Learning Context-Sensitive State and Action Abstrac-
tions for Reinforcement Learning with Parameterized
Actions

Rashmeet Kaur Nayyar', Naman Shah'?, Siddharth Srivastava'

{rmnayyar, shah.naman, siddharths}@asu.edu

'School of Computing and Augmented Intelligence, Arizona State University, AZ, USA
’Department of Computer Science, Brown University, RI, USA

Abstract

Real-world sequential decision making problems often require parameterized action
spaces that feature both, decisions regarding discrete actions and decisions about con-
tinuous action parameters governing how an action is executed. However, existing ap-
proaches exhibit severe limitations when handling such parameterized action spaces—
planning algorithms require hand-crafted action models, and reinforcement learning
(RL) paradigms focus on either discrete or continuous actions but not both. This paper
extends the scope of RL algorithms to settings with mixtures of discrete and contin-
uous parameterized actions through a unified view of continuous-to-discrete context-
sensitive state and action abstractions. We present algorithms for online learning and
flexible refinement of such abstractions during RL. Empirical results show that learning
such abstractions on-the-fly enable Q-learning to significantly outperform state-of-the-
art RL approaches in terms of sample efficiency across diverse problem domains with
long horizons, continuous states and parameterized actions.

1 Introduction

Reinforcement learning (RL) has achieved remarkable success across a wide range of decision-
making tasks, from discrete action settings like Atari games (Mnih et al., 2015) to continuous con-
trol scenarios such as robotic manipulation (Schulman et al., 2017). However, most leading RL
approaches (Schulman et al., 2017; Haarnoja et al., 2018; Schrittwieser et al., 2020; Hansen et al.,
2023) are designed specifically for either discrete or continuous action spaces, but not both. In many
real-world applications—such as autonomous driving—agents may need to choose among distinct
actions such as acceleration, breaking and turning, each of which is parameterized by discrete or
continuous parameters, such as breaking force and steering angle. In such cases, the agent must not
only select an action but also determine its associated parameters prior to execution. These types of
actions are known as parameterized actions.

Although there has been progress in RL with parameterized actions (Xiong et al., 2018; Bester et al.,
2019; Li et al., 2021), current methods generally overlook the inherent structure within parameter-
ized action spaces. E.g., in autonomous navigation, an agent might benefit from making fine-grained
adjustments to movement parameters near obstacles, while only needing coarse-grained control in
open, obstacle-free areas. Additionally, many existing approaches depend on expert-designed dense
reward functions or benefit from relatively short “effective horizons” to facilitate learning (Laidlaw
et al., 2023). As a result, the challenge of learning and leveraging the structure of parameterized
action spaces to improve sample efficiency, particularly in long-horizon tasks, remains largely un-
addressed. A comprehensive comparison of related work can be found in App. Sec. C.

This paper presents PEARL (Parameterized Extended state/action Abstractions for Reinforcement
Learning), a novel algorithm for efficient decision-making with parameterized actions in long-
horizon, sparse-reward settings. The key contributions of this work are: () A new formalization
of context-sensitive abstractions that unify state abstraction framework with abstraction of continu-
ous action parameters, (i) A novel algorithm for generating learning-based flexible refinements of
state abstraction, (i¢7) PEARL algorithm for concurrently learning abstractions for state and param-
eterized actions during Q-learning, and (iv) Empirical analysis of flexible refinement and learning
state and action abstractions. Empirical evaluation on four complex long-horizon, sparse-reward do-
mains with parameterized actions (detailed in Sec. 4), show significant performance improvements
over existing RL methods and highlight PEARL’s ability to learn effective policies.

2 Preliminaries

We model the problem as an episodic factored goal-oriented Markov decision process (MDP) with
parameterized actions, denoted as M = (V, S, A, T, R, v, h, so,G) (Bertsekas et al., 2011; Tar-
bouriech et al., 2020; Deng et al., 2022). Here, V is a set of state variables, each with a bounded,
ordered domain D,,, = [P D7| C R. A state s € S assigns a value to every variable in V), i.e.,
s = {v; = xklvi € V Axy € Dy, }, and we denote the value of v; in s as s(v;). The action set
A contains a finite set of stochastic, parameterized actions, where each a € A denoted as a;(a,) is
defined by a label a; and a tuple of continuous parameters a,, = (z1,. .., Zx), each with a bounded
domain D,, C R. A grounded action a; assigns specific values to these parameters, and the set of all
grounded actions A may be infinite due to the continuous parameter spaces. A detailed description
of all the components in this formulation is presented in App. Sec. A.

Running Example Consider an Al agent in an Office World (Fig. 1a) that must collect and de-
liver items, such as coffee and mail, between rooms and designated offices. The state includes
the agent’s (z,y) position with z,y € [0.0,100.0), and two binary variables: ¢ € {0,1} for
carrying coffee, and m € {0,1} for carrying mail. The agent can execute parameterized actions
A = {up(d),down(d), left(d), right(d)} where parameter d € [0,0.5) specifies the movement dis-
tance. The actions may result in stochastic displacements along orthogonal directions. Rewards are
given only when items are delivered to the correct office.

In such sparse-reward, long-horizon environments, standard RL methods often suffer from poor
sample efficiency and limited scalability (App. Sec. C). We review state abstraction and Conditional
Abstraction Trees (CATs) (Dadvar et al., 2023) learned using the CAT+RL algorithm in App. Sec. A.
These approaches, however, do not address abstraction of parameterized actions.

3 Our Approach

The central goal of this work is to develop a sample-efficient approach that leverages the structure of
the parameterized action spaces to solve complex RL problems. To do so, we introduce the notion of
State and Parameterized Action-based Conditional Abstraction Trees (SPA-CATs) (Sec. 3.1), a new
flexible, learning-based abstraction refinement strategy (Sec. 3.2), and propose a novel approach—
PEARL—for learning and using these abstraction trees on-the-fly during RL (Sec. 3.3).

Intuitively, SPA-CATs enable reasoning at multiple granularities by partitioning (a) continuous state
regions using State-based Conditional Abstraction Trees (S-CATs) and (b) action parameter intervals
using Parameterized Action-based Conditional Abstraction Trees (PA-CATs) that are conditioned on
these abstract states. By conditioning action abstractions on abstract states, a SPA-CAT allows the
agent to increase precision in action arguments only in states where such precision significantly
impacts decision-making. We define and discuss SPA-CATs in detail in Sec. 3.1.

The abstraction framework introduced in this paper is, in principle, compatible with any RL algo-
rithm, however, we focus on Q-learning for development and evaluation. PEARL defines a top-down
abstraction refinement approach that starts with an initial coarse abstraction of the state and action

spaces, and proceeds through the following steps: (i) learn an abstract policy over the current state
and action abstraction, (ii) refine the current state and action abstraction, and (iii) repeat steps (i) and
(ii) until a policy is learned. Specifically, PeARL computes state-conditioned action abstractions dy-
namically, refining coarse parameter intervals into finer ones based on observed Q-value estimation
errors. Sec. 3.3 discusses PEARL in detail.

For instance, consider the Office World example with parameterized actions
{up(d), down(d), left(d), right(d) }, where an agent can move by a continuous distance d € [0, 0.5).
In open areas, a coarse action abstraction such as "move right by up fo 0.5 units" may suffice, but it
lacks precision near walls or tight corridors. PEARL addresses this by detecting regions in the state
space with high value estimation errors, i.e., regions where the estimation of expected returns does
not match with observed returns, and adaptively refining the action abstraction into more precise
intervals (e.g., [0,0.25) and [0.25, 0.5)).

3.1 State and Parameterized Action Conditional Abstraction Trees (SPA-CATSs)

SPA-CATs unify state and action abstractions into a single conditional abstraction tree. The state
abstraction (S-CAT) follows Def. A.2, while the action abstraction is defined using the notion of
PA-CATs. We first introduce abstract actions, then formally define a PA-CAT.

x:[0,5.0),y:[0,5.0),
<:{0,1}, m:{0,1}

Refine

= “ left: [0,0.5) ~
I~ — Refine® left: [0,0.5)
il — \ N
Co] whim 27 oo
i
[| | | & Current Action Abstraction
(a) Office World (b) PA-CAT (c) SPA-CAT

Current Action Abstraction

Figure 1: Illustration of PA-CAT and SPA-CAT for the office world domain.

Action Abstraction Various forms of action abstraction have been explored in the literature, in-
cluding temporal actions such as options (Sutton et al., 1999; Abel et al., 2020; Machado, 2025)
and discretization of continuous action spaces (Seo et al., 2024). In this work, we define an action
abstraction for each parameterized action a € A. Furthermore, abstraction for each action is condi-
tioned on the abstract state. For example, consider the parameterized action a = left(d) with one pa-
rameter d € [0.0,0.5). A grounded action with arguments sampled from a,, could be & = left(0.2),
which would move the agent to the left by a distance of 0.2 units. Here, possible abstract actions
include: @ = left([0.0,0.1)) and @y = left([0.1,0.5)). An action abstraction 3 : A — A maps a
grounded action @ € A to an abstract action @ € A, where A represents a possible partitioning of
the parameter space a,, for each grounded action a € A. The coarsest action abstraction for a given
action a € A consists of a single abstract action G,;; (e.g. left([0.0,0.5))), where each parameter
x; € ay, retains its full domain @y (z;) = D,,. Formally, an abstract action is defined as follows.

Definition 3.1 (Abstract Action). Given a grounded action @ € A for a parameterized action a € A,
an abstract action @ € A is defined as a function a;(a,) where a; is the action label and @, is an
assignment of an interval of values a(x;) C D, to each parameter x; € a,.

Fig. 1b illustrates a PA-CAT for the left(d) parameterized action in the office domain (Fig. 1a). In-
tuitively, a PA-CAT for an action represents a hierarchy of abstractions over the parameter space
of an action, where: (a) the root node represents the coarsest abstraction, encompassing the entire
parameter space for the action, and (b) lower-level nodes represent progressively more refined ab-
stractions by increasing the resolution of parameters around specific arguments. The leaves of a

PA-CAT represent the current abstraction being used for the action. Note that each abstract state is
associated with one PA-CAT for each action. Abstract actions from all PA-CATs associated with a
state in S-CAT represent the abstract action space A. We formally define a PA-CAT as follows.

Definition 3.2 (Parameterized Action-based Conditional Abstraction Trees (PA-CATSs)). A PA-CAT
for a parameterized action a € A is a tree-structured abstraction represented by a tuple (N, &),
where A is a set of nodes, each corresponding to an abstract action, and £ C N x A is a set
of directed edges connecting parent and child abstract actions. The root node corresponds to the
coarsest abstract action @j,;. An edge e € £ from a parent node @; € N to a child node @, € N
exists if and only if the following condition holds: Let @1, = (l1,...,1,) where each l;(fori =
1,...,n) can be partitioned into sub-intervals I} and [?. Then, the parameter ranges of @z must be
Gay, = (M4, ..., My,), where for each 4, m; = 1} ori2.

The leaf nodes of a PA-CAT for an action a represent the current abstraction of parameter values for
a. The set of all PA-CATs (one for each action) defines an action abstraction function j3 : A=A,
which maps each grounded action to the unique leaf in that action’s PA-CAT that is consistent with
the grounded action’s parameters (e.g. the PA-CAT in Fig. 1b maps left(0.03) to left([0,0.1)). A
set of PA-CATs—one for each parameterized action and abstract state—combined with a S-CAT,
together form a unified abstraction structure called a SPA-CAT (see Fig. 1c). With these definitions
in hand, we formally define a SPA-CAT as follows.

Definition 3.3 (State and Parameterized Action-based Conditional Abstraction Trees (SPA-CATS)).
A SPA-CAT is a hierarchical abstraction structure defined as A = {Ag} U {A%[5 € S,a € A},
where Ag is a S-CAT that partitions the concrete state space S into a set of abstract states S, and
for each abstract state 3 € S and parameterized action a € A, A% is a PA-CAT that partitions the
parameter space a,, of action a into a set of abstract actions, forming a subset of the overall abstract
action space A associated with abstract state 3.

3.2 Statistical Learning-Based Flexible Abstraction Refinement

A key contribution of this work is that PEARL generalizes the notion of abstraction refinement de-
veloped originally for CATs. In that work, each variable’s value interval within an abstract state is
uniformly split into two equal sub-intervals. As seen in Fig. 2(right), applying this uniform refine-
ment results in orthogonal partitions of the state space. Here, the learned abstraction corresponds to
navigating to pick up the mail (refer caption of Fig. 2). While straightforward, this strategy can be
inefficient, as achieving fine-grained precision often requires a large number of refinements.

In this work, we introduce a novel
data-driven, learning-based refine-
ment paradigm that enables more
flexible and expressive state abstrac-
tions. Unlike prior methods that
use uniform splits, our approach—
illustrated in Fig. 2(left)—learns
adaptive boundaries to form abstract
states. For example, the learned ab-
straction in the figure corresponds to
navigating to pick up coffee. By
leveraging observed data, the method Figure 2: Visualization of learned state abstractions using
groups concrete states into meaning- flexible (left) and uniform (right) refinement strategies when
ful abstract states, resulting in more the agent must pickup either coffee or mail in Office World
compact representations that still pre- (black lines and shapes are walls/obstacles). Colors repre-

serve the key distinctions necessary — sent actions (yellow: right, green: down, red: up, blue: left).
for effective decision-making.

We now describe the flexible refinement method used to refine abstract states in a SPA-CAT. This
approach uses a set of traces of the form (s;, @;, r;, ...) where s; is the current state, @; is the abstract

action taken, and r; is the reward obtained in that current state. The abstraction function of the SPA-
CAT maps each concrete state s to its corresponding abstract state 5. PEARL automatically selects
a subset of abstract states to refine (see refinement phase in Sec. 3.3). The refinement process first
estimates TD errors for concrete state-abstract action pairs, and then clusters these TD errors within
each selected abstract state. Finally, it constructs new refined abstract states based on these clusters.

Estimating TD errors For each selected abstract state, PEARL estimates concrete Q-values (Q))
and temporal-difference (TD) errors (d) for pairs of concrete states and abstract actions. These
estimates are computed over a bounded set of recently visited concrete states that belong to the
selected abstract state. Rather than using the value of the next concrete state, PEARL approximates
it with the estimated value of the next abstract state (see learning phase in Sec. 3.3). This results
in a Q-learning-style update, but applied in the abstract space: Q-values and TD errors for concrete
states are computed with respect to abstract actions, and the target uses an approximate value for the
next abstract state rather than the concrete state. Let o and ~y be learning rate and discount factor,
respectively. Formally, this update is defined as:

Qri1(s,@) = Qu(s,a) +a-0(s,a@), O(s,a) =r(s,a) +ymaxQu(s, @) - Qu(s,@) (1)

Learning refinements of abstract states Abstract states are refined by first clustering the TD
errors for concrete states from that abstract state, and then training a classifier over the obtained
clustering, with the objective of creating partitions that show similar TD errors. The resulting clas-
sifier represents a refinement, or partitioning of the original abstract state. Any clustering algorithm
can be used to cluster concrete states based on their normalized estimated TD errors. In this paper,
we use agglomerative clustering, progressively increasing the distance threshold until the number of
resulting clusters falls below a predefined maximum (set by a hyperparameter). For each abstract
state, PEARL trains a Support Vector Machine (SVM) classifier to distinguish between the newly
formed clusters. The SVM is trained using the original concrete state features as input and clus-
ter assignments as labels. PEARL supports different kernel functions (e.g., linear, RBF), allowing
flexibility in how the decision boundaries are shaped in the input space.

3.3 PEARL Algorithm

We now present our overall approach, PEARL, for automatically learning a SPA-CAT and a policy
for a given problem (App. Alg. 1). PEARL begins with an initial, coarse SPA-CAT and follows a
top-down refinement strategy, incrementally refining abstractions into more fine-grained representa-
tions as needed. The initial SPA-CAT consists of a coarse S-CAT and a set of coarse PA-CATs—one
for each parameterized action, defined for each abstract state of the S-CAT. By identifying abstract
states and abstract actions associated with high TD error, PEARL focuses refinement efforts on
regions of the abstraction that are most critical for improving policy performance.

PEARL learns a SPA-CAT and a solution policy for the input MDP M. It initializes a coarse
abstraction in line 1. This abstraction is refined while simultaneously learning a policy through two
main phases: (a) a learning phase (lines 4-11), where a policy is learned for the current fixed SPA-
CAT, and (b) a refinement phase (lines 12-20), where the abstraction is improved by refining the
current SPA-CAT into a more fine-grained representation.

Learning phase In this phase, the agent learns an abstract policy 7 : S — A for the current
SPA-CAT using tabular Q-learning over 7 ., episodes (App. Alg. 1, lines 4-11). During each
episode, the agent follows the abstract policy by executing the corresponding abstract action in each
abstract state, continuing until it reaches a new abstract state or the episode ends (lines 7-8). The
SPA-CAT representation of abstract actions enables the joint optimization of both action selection
and parameter values. Each abstract action is executed by uniformly sampling a grounded action
from its associated parameter ranges. During learning, PEARL collects a set of execution traces
of the form (s;,@;, r;,...) where s; is the current state, @; is the abstract action taken, and r; is the

reward received in that state (line 9). We apply the standard Q-learning updates for Q-values and
TD errors over abstract states and actions as follows (lines 10-11):

Qr1(5,@) = Qr(5,a) +a-0(5,a), (5@ =r(5a) +ymaxQu(s, @) - Q(5,2) (2)

Here, r(3,a) is the cumulative reward received in the abstract state 5 after executing the abstract
action a@; « and ~y are learning rate and discount factor, respectively. A log of temporal-difference
(TD) errors is maintained for use during the refinement process (line 11).

Refinement phase After every n,.4,. episodes, PEARL enters the refinement phase to update the
SPA-CAT (App. Alg. 1, lines 12-20). This phase begins by analyzing the log of previously computed
TD errors to identify abstract states and abstract actions with high variability in their TD errors, as
this indicates instability in value estimates (line 13). PEARL then refines the selected abstract states
using the chosen refinement strategy—either flexible (Sec. 3.2) or uniform (Dadvar et al., 2023). For
abstract actions, PEARL applies the uniform refinement strategy, which increases precision across
all parameter ranges associated with the selected actions (lines 14-19). The updated SPA-CAT is
then used to continue the learning phase.

4 Empirical Results

We evaluate PeARL’s performance in three challenging stochastic domains featuring continuous
state spaces and parameterized action spaces along with sparse rewards and long-horizon tasks,
posing significant challenges for RL algorithms. Further details including additional evaluations,
analysis, and detailed hyperparameter settings are provided in App. Sec. D.

Test environments We evaluate in four long-horizon domains, each featuring sparse rewards—
i.e., agents receive a positive reward only upon reaching the goal state: (i) OfficeWorld (Icarte
et al., 2022; Corazza et al., 2024) (Fig. 1a) (ii) Pinball (Roice et al., 2024; Rodriguez-Sanchez &
Konidaris, 2024) (App. Fig. 4b), (iii) Multi-city transport (Ma et al., 2021; Oswald et al., 2024)
(App. Fig. 4d), and (iv) Robot Soccer Goal (Bester et al., 2019) (App. Fig. 4c). Detailed descriptions
and illustrations of these environments are provided in App. Sec. D.

Qualitative metrics and baseline selection Most existing RL approaches—tabular RL (Sutton,
1988; Watkins et al., 1989), deep RL (Mnih et al., 2015; Lillicrap et al., 2015; Schulman et al.,
2017; Haarnoja et al., 2018), hierarchical RL (Nachum et al., 2018; Levy et al., 2017) approaches
do not handle parameterized action spaces, making them unsuitable for baseline comparisons. We
therefore compare PEARL with two relevant baselines: (i) MP-DQN (Bester et al., 2019): Ex-
tend P-DQN (Xiong et al., 2018) by combining DQN and DDPG while addressing P-DQN’s over-
parameterization problem through multi-pass processing, and (i7) PA-DDPG (Hausknecht & Stone,
2015), which treats parameterized actions as continuous vectors and applies DDPG directly to the
relaxed action space. We evaluate agents by assessing cumulative average return during training
and success rate of the learned greedy policy. For PeARL, we assess two variants: PEARL-flexible
and PEARL-uniform, which differ in how they refine state abstractions. Reported results include
episodes used to learn both state and action abstractions.

4.1 Analysis of the results

Our evaluation focuses on three key aspects: (1) improvements in sample-efficiency, (2) the quality
of the learned policies, and (3) the size of the abstractions generated. Fig. 3 shows the performance
of all methods, with training episodes on the x-axis and cumulative return (training) and success
probability (evaluation) on the y-axis. We also show the sizes of the state abstractions learned by
PEARL. Results report mean and standard deviation over 10 independent trials. Fig. 3 shows that
PEARL performs significantly better compared to the baselines across all domains, indicating the

—— PeARL-flexible (ours) —— PeARL-uniform (ours) PA-DDPG —— MP-DQN

Office Pinball Multi-City Transport Soccer Goal
1.0 1.0 1.0 1.0
c 08 0.8 0.8 08
=
>
o
2 os 0.6 06 06
g
= 04 0.4 04 0.4
£
o
F o2 02 02 02
0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0
%]
wn
08 08 08 08
v}
o
=1
A 06 06 06 06
c
o
D04 0.4 0.4 04
©
=
g 02 02 02 02
w
0.0 0.0 0.0 0.0
200
250 250
1750 180
3
2 00 1500 200 160
o 1250 140
4 150 150
9} 1000 120
o 100
13 100 750 100
Q 80
< 500
50 50 60
:tt 250
40
0 4 4
K 2Kk 3K 4K sK K K 3K 4k 5K 0 1K E3 X 0 1K 2K 3K aK
Episodes

Figure 3: Comparison of PeARL-flexible and PeARL-uniform with MP-DQN and PA-DDPG in
four domains: Office World, Pinball, Multi-City Transport, and Soccer Goal. Mean and Standard
deviations are reported across 10 independent trials.

value of learning state and action abstractions simultaneously during Q-learning for parameterized
action and continuous state spaces, especially for long-horizon problems.

As illustrated in Fig. 3, the PEARL-flexible variant consistently outperforms other approaches across
all evaluated domains, followed closely by PEARL-uniform. In most environments, PEARL-flexible
matches or exceeds the performance of PEARL-uniform while maintaining a more compact abstrac-
tion. Specifically, in the Office World, Pinball, and Multi-City Transport domains, PEARL-flexible
achieves the highest average returns, demonstrating clear gains in sample-efficiency and policy ef-
fectiveness. In the Soccer Goal domain, both PEARL-flexible and PEARL-uniform show compara-
ble performance, indicating that either abstraction strategy is sufficient in this environment.

A closer look at the abstraction sizes reveals that PEARL-flexible learns significantly more com-
pact representations in three of the four domains—Office World, Multi-City Transport, and Soccer
Goal—without compromising performance. In the Pinball domain, the more aggressive refinement
strategy employed by PEARL-flexible leads to superior policy performance while producing higher
abstraction granularity. This suggests that fine-grained abstractions are particularly beneficial in
environments requiring precise control and spatial reasoning.

We further analyze how abstraction granularity affects PEARL’s performance in the Pinball domain
by comparing two PEARL-flexible variants—aggressive vs. conservative refinement—alongside
PEARL-uniform and provide our analysis in App. Sec. D.

5 Conclusion

We introduced a unified framework for learning abstractions in parameterized action spaces. Our
contributions are: (i) a formalism for context-sensitive abstractions unifying state and action param-
eters, (ii) a learning-based method for refining state abstractions, and (iii) PEARL, an algorithm that
jointly learns abstractions during Q-learning. Experiments show PEARL outperforms existing meth-
ods, showing strong sample efficiency and effective policy learning in challenging environments.

References

David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina Precup, and Michael
Littman. Value preserving state-action abstractions. In International Conference on Artificial
Intelligence and Statistics, pp. 1639—1650. PMLR, 2020.

Dimitri P Bertsekas et al. Dynamic programming and optimal control 3rd edition, volume ii. Bel-
mont, MA: Athena Scientific, 1, 2011.

Craig J Bester, Steven D James, and George D Konidaris. Multi-pass g-networks for deep reinforce-
ment learning with parameterised action spaces. arXiv preprint arXiv:1905.04388, 2019.

Jan Corazza, Hadi Partovi Aria, Daniel Neider, and Zhe Xu. Expediting reinforcement learning by
incorporating knowledge about temporal causality in the environment. In Causal Learning and
Reasoning, pp. 643—664. PMLR, 2024.

Mehdi Dadvar, Rashmeet Kaur Nayyar, and Siddharth Srivastava. Conditional abstraction trees for
sample-efficient reinforcement learning. In Uncertainty in Artificial Intelligence, pp. 485-495.
PMLR, 2023.

Zihao Deng, Siddartha Devic, and Brendan Juba. Polynomial time reinforcement learning in fac-
tored state mdps with linear value functions. In International conference on artificial intelligence
and statistics, pp. 11280-11304. PMLR, 2022.

Zhou Fan, Rui Su, Weinan Zhang, and Yong Yu. Hybrid actor-critic reinforcement learning in
parameterized action space. arXiv preprint arXiv:1903.01344, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. Pmlr, 2018.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
uous control. arXiv preprint arXiv:2310.16828, 2023.

Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space.
arXiv preprint arXiv:1511.04143, 2015.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A Mcllraith. Reward ma-
chines: Exploiting reward function structure in reinforcement learning. Journal of Artificial In-
telligence Research, 73:173-208, 2022.

Cassidy Laidlaw, Stuart J Russell, and Anca Dragan. Bridging rl theory and practice with the
effective horizon. Advances in Neural Information Processing Systems, 36:58953-59007, 2023.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. arXiv preprint arXiv:1712.00948, 2017.

Boyan Li, Hongyao Tang, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng, and
Li Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action
representation. arXiv preprint arXiv:2109.05490, 2021.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction
for mdps. AI&M, 1(2):3, 2006.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Yi Ma, Xiaotian Hao, Jianye Hao, Jiawen Lu, Xing Liu, Tong Xialiang, Mingxuan Yuan, Zhigang
Li, Jie Tang, and Zhaopeng Meng. A hierarchical reinforcement learning based optimization
framework for large-scale dynamic pickup and delivery problems. Advances in neural information
processing systems, 34:23609-23620, 2021.

Marlos C Machado. Representation-driven option discovery in reinforcement learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 28705-28705, 2025.

Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with param-
eterized actions. In Proceedings of the AAAI conference on artificial intelligence, volume 30,
2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Rashmeet Kaur Nayyar and Siddharth Srivastava. Autonomous option invention for continual hier-
archical reinforcement learning and planning. 2025.

James Oswald, Kavitha Srinivas, Harsha Kokel, Junkyu Lee, Michael Katz, and Shirin Sohrabi.
Large language models as planning domain generators. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 34, pp. 423-431, 2024.

R Rodriguez-Sanchez and G Konidaris. Learning abstract world models for value-preserving plan-
ning with options. Reinforcement Learning Journal, 2024.

Kevin Roice, Parham Mohammad Panahi, Scott M Jordan, Adam White, and Martha White. A new
view on planning in online reinforcement learning. 2024.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
g0, chess and shogi by planning with a learned model. Nature, 588(7839):604—609, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Younggyo Seo, Jafar Urug, and Stephen James. Continuous control with coarse-to-fine reinforce-
ment learning. arXiv preprint arXiv:2407.07787, 2024.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9-44, 1988.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
Cambridge, MA, 1998.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181—
211, 1999.

Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, and Alessandro Lazaric. No-
regret exploration in goal-oriented reinforcement learning. In International Conference on Ma-
chine Learning, pp. 9428-9437. PMLR, 2020.

Zizhao Wang, Caroline Wang, Xuesu Xiao, Yuke Zhu, and Peter Stone. Building minimal and
reusable causal state abstractions for reinforcement learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 38, pp. 15778-15786, 2024.

Christopher John Cornish Hellaby Watkins et al. Learning from delayed rewards. 1989.

Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo Fu, Tong
Zhang, Ji Liu, and Han Liu. Parametrized deep g-networks learning: Reinforcement learning
with discrete-continuous hybrid action space. arXiv preprint arXiv:1810.06394, 2018.

10

Appendix
A Preliminaries

We model the problem as an episodic factored goal-oriented Markov decision process (MDP) with
parameterized actions, denoted as M = (V,S, A, T, R,v,h, so, G) (Bertsekas et al., 2011; Tar-
bouriech et al., 2020; Deng et al., 2022). Here, V is a set of state variables, where each variable
v € V has a bounded, ordered domain D,,, = [D{?f”, DZ“X] C R, with Dﬂf” and D;"f" denoting the
minimum and maximum values the variable can take. The state space S consists of factored states.
Each state s € S is an assignment of values to all variables in V: s = {v; = ag|v; € VAxy € Dy, }.
We use s(v;) to denote the value of variable v; in state s.

The action set .A consists of a finite number of stochastic parameterized actions. Each action a € A
is a parameterized function a;(a,), where a; is the action label and a), = (z1,. .., zy) is an ordered
set of continuous parameters where each parameter z; has a bounded, ordered domain D,, C R. A
grounded action a; assigns argument values to these parameters from their respective domains. The
set of all possible grounded actions is denoted A, and may be infinite due to continuous parameters.

The transition function 7 : S x A — 1S defines a distribution over next states, given a current state
and grounded action. The reward function R : S x A — R assigns scalar rewards to state—action
pairs. The discount factor y determines the weights of future rewards, and h is the episode horizon.
Finally, sq is the initial state and G is the set of goal states.

The objective is to solve MDP M by finding a policy maq : S — A that reaches a goal state in
G while maximizing the expected cumulative discounted reward E, [E:ig v'r¢]. We use the RL
setting, where both 7" and R are unknown (Sutton & Barto, 1998).

Running Example Consider an Al agent in an Office World (Fig. 1a) that must collect and de-
liver items, such as coffee and mail, between rooms and designated offices. The state includes
the agent’s (z,y) position with 2,y € [0.0,100.0), and two binary variables: ¢ € {0,1} for
carrying coffee, and m € {0, 1} for carrying mail. The agent can execute parameterized actions
A = {up(d), down(d), left(d), right(d)} where parameter d € [0,0.5) specifies the movement dis-
tance. The actions may result in stochastic displacements along orthogonal directions. Rewards are
given only when items are delivered to the correct office.

In such environments with sparse rewards and long horizons, standard RL algorithms often suffer
from poor sample efficiency and limited scalability (see Sec. C for detailed related work).

State Abstraction Abstraction has been recognized as essential for scalability in long horizon,
sparse reward settings (Li et al., 2006; Wang et al., 2024). A state abstraction is a mapping o : S —
S that assigns each concrete state s € S to an abstract state 5 € S, where S is a partitioning of the
original state space S. Given a set of variables V), the value of a variable v; € V in an abstract state 5
is denoted 3(v;). The coarsest state abstraction, denoted S;,;;, assigns each variable its full domain:
Sinir(v;) = Dy,, mapping each concrete state to a single abstract state. Formally,

Definition A.1 (Abstract State). Given a set of variables) and corresponding domains D,,, for each
v; € V, an abstract state s € S is an assignment of a subset of values 5(v;) C D,, to each v;.

In order to reason at different levels of granularity, state abstractions can be organized hierarchically
in a Conditional Abstraction Tree (CAT) (Dadvar et al., 2023). Intuitively, in this structure, the
root node represents the coarsest abstract state. As we move down the tree, each level introduces
more refined abstract states, with increased precision in the variables that require greater detail. The
CAT+RL algorithm can be used to learn CATs during Q-learning, however, is limited to domains
with discrete actions and does not address abstraction of parameterized actions. Formally, CATs are
defined as follows.

Definition A.2 (Conditional Abstraction Trees (CATs)). A CAT A is a tuple (N, E), where N is a
set of nodes representing possible abstract states and £ is a set of directed edges connecting these

11

nodes. The root represents the coarsest abstract state 5;,;,. An edge e € £ from a parent abstract
state 5; € N to a child abstract state 55 € N exists iff 55 can be obtained by splitting atleast one
of the variable intervals in 5; at most once. Leaf nodes represent the current abstract state space
S. A induces a state abstraction @ : S — S mapping each state s € S to the abstract state 5 € S
represented by the unique leaf containing s.

B PEARL algorithm

Algorithm 1: PEARL
Input: MDP M = (V, S, A, T, R, v, h)
Output: Policy = for MDP M and SPA-CAT A
1 Initialize SPA-CAT A and Qtable Qg 5
2 Initialize TD-error logs I's 7 and s &
3 for episode =1 : ny; do
// Learning phase

4 | s« reset()

5 |70

6 | forstep=1:hdo

7 a <+ 7(Qs3,5)

8 s, 7, {si,ai,7i,. .., Sk} < execute(s,a)
9 r.add({s;, @;, 75y ..., SK})

10 Qs + updateQvalue(s, @, s, T)

11 T's,5.add(computeTDerror(3, @, 5, 7))

// Refinement phase
12 | if episode mod n,.fe = 0 then

13 gref, fi,ef — ﬁndImprecise(fg@)

14 if refinement == flexible then o

15 I estimgteConcreteTDError(T, Srefy Aref, A)
16 C«+ cluster(Smji, I'sa)

17 A —refine(C, Syf, Aref)

18 else o

19 LA < refine(Syep, Arep)

20 | Reinitialize T's 5 and T's 5

21 return w, A

C Related Work

Parameterized Actions in RL. Most standard RL approaches (Mnih et al., 2015; Lillicrap et al.,
2015; Schulman et al., 2017; Haarnoja et al., 2018) are designed for homogeneous action spaces,
handling either purely discrete or purely continuous action spaces. Moreover, their success has
mostly been limited to settings with short effective horizons, where multi-step lookahead is unnec-
essary (Laidlaw et al., 2023). Parameterized action spaces, which combine discrete actions with
associated continuous parameters, present additional challenges they do not address. Some early
approaches, such as Q-PAMDP (Masson et al., 2016) alternate between optimizing discrete actions
and their continuous parameters. PADDPG (Hausknecht & Stone, 2015) collapses the parameterized
action space into a single continuous vector. These approaches do not exploit the inherent structure
of the parameterized action spaces—the dependency between discrete actions and their associated
parameters—essential for learning effective policies.

P-DQN (Xiong et al., 2018) directly handles hybrid action spaces without relaxation or approxi-
mation by integrating a DQN (to deal with discrete actions) and a DDPG (to deal with continuous

12

actions). However, this approach treats all action-parameters as a single joint input to the Q-network,
which results in dependence of each discrete action’s value on all action-parameters, not only those
associated with that action. To overcome the over-paramaterisation problem of P-DQN, MP-DQN
(Bester et al., 2019) extend P-DQN with a multiple-pass mechanism, splitting the action-parameter
inputs to the Q-network using several passes. H-PPO (Fan et al., 2019) decomposes the action
space using parallel sub-actor networks—one for discrete action selection and others for parameter
learning—guided by a shared critic. HyAR (Li et al., 2021) learns a latent representation for hy-
brid actions via a variational autoencoder, enabling standard DRL algorithms. These methods incur
added computational cost due to architectural complexity and hyperparameter sensitivity.

Abstraction Refinement in RL. Coarse-to-fine RL (CRL) (Seo et al., 2024) discretize continuous
action spaces by learning a single action discretization that spans the entire state space. This is
achieved by independently learning a Q-network for each action dimension. In contrast, our method
learns distinct abstractions of parameterized actions conditioned on abstract states. Unlike prior
top-down abstraction methods limited to discrete actions (Dadvar et al., 2023; Nayyar & Srivastava,
2025), PEARL handles parameterized actions via action abstraction and supports flexible refinement
to compactly capture problem structure.

D Empirical Results

i |“

A

\.
< £
i e

(a) Office (b) Pinball (c) Soccer Goal

(d) Multi-City Transport

Figure 4: (a) A small, dynamic blue ball that needs to be manouvered into a red hole, avoiding col-
lisions with irregularly shaped obstacles. (b) Maps for three different cities with package locations
marked by red circles, connected only via airports shown as blue circles.

Test environments We evaluate in three long-horizon domains, each featuring sparse rewards—
i.e., agents receive a positive reward only upon reaching the goal state: (i) OfficeWorld (Icarte
et al., 2022; Corazza et al., 2024) (Fig. 1a): In this domain, The agent must navigate a cluttered
indoor office environment to pick up mail and coffee and deliver them to designated office locations.
The state space includes the agent’s (x, y) position and two binary variables indicating whether it is
carrying coffee or mail. The action space consists of four parameterized movement actions—one for
each cardinal direction-with displacement values in the range [0, 0.5). The agent automatically picks
up items when at their location and drops them off when at the target office location. The horizon is

13

800 steps. (ii) Pinball (Roice et al., 2024; Rodriguez-Sanchez & Konidaris, 2024) (Fig. 4b): In this
domain, the agent controls a small ball in a physics-based arena and must guide it into a red hole.
The ball is subject to dynamic physical forces, such as bouncing off obstacles and surface resistance.
The action space includes five parameterized actions: four to increase or decrease velocity in the x
or y direction, and one no-op action. The horizon is 800 steps. (iii) Multi-city transport (Ma et al.,
2021; Oswald et al., 2024) (Fig. 4d): This domain models a complex, multi-city delivery problem.
The agent navigates roads within cities and uses air transport to travel between them. The objective
is to retrieve a package in one city and deliver it to a destination city. The environment includes
three cities, each with an airport. The agent has five parameterized actions: up, down, left, right
(each parameterized by distance), and a fly action (parameterized by the destination city), which can
only be executed at airports. The horizon is 1000 steps. (iv) Robot Soccer Goal (Bester et al., 2019)
(Fig. 4c): The task involves an agent learning to kick a ball past a keeper. Three actions are available
to the agent: kick-to(x,y), shoot-goal-left(y), and shoot-goal-right(y) for a maximum of 150 steps.

D Results and Analysis

—— PeARL-flexible-conservative (ours)
—— PeARL-uniform (ours)
—— PeARL-flexible-aggressive (ours)

In addition to the evaluation from the main paper, we
further investigate how different abstraction refinement
strategies affect the performance of PEARL in the Pin-

ball domain. Specifically, we compare two variants of 10+ Pinball
PEARL-flexible: one that uses aggressive refinement, re- ~

sulting in finer-grained abstractions, and another that uses E 0.81

conservative refinement, leading to coarser abstractions. &J 0.64

We also evaluate these alongside the PEARL-uniform o

variant. This comparison allows us to assess how the g 0.4+

granularity of abstraction influences both learning perfor- -3 .|

mance and the resulting abstraction size. =

As shown in Fig. 5, the aggressively refined PEARL- i ' : : :
flexible variant achieves the highest performance among g 084

all methods. In contrast, the conservatively refined % '

PEARL-flexible yields performance that is comparable Y2 061

to PEARL-uniform but with a more compact abstraction. _S 0.4

This comparison highlights a key strength of PEARL- T

flexible: its ability to adaptively tune the level of ab- (—:; 0.21

straction to balance performance and abstraction com- 7 (|

plexity. When refined aggressively, the abstraction cap-

tures fine-grained distinctions that lead to improved con- 3

trol and higher sample-efficiency. On the other hand, a g 15001

more conservative refinement retains a compact represen- + 1000

tation while still maintaining competitive performance, ©

which may be beneficial in settings where computational g 500

Or memory constraints are a concern. <

Overall, these results reinforce our hypothesis: PEARL * s K K & =«
not only improves sample-efficiency but also produces Episodes

domain-adaptive abstractions that support strong RL per-

formance across a range of environments. The results
demonstrate the abstraction learned by PEARL-flexible
is not only effective but also tunable—enabling practi-
tioners to trade off between computational simplicity and
performance depending on the demands of the task.

14

Figure 5: Comparison of two variants
of PeARL-flexible: PeARL-flexible-
aggressive and PeARL-flexible-
conservative with PeARL-uniform in
the Pinball Domain.

D Hyperparameters

For the MP-DQN and PADDPG baselines, we use the default hyperparameters provided in their
open-source implementation '. The hyperparameters used for our methods—PEARL-flexible
and PEARL-uniform—are detailed in Tables 1 and 2. Key abstraction-specific parameters in-
clude: k_cap and k_cap_actions: These define the upper bounds on the number of abstract
states and abstract actions, respectively, that are eligible for refinement during each abstraction
refinement phase; max_clusters: Specifies the number of new clusters created when refin-
ing an abstract state, effectively determining how many new abstract states are generated; and
variables_to_split: Sets the maximum number of state variables considered for refinement
at each step. n_refine: Indicates the number of episodes between successive abstraction refine-
ment phases. In addition to these abstraction-related parameters, all standard reinforcement learning
hyperparameters (e.g., learning rate, discount factor) are included to ensure reproducibility of ex-
periments.

Table 1: Hyperparameters for PEARL-flexible used with different domains

Hyperparameter Office Pinball Multi-City Transport Soccer Goal
minimum exploration €m,in 0.05 0.05 0.05 0.05
learning rate « 0.05 0.05 0.05 0.05
discount factor vy 0.99 0.999 0.99 0.99
lamda A 0.1 0.1 0.1 0.1
maximum episodesn 5000 5000 3000 4000
maximum stepsh 800 800 1000 150
decay ¢ 0.9989 0.9997 0.9989 0.9989
n_refine Npefine 100 100 100 100
k_cap 5 40 10 25
k_cap_actions 5 15 10 25
max_clusters 4 4 8 20
kernel linear rbf linear linear

Table 2: Hyperparameters for PEARL-uniform used with different domains

Hyperparameter Office Pinball Multi-City Transport Soccer Goal
minimum exploration €, 0.05 0.05 0.05 0.05
learning rate « 0.05 0.05 0.05 0.05
discount factory 0.99 0.999 0.99 0.99
lamda A 0.1 0.1 0.1 0.1
maximum episodesn 5000 5000 3000 4000
maximum steps h 800 800 1000 150
decay d 0.9989 0.9996 0.9989 0.9989
n_refine Nyefine 100 100 100 100
k_cap 5 15 10 10
k_cap_actions 5 15 10 10
variables_to_split 4 2 4 2

Thttps://github.com/cycraig/MP-DQN

15

