more environments are successfully exploring the full range of blocks
over time, but the crucial within-batch temporal diversity is preserved by the staggered mechanism
itself.

B.3 Impact of Episode Horizon Length (H)

Figure 8 shows the effect of varying the episode horizon length H . For these plots, progression
probability pprog = 0.5 and reset stochasticity λR = 0 are fixed. The number of blocks B = H/L
changes with H .

Figure 8: Mean environment block distribution over training for varying episode horizon lengths
(H). Top Row (Non-Staggered): From left to right, H = 10, 150, 375. (Note: y-axis Block
Index scales with H). Bottom Row (Staggered): From left to right, H = 10, 150, 375. For non-
staggered resets, shorter horizons (H = 10) lead to very rapid cycles (H/K = 10/5 = 2 updates
per cycle). As H increases, the period of these cycles becomes longer, potentially exacerbating
learning instability. Staggered resets maintain uniform coverage irrespective of H .

Non-Staggered Resets (Top Row):

• H = 10 (Left): With a very short horizon, the full episode cycle H/K = 10/5 = 2 updates. The
cyclical pattern appears as very rapid, almost vertical bands. While cyclical, all parts of this very
short episode are revisited extremely frequently. The y-axis shows only 2 blocks (10/5).
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• H = 150 (Center): The cycle period is 150/5 = 30 updates. Clear diagonal bands show syn-
chronous progression and reset. The y-axis spans 30 blocks.

• H = 375 (Right): The cycle period becomes 375/5 = 75 updates. The bands are elongated,
indicating a longer time between revisiting the same episode phase. The y-axis spans 75 blocks.
This long periodicity is hypothesized to be particularly detrimental.

Staggered Resets (Bottom Row): Staggered resets consistently provide diverse state visitations
within each batch, regardless of the horizon length H . The heatmaps show that environments are
distributed across the available blocks (which scale with H) at each update. This ensures the learner
receives a more stationary data stream, which is particularly beneficial for longer horizons where
the non-staggered approach suffers from infrequent revisitation of early-episode states.

B.4 Impact of Reset Stochasticity (λR)

Figure 9 visualizes the influence of reset stochasticity, λR, which controls the mean of a Poisson
distribution for sampling the starting block upon reset. Here, H = 200 and pprog = 0.5.

Figure 9: Mean environment block distribution over training for varying reset stochasticity (λR).
Top Row (Non-Staggered): From left to right, λR = 0.0, 1.0, 2.0. Bottom Row (Staggered):
From left to right, λR = 0.0, 1.0, 2.0. For non-staggered resets, increasing λR slightly "fuzzes"
the start of each cycle after a mass reset, but the overall cyclical progression remains. Staggered
resets maintain uniform coverage; λR primarily influences the initial state distribution within each
environment’s individual staggered timeline.

Non-Staggered Resets (Top Row):

• λR = 0.0 (Left): Deterministic reset to block 0. This results in the sharpest cyclical bands, as all
environments restart precisely from the same initial state after completing an episode.

• λR = 1.0 (Center) and λR = 2.0 (Right): Stochastic resets mean environments restart from
a distribution of initial blocks centered around block 0 (due to Poisson sampling with mean λR,
then clamped). This causes the beginning of each major cycle (after most environments have
run for H steps) to appear slightly "fuzzier" or more spread out near block 0. However, once
this initial phase passes, the environments that didn’t terminate early tend to re-synchronize in
their progression, and the cyclical bands through the bulk of the episode remain prominent. The
inherent reset stochasticity offers only a minor and temporary desynchronization.
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Staggered Resets (Bottom Row): With staggered resets, the distribution of environments across
blocks remains largely uniform over updates, irrespective of λR. The primary mechanism for achiev-
ing temporal diversity in batches is the explicit staggering of episode start times. The reset stochas-
ticity parameter λR further diversifies the exact starting block for an environment when its individual
(staggered) episode concludes and it resets, but it does not fundamentally change the broad, uniform
coverage ensured by the staggering mechanism itself. Staggered resets are effective even with de-
terministic environment resets (λR = 0.0).

These visualizations across different parameter sweeps consistently highlight the ability of stag-
gered resets to create more temporally diverse and stationary training batches compared to naive
synchronous resets, providing a more stable learning signal for the on-policy RL agent.

C Wall-Time Results and Additional Analysis

C.1 Wall-Time Analysis for Staggering Granularity (NB)

A critical aspect of staggered resets is balancing the desired temporal diversity of training batches
with the computational overhead associated with environment reset operations. While an ideal sce-
nario might involve resetting each environment at a unique timestep (effectively NB ≈ N , or even
finer if NB ≈ H/sim_dt), frequent, unbatched ‘env.reset()‘ calls can be costly, especially in GPU-
accelerated simulations. The parameter NB , representing the number of distinct stagger groups or
"blocks," controls this trade-off. A smaller NB means fewer, larger groups of environments are
reset/advanced synchronously, reducing reset call frequency but potentially coarsening the approxi-
mation of a truly staggered (temporally diverse) data distribution.

We empirically investigated this trade-off on the StackCube-v1 task (H = 100, with PPO rollout
K = 8, thus H/K ≈ 12.5) by measuring the wall-clock time to reach a 70% success rate while
varying NB . Figure 10 illustrates the results.

The findings, shown in Figure 10, indicate:

• Few Blocks (NB ≈ 1): When NB = 1, all environments are effectively synchronized, resembling
the naive reset scheme. This results in the slowest wall-clock convergence due to the detrimental
effects of cyclical batch nonstationarity.

• Moderate Blocks (NB ≈ H/K): As NB increases, wall-clock time to convergence rapidly
decreases. The optimal performance is typically observed when NB is in the vicinity of H/K. For
StackCube-v1 with K = 8, this optimal is around NB ≈ 10 − 13. This granularity provides
sufficient temporal diversity in training batches to stabilize learning and accelerate convergence.

• Many Blocks (NB ≫ H/K): Further increasing NB beyond H/K leads to marginal improve-
ments or even a slight degradation in wall-clock convergence time. While providing finer-grained
staggering, the overhead of managing and executing resets for many small, distinct groups may
start to outweigh the benefits from any additional (and likely minimal) gains in data diversity.

This analysis demonstrates that a judicious choice of NB , typically around H/K, allows us to
effectively approximate the benefits of a continuously staggered reset distribution (where each en-
vironment could theoretically start at any unique step within H) while maintaining wall-clock effi-
ciency. This approach strikes a practical balance, achieving most of the sample efficiency gains from
temporal diversity without incurring the potentially significant computational costs of excessively
frequent or unbatched reset operations. The default setting in our experiments for staggering (see
Appendix A.1) is chosen based on this principle, typically defaulting to ⌊H/K⌋.

C.2 Wall-Clock Training Time for ManiSkill Environments

Beyond improvements in sample efficiency (i.e., performance per environment step), staggered re-
sets also demonstrate significant advantages in terms of wall-clock training time. Figure 11 presents
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Figure 10: Wall-clock time to convergence (70% success on StackCube-v1) as a function of the
number of stagger blocks (NB). Performance, measured by faster convergence (lower wall-clock
time), improves significantly as NB increases from 1 (naive synchronous resets) towards NB ≈
H/K (here, H = 100,K = 8, so H/K ≈ 12.5). Beyond this point, further increasing NB

yields diminishing returns or even a slight increase in wall-clock time, likely due to the overhead of
managing more numerous, smaller reset groups outweighing marginal gains in temporal diversity.
This demonstrates that a moderate number of stagger blocks (e.g., NB ≈ H/K) effectively balances
temporal diversity benefits with wall-time efficiency, approximating a continuously staggered reset
distribution without incurring prohibitive reset costs.

a comparison of evaluation success rates against wall-clock time for several challenging ManiSkill
tasks.

Figure 11: Comparison of evaluation success rates versus wall-clock training time for Staggered
Resets (Ours, red) and Synchronous Resets (blue) on three ManiSkill tasks: AnymalC-Reach,
UnitreeG1TransportBox, and StackCube. The x-axis represents wall-clock time (units
may vary per plot, e.g., minutes or hours, but relative comparison is key). Staggered resets con-
sistently achieve higher success rates faster, or reach comparable success rates in significantly less
wall-clock time than synchronous resets. This highlights that the benefits of improved data qual-
ity and learning stability from staggered resets translate directly into more efficient use of compute
time.
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As illustrated in Figure 11, policies trained with staggered resets (red curves) consistently achieve
target success rates in substantially less wall-clock time compared to those trained with naive syn-
chronous resets (blue curves). For instance, in AnymalC-Reach, staggered resets reach over 80%
success much earlier than synchronous resets begin to show significant learning. Similarly, for
UnitreeG1TransportBox and StackCube, the learning curves for staggered resets are con-
siderably steeper when plotted against wall time, indicating faster convergence to high-performing
policies.

This empirical evidence supports the conclusion that the improved sample efficiency and learning
stability afforded by staggered resets directly translate into reduced overall training time, making
the technique not only more data-efficient but also more computationally efficient in practice for
achieving desired performance levels on complex robotics tasks. The overhead of managing stag-
gered resets is outweighed by the gains from more effective learning per unit of time.


