
Published as a conference paper at ICLR 2017

ON THE QUANTITATIVE ANALYSIS OF DECODER-
BASED GENERATIVE MODELS

Yuhuai Wu
Department of Computer Science
University of Toronto
ywu@cs.toronto.edu

Yuri Burda
OpenAI
yburda@openai.com

Ruslan Salakhutdinov
School of Computer Science
Carnegie Mellon University
rsalakhu@cs.cmu.edu

Roger Grosse
Department of Computer Science
University of Toronto
rgrosse@cs.toronto.edu

ABSTRACT

The past several years have seen remarkable progress in generative models which
produce convincing samples of images and other modalities. A shared component
of many powerful generative models is a decoder network, a parametric deep
neural net that defines a generative distribution. Examples include variational
autoencoders, generative adversarial networks, and generative moment matching
networks. Unfortunately, it can be difficult to quantify the performance of these
models because of the intractability of log-likelihood estimation, and inspecting
samples can be misleading. We propose to use Annealed Importance Sampling
for evaluating log-likelihoods for decoder-based models and validate its accuracy
using bidirectional Monte Carlo. The evaluation code is provided at https://
github.com/tonywu95/eval_gen. Using this technique, we analyze the
performance of decoder-based models, the effectiveness of existing log-likelihood
estimators, the degree of overfitting, and the degree to which these models miss
important modes of the data distribution.

1 INTRODUCTION

In recent years, deep generative models have dramatically pushed forward the state-of-the-art in
generative modelling by generating convincing samples of images (Radford et al., 2016), achieving
state-of-the-art semi-supervised learning results (Salimans et al., 2016), and enabling automatic
image manipulation (Zhu et al., 2016). Many of the most successful approaches are defined in
terms of a process which samples latent variables from a simple fixed distribution (such as Gaussian
or uniform) and then applies a learned deterministic mapping which we will refer to as a decoder
network. Important examples include variational autoencoders (VAEs) (Kingma & Welling, 2014;
Rezende et al., 2014), generative adversarial networks (GANs) (Goodfellow et al., 2014), generative
moment matching networks (GMMNs) (Li & Swersky, 2015; Dziugaite et al., 2015), and nonlinear
independent components estimation (Dinh et al., 2014). We refer to this set of models collectively as
decoder-based models, also known as density networks (MacKay & Gibbs, 1998).

While many decoder-based models are able to produce convincing samples (Denton et al., 2015;
Radford et al., 2016), rigorous evaluation remains a challenge. Comparing models by inspecting
samples is labor-intensive, and potentially misleading (Theis et al., 2016). While alternative quantita-
tive criteria have been proposed (Bounliphone et al., 2016; Im et al., 2016; Salimans et al., 2016),
log-likelihood of held-out test data remains one of the most important measures of a generative
model’s performance. Unfortunately, unless the decoder is designed to be reversible (Dinh et al.,
2014; 2016), log-likelihood estimation in decoder-based models is typically intractable. In the case
of VAE-based models, a learned encoder network gives a tractable lower bound, but for GANs and
GMMNs it is not obvious how even to compute a good lower bound. Even when lower bounds
are available, their accuracy may be hard to determine. Because of the difficulty of log-likelihood

1

https://github.com/tonywu95/eval_gen
https://github.com/tonywu95/eval_gen

Published as a conference paper at ICLR 2017

(a) GAN-10; LLD: 328.7 (b) GAN-50, epoch 200; LLD: 543.5 (c) GAN-50, epoch 1000; LLD: 625.5

Figure 1: (a) samples from a GAN with 10 latent dimensions, (b) and (c) samples from a GAN with 50 latent
dimensions at different epochs of training. While it is difficult to visually discern differences between these three
models, their log-likelihood (LLD) values span almost 300 nats.

evaluation, it is hard to answer basic questions such as whether the networks are simply memorizing
training examples, or whether they are missing important modes of the data distribution.

The most widely used estimator of log-likelihood for GANs and GMMNs is the Kernel Density
Estimator (KDE) (Parzen, 1962). It estimates the likelihood under an approximation to the model’s
distribution obtained by simulating from the model and convolving the set of samples with a kernel
(typically Gaussian). Unfortunately, KDE is notoriously inaccurate for estimating likelihood in high
dimensions, because it is hard to tile a high-dimensional manifold with spherical Gaussians (Theis
et al., 2016).

In this paper, we propose to use annealed importance sampling (AIS; (Neal, 2001)) to estimate
log-likelihoods of decoder-based generative models and to obtain approximate posterior samples.
Importantly, we validate this approach using Bidirectional Monte Carlo (BDMC) (Grosse et al.,
2015), which provably bounds the log-likelihood estimation error and the KL divergence from the
true posterior distribution for data simulated from a model. For most models we consider, we find
that AIS is two orders of magnitude more accurate than KDE, and is accurate enough to perform
fine-grained comparisons between generative models. In the case of VAEs, we show that AIS can be
further sped up by using the recognition network to determine the initial distribution; this yields an
estimator which is fast enough to be run repeatedly during training.

Using the proposed method, we analyze several scientific questions central to understanding decoder-
based generative models. First, we measure the accuracy of KDE and of the importance weighting
bound which is commonly used to evaluate VAEs. We find that the KDE error is larger than the (quite
significant) log-likelihood differences between different models, and that KDE can lead to misleading
conclusions. The importance weighted bound, while reasonably accurate, can also yield misleading
results in some cases.

Second, we compare the log-likelihoods of VAEs, GANs, and GMMNs, and find that VAEs achieve
log-likelihoods several hundred nats higher than the other models (even though KDE considers all
three models to have roughly the same log-likelihood). Third, we analyze the degree of overfitting in
VAEs, GANs, and GMMNs. Contrary to a commonly proposed hypothesis, we find that GANs and
GMMNs are not simply memorizing their training data; in fact, their log-likelihood gaps between
training and test data are much smaller relative to comparably-sized VAEs. Finally, by visualizing
(approximate) posterior samples obtained from AIS, we observe that GANs miss important modes of
the data distribution, even ones which are represented in the training data.

We emphasize that none of the above phenomena can be measured using KDE or the importance
weighted bound, or by inspecting samples. (See Fig. 1 for an example where it is tricky to compare
models based on samples.) While log-likelihood is by no means a perfect measure, we find that the
ability to accurately estimate log-likelihoods of decoder-based models yields crucial insight into their
behavior and suggests directions for improving them.

2 BACKGROUND

2.1 DECODER-BASED GENERATIVE MODELS

In generative modelling, a decoder network is often used to define a generative distribution by
transforming samples from some simple distribution (e.g. normal) to the data manifold. In this

2

Published as a conference paper at ICLR 2017

paper, we consider three kinds of decoder-based generative models: Variational Autoencoder (VAE)
(Kingma & Welling, 2014), Generative Adversarial Network (GAN) (Goodfellow et al., 2014), and
Generative Moment Matching Network (GMMN) (Li & Swersky, 2015; Dziugaite et al., 2015).

2.1.1 VARIATIONAL AUTOENCODER

A variational autoencoder (VAE) (Kingma & Welling, 2014) is a probabilistic directed graphical
model. It is defined by a joint distribution over a set of latent random variables z and the observed
variables x: p(x, z) = p(x|z)p(z). The prior over the latent random variables, p(z), is usually chosen
to be a standard Gaussian distribution. The data likelihood p(x|z) is usually a Gaussian or Bernoulli
distribution whose parameters depend on z through a deep neural network, known as the decoder
network. It also uses an approximate inference model called an encoder or recognition network, that
serves as a variational approximation q(z|x) to the posterior p(z|x). The decoder network and the
encoder networks are jointly trained to maximize the evidence lower bound (ELBO):

log p(x) ≥ Eq(z|x)[log p(x|z)]−KL(q(z|x)||p(z)) (1)

In addition, the reparametrization trick is used to reduce the variance of the gradient estimate.

2.1.2 GENERATIVE ADVERSARIAL NETWORK (GAN)

A generative adversarial network (GAN) (Goodfellow et al., 2014) is a generative model trained by a
game between a decoder network and a discriminator network. It defines the generative model by
sampling the latent variable z from some simple prior distribution p(z) (e.g., Gaussian) followed
through the decoder network. The discriminator network D(·) outputs a probability of a given sample
coming from the data distribution. Its task is to distinguish samples from the generator distribution
from real data. The decoder network, on the other hand, tries to produce samples as realistic as
possible, in order to fool the discriminator into accepting its outputs as being real. The competition
between the two networks results in the following minimax problem:

min
G

max
D

Ex∼pdata
[logD(x)] + Ez∼p(z)[log(1−D(G(z))] (2)

Unlike VAE, the objective is not explicitly related to the log-likelihood of the data. Moreover,
the generative distribution is a deterministic mapping, i.e., p(x|z) is a Dirac delta distribution,
parametrized by the deterministic decoder. This can make data likelihood ill-defined, as the probability
density of any particular point x can be either infinite, or exactly zero.

2.1.3 GENERATIVE MOMENT MATCHING NETWORK (GMMN)

Generative moment matching networks (GMMNs) (Li & Swersky, 2015; Dziugaite et al., 2015) adopt
maximum mean discrepancy (MMD) as the training objective, a moment matching criterion where
kernel mean embedding techniques are used to avoid unnecessary assumptions of the distributions. It
has the same issue as GAN in that the log-likelihood is undefined.

2.2 ANNEALED IMPORTANCE SAMPLING

We are interested in estimating the probability p(x) =
∫
p(z)p(x|z) dz a model assigns to an

observation x. This is equivalent to computing the normalizing constant of the unnormalized
distribution f(z) = p(z, x). One naïve approach is likelihood weighting, where one samples
{z(k)}Kk=1 ∼ p(z) and averages the conditional likelihoods p(x|z(k)). This is justified by the
following identity:

p(x) =

∫
p(x, z)

p(z)
p(z) dz = Ez∼p(z)[p(x|z)] (3)

Likelihood weighting can be viewed as simple importance sampling, where the proposal distribution
is the prior p(z) and the target distribution is the posterior p(z|x). Unfortunately, importance sampling
works well only when the proposal distribution is a good match for the target distribution. For the
models considered in this paper, the (very broad) prior can be drastically different than the (highly
concentrated) posterior, leading to inaccurate estimates of the likelihood.

Annealed importance sampling (AIS; Neal, 2001) is a Monte Carlo algorithm commonly used to
estimate (ratios of) normalizing constants. Roughly speaking, it computes a sequence of importance

3

Published as a conference paper at ICLR 2017

sampling based estimates, each of which is stable because it involves two distributions which are very
similar. In particular, suppose one is interested in estimating the normalizing constant Z =

∫
f(z) dz

of an unnormalized distribution f(z). (In the likelihood estimation setting, f(z) = p(z, x) and
Z = p(x).) One must specify a sequence of distributions q1, ..., qT , where qt = ft/Zt, and fT = f
is the target distribution. It is required that one can obtain one or more exact samples from the initial
distribution q1. One must also specify a sequence of reversible MCMC transition operators T1, ..., TT ,
where Tt leaves qt invariant.

AIS produces a (nonnegative) unbiased estimate of the ratio ZT /Z1 as follows: first, we sample a
random initial state z1 ∼ q1 and set the initial weight w1 = 1. For every stage t ≥ 2 we update the
weight w and sample the state zt according to

wt ← wt−1
ft(zt−1)

ft−1(zt−1)
zt ∼ Tt(z|zt−1) (4)

As demonstrated by Neal (2001), this procedure produces a nonnegative weight wT such that
E[wT] = ZT /Z1. Typically, Z1 is known, so one computes multiple independent AIS weights
{w(K)

T }Kk=1 and obtains the unbiased estimate ẐT = Z1
1
K

∑K
k=1 w

(K)
T . In the likelihood estimation

setting, Z1 = 1 and ZT = p(x), so we denote this estimator as p̂(x).

Typically, the unnormalized intermediate distributions are simply defined to be geometric averages
ft(z) = f1(z)

1−βtfT (z)
βt , where the βt are monotonically increasing parameters with β1 = 0 and

βT = 1. For f1(z) = p(z) and fT (z) = p(z, x), this gives

ft(z) = p(z) p(x|z)βt . (5)

As shown by Neal (2001), under certain regularity conditions, the variance of ẐT tends to zero as
the number of intermediate distributions is increased. AIS is very effective in practice, and has been
used to estimate normalizing constants of complex high-dimensional distributions (Salakhutdinov &
Murray, 2008).

2.3 BIDIRECTIONAL MONTE CARLO

AIS provides a nonnegative unbiased estimate p̂(x) of p(x). However, it is often more practical to
estimate p(x) in the log space, i.e. log p(x), because of underflow problem of dealing with many
products of probability measure. In general, we note that logarithm of a nonnegative unbiased estimate
is a stochastic lower bound of the log estimand (Grosse et al., 2015). In particular, log p̂(x) is a
stochastic lower bound on log p(x), satisfying E[log p̂(x)] ≤ log p(x) and Pr(log p̂(x) > log p(x) +
b) < e−b.

Grosse et al. (2015) pointed out that if AIS is run in reverse starting from an exact posterior sample,
it yields an unbiased estimate of 1/p(x), which (by the above argument) can be seen as a stochastic
upper bound on log p(x). The combination of lower and upper bounds from forward and reverse
AIS is known as bidirectional Monte Carlo (BDMC). In many cases, the combination of bounds can
pinpoint the true value quite precisely. While posterior sampling is just as hard as log-likelihood
estimation (Jerrum et al., 1986), in the case of log-likelihood estimation for simulated data, one has
available a single exact posterior sample: the parameters and/or latent variables which generated the
data. Because this trick is only applicable to simulated data, BDMC is most useful for measuring the
accuracy of a log-likelihood estimator on simulated data.

Grosse et al. (2016) observed that BDMC can also be used to validate posterior inference algorithms,
as the gap between upper and lower bounds is itself a bound on the KL divergence of approximate
samples from the true posterior distribution.

3 METHODOLOGY

For a given generative distribution p(x, z) = p(z)p(x|z), our task is to measure the log-likelihood of
test examples log p(xtest). We first discuss how we define the generative distribution for decoder-
based networks. For VAE, the generative distribution is defined in the standard way, where p(z) is a
standard normal distribution and p(x|z) is a normal distribution parametrized by mean µθ(z) and
σθ(z), predicted by the generator given the latent code. However, the observation distribution for
GANs and GMMNs is typically taken to be a delta function, so that the model’s distribution covers

4

Published as a conference paper at ICLR 2017

only a submanifold of the space of observables. In order for the likelihood to be well-defined, we
follow the same assumption made when evaluating using Kernel Density Estimator (Parzen, 1962):
we assume a Gaussian observation model with a fixed variance hyperparameter σ2. We will refer to
the distribution defined by this Gaussian observation model as pσ .

Observe that the KDE estimate is given by

p̂σ(x) =
1

K

K∑
k=1

pσ(x|z(k)), (6)

where {z(k)}Kk=1 are samples from the prior p(z). This is equivalent to likelihood weighting for
the distribution pσ, which is an instance of simple importance sampling (SIS). Because SIS is an
unbiased estimator of the likelihood, log p̂σ(x) is a stochastic lower bound on log pσ(x) (Grosse
et al., 2015). Unfortunately, SIS can result in very poor estimates when the evidence has low prior
probability (i.e. the posterior is very dissimilar to the prior). This suggests that AIS might be able to
yield much more accurate log-likelihood estimates under pσ. We note that KDE can be viewed as a
special case of AIS where the number of intermediate distributions is set to 0.

We now describe specifically how we carry out evaluation using AIS. In most of our experiments, we
choose the initial distribution of AIS to be p(z), the same prior distribution used in training decoder-
based models. If the model provides an encoder network (e.g., VAE), we can take the approximated
distribution predicted by the encoder q(z|x) as the initial distribution of the AIS chain. For continuous
data, we define the unnormalized density of target distribution to be the joint generative distribution
with the Gaussian noise model, pσ(x, z) = pσ(x|z)p(z). For the small subset of experiments done
on the binary data, we define the observation model to be a Bernoulli model with mean predicted
by the decoder. Our intermediate distributions are geometric averages of the prior and posterior, as
in Eqn. 5. Since all of our experiments are done using continuous latent space, we use Hamiltonian
Monte Carlo (Neal, 2010) as the transition operator for sampling latent samples along annealing. The
evaluation code is provided at https://github.com/tonywu95/eval_gen.

4 RELATED WORK

AIS is known to be a powerful technique of estimating the partition function of the model. One
influential example was the use of AIS to evaluate deep belief networks (Salakhutdinov & Murray,
2008). Although we used the same technique, the problem we consider is completely different. First
of all, the model they consider is undirected graphical models, whereas decoder-based models are
directed graphical models. Secondly, their model has a well-defined probabilistic density function in
terms of energy function, whereas we need to consider different probabilistic model for one in which
the the likelihood is ill-defined. In addition, we validate our estimates using BDMC.

Theis et al. (2016) give an in-depth analysis of issues that might come up in evaluating generative
models. They also point out that a model that completely fails at modelling the proportion of modes
of the distribution might still achieve a high likelihood score. Salimans et al. (2016) propose an
image-quality measure which they find to be highly correlated with human visual judgement. They
propose to feed the samples x of the model to the “inception” model to obtain a conditional label
distribution p(y|x), and evaluate the score defined by expExKL(p(y|x)||p(y)), which is motivated
by having a low entropy of p(y|x) but a large entropy of p(y). However, the measure is largely based
on visual quality of the sample, and we argue that the visual quality can be a misleading way to
evaluate a model.

5 EXPERIMENTS

5.1 DATASETS

All of our experiments were performed on the MNIST dataset of images of handwritten digits (LeCun
et al., 1998). For consistency with prior work on evaluating decoder-based models, most of our
experiments used the continuous inputs. We dequantized the data following Uria et al. (2013), by
adding a uniform noise of 1

256 to the data and rescaling it to be in [0, 1]D after dequantization. We
use the standard split of MNIST into 60,000 training and 10,000 test examples, and used 50,000
images from the training set for training, and remaining 10,000 images for validation. In addition,

5

https://github.com/tonywu95/eval_gen

Published as a conference paper at ICLR 2017

some of our experiments used the binarized MNIST dataset with a Bernoulli observation model
(Salakhutdinov & Murray, 2008).

5.2 MODELS

For most of our experiments, we considered two decoder architectures: a small one with 10 latent
dimensions, and a larger one with 50 latent dimensions. We use standard Normal distribution as prior
for training all of our models. All layers were fully connected, and the number of units in each layer
was 10–64–256–256-1024–784 for the smaller architecture and 50–1024–1024–1024–784 for the
larger one. We trained both architectures using the VAE, GAN, and GMMN objectives, resulting in
six networks which we refer to as VAE-10, VAE-50, etc. In general, the larger architecture performed
substantially better on both the training and test sets, but we analyze the smaller architecture as
well because it better highlights some of the differences between the training criteria. Additional
architectural details are given in Appendix A.1.

In order to enable a direct comparison between training criteria, all models used a spherical Gaussian
observation model with fixed variance. This is consistent with previous protocols for evaluating
GANs and GMMNs. However, we note that this observation model is a nontrivial constraint on the
VAEs, which could instead be trained with a more flexible diagonal Gaussian observation model
where the variances depend on the latent state. Such observation models can easily achieve much
higher log-likelihood scores, for instance by noticing that boundary pixels are always close to 0. (E.g.,
we trained a VAE with the more general observation model which achieved a log-likelihood of at
least 2200 nats on continuous MNIST.) Therefore, the log-likelihood values we report should not be
compared directly against networks which have a more flexible observation model.

5.3 VALIDATION OF LOG-LIKELIHOOD ESTIMATES

Before we analyze the performance of the trained networks, we must first determine the accuracy of
the log-likelihood estimators. In this section, we validate the accuracy of our AIS-based estimates
using BDMC. We then analyze the error in the KDE and IWAE estimates and highlight some cases
where these measures miss important phenomena.

5.3.1 VALIDATION OF AIS

We used AIS to estimate log-likelihoods for all models under consideration. Except where otherwise
specified, all AIS estimates were obtained using 16 independent chains, 10,000 intermediate distri-
butions of the form in Eqn. 5, and a transition operator consisting of one proposed HMC trajectory
with 10 leapfrog steps.1 Following Ranzato et al. (2010), the HMC stepsize was tuned to achieve an
acceptance rate of 0.65 (as recommended by Neal (2010)).

For all six models, we evaluated the accuracy of this estimation procedure using BDMC on data
sampled from the model’s distribution on 1000 simulated examples. The gap between the log-
likelihood estimates produced by forward AIS (which gives a lower bound) and reverse AIS (which
gives an upper bound) bounds the error of the AIS estimates on simulated data. We refer to this
gap as the BDMC gap. For five of the six networks under consideration, we found the BDMC gap
to be less than 1 nat. For the remaining model (GAN-50), the gap was about 10 nats. Both gaps
are much smaller than our measured log-likelihood differences between models. If these gaps are
representative of the true error in the estimates on the real data, then this indicates AIS is accurate
enough to make fine-grained comparisons between models and to benchmark other log-likelihood
estimators. (The BDMC gap is not guaranteed to hold for the real data, although Grosse et al. (2016)
found the behavior of AIS to match closely between real and simulated data.)

5.3.2 HOW ACCURATE IS KERNEL DENSITY ESTIMATION?

Kernel density estimation (KDE) (Parzen, 1962) is widely used to evaluate decoder-based models
(Goodfellow et al., 2014; Li & Swersky, 2015), and a variant was proposed in the setting of evaluating
Boltzmann machines (Bengio et al., 2013). Papers reporting KDE estimates often caution that the

1We used the HMC implementation from http://deeplearning.net/tutorial/
deeplearning.pdf

6

http://deeplearning.net/tutorial/deeplearning.pdf
http://deeplearning.net/tutorial/deeplearning.pdf

Published as a conference paper at ICLR 2017

0.005 0.010 0.015 0.020 0.025
Variance

−400

−200

0

200

400

600

Lo
g
-l

ik
e
lih

o
o
d

GAN50 with varying variance

Train AIS

Valid AIS
Train KDE

Valid KDE

101 102 103

Seconds
50

100

150

200

250

300

350

Lo
g-

lik
el

ih
oo

d

AIS vs: KDE

KDE

AIS forward
AIS backward

101 102 103 104

Seconds
−88.0

−87.5

−87.0

−86.5

−86.0

−85.5

Lo
g-

lik
el

ih
oo

d

AIS vs: IWAE

IWAE

AIS

AIS+encoder

(a) GAN-50: LLD vs. Variance (b) GMMN-10: LLD vs. Evaluation time (c) IWAE: LLD vs. Evaluation time

Figure 2: (a) Log-likelihood of GAN-50, under different choices of variance parameter. (b) Log-likelihood of
GMMN-10 on 100 simulated examples evaluated by AIS and KDE vs. the corresponding running time. We show
the BDMC gap converges to almost zero as we increase the running time. (c) Log-likelihood of IWAE on 10,000
test examples evaluated by AIS and IWAE bound vs. running time. (a), (b) are results on continuous MNIST,
and (c) is on binarized MNIST. Note that AIS/AIS+encoder dominates the other estimate in both estimation
accuracy and running time.

(Nats) AIS AIS+encoder IWAE bound # dist AIS # dist AIS+encoder # samples
IWAE -85.679 -85.754 -86.902 1000 100 10000

-85.619 -85.621 -86.464 10000 1000 100000

Table 1: AIS vs. IWAE bound on 10,000 test examples of binarized MNIST. “# dist” denotes the number
of intermediate distributions used for evalution. We find AIS estimate is consistently 1 nat higher than IWAE
bound; AIS+encoder can achieve about the same estimate as AIS, but with 1 order of magnitude less number of
intermediate distributions.

KDE is not meant to be applied in high-dimensional spaces and that the results might therefore be
inaccurate. Nevertheless, KDE remains the standard protocol for evaluating decoder-based models.
We analyzed the accuracy of the KDE estimates by comparing against AIS. Both estimates are
stochastic lower bounds on the true log-likelihood (see Section 3), so larger values are guaranteed
(with high probability) to be more accurate.

For each estimator, we varied one parameter influencing the computational budget; for AIS, this
was the number of intermediate distributions (chosen from {100, 500, 1000, 2000, 10000}), and for
KDE, it was the number of samples (chosen from {10000, 100000, 500000, 1000000, 2000000}).
Using GMMN-10 for illustration, we plot both log-likelihood estimates 100 simulated examples as a
function of evaluation time in Fig. 2(b). We also plot the upper bound of likelihood given by running
AIS in reverse direction. We see that the BDMC gap approaches to zero, validating the accuracy
of AIS. We also see that the AIS estimator achieves much more accurate estimates during similar
evaluation time. Furthermore, the KDE estimates appear to level off, suggesting one cannot obtain
accurate results even using orders of magnitude more samples.

The KDE estimation error also impacts the estimate of the observation noise σ, since a large value of
σ is needed for the samples to cover the full distribution. We compared the log-likelihoods estimated
by AIS and KDE with varying choices of σ on 100 training and validation examples of MNIST. We
used 1 million simulated samples for KDE evaluation, which takes almost the same time as running
AIS estimation. In Fig. 2(a), we show the log-likelihood of GAN-50 estimated by KDE and AIS as a
function of σ. Because the accuracy of KDE declines sharply for small σ values, it creates a strong
bias towards large σ.

5.3.3 HOW ACCURATE IS THE IWAE BOUND?

In principle, one could estimate VAE likelihoods using the VAE objective function (which is a lower
bound on the true log-likelihood). However, it is more common to use importance weighting, where
the proposal distribution is computed by the recognition network. This is provably more accurate
than the VAE bound (Burda et al., 2016). Because the importance weighted estimate corresponds to
the objective function used by the Importance Weighted Autoencoder (IWAE) (Burda et al., 2016),
we will refer to it as the IWAE bound.

On continuous MNIST, the IWAE bound underestimated the true log-likelihoods by at least 33.2
nats on the training set and 187.4 nats on the test set. While this is considerably more accurate than
KDE, the error is still significant. Interestingly, this result also suggests that the recognition network
overfits the training data.

7

Published as a conference paper at ICLR 2017

(Nats) AIS Test AIS Train BDMC gap KDE Test IWAE Test
VAE-50 991.435±6.477 1298.830±0.863 1.540 351.213 826.325
GAN-50 627.297±8.813 648.283±21.115 10.045 300.331 /

GMMN-50 593.472±8.591 607.272±1.451 1.146 277.193 /
VAE-10 705.375±7.411 791.029±0.810 0.832 408.659 486.466
GAN-10 328.772±5.538 346.640±4.260 0.934 259.673 /

GMMN-10 346.679±5.860 358.943±6.485 0.605 262.73 /

Table 2: Model comparisons on 1000 test and training examples of continuous MNIST. Confidence intervals
reflect the variability from the choice of training or test examples (which appears to be the dominant source of
error for the AIS values). AIS, KDE, and IWAE are all stochastic lower bounds on the log-likelihood.

Since VAE and IWAE results have customarily been reported on binarized MNIST, we additionally
trained an IWAE in this setting. The training details are given in Appendix A.2. To show the
practicality of our method, we evaluated the IWAE on the full 10000 test using AIS and IWAE
bound, with different choices of intermediate distribution and number of simulated samples, shown
in Table 1. We also evaluate AIS with the initial distribution defined by encoders of VAEs, denoted
as AIS+encoder. We find that the IWAE bound underestimates the true value by at least 1 nat, which
is a large difference by the standards of binarized MNIST. (E.g., it represents about half of the gap
between a state-of-the-art permutation-invariant model (Tran et al., 2016) and one which exploits
structure (van den Oord et al., 2016).) The AIS and IWAE estimates are compared in terms of
evaluation time in Fig. 2 (c).

5.4 SCIENTIFIC FINDINGS

Having validated the accuracy of AIS, we now use it to analyze the effectiveness of various training
criteria. We also highlight phenomena which would not be observable using existing log-likelihood
estimators or by inspecting samples. For all experiments in this section, we used 10,000 intermediate
distributions for AIS, 1 million simulated samples for KDE, and 200,000 importance samples for the
IWAE bound. (These settings resulted in similar computation time for all three estimators.)

5.4.1 MODEL LIKELIHOOD COMPARISON

We evaluated the trained models using AIS and KDE on 1000 test examples of MNIST; results are
shown in Table 2. We find that for all three training criteria, the larger architectures consistently
outperformed the smaller ones. We also find that for both the 10- and 50-dimensional architectures,
the VAEs achieved substantially higher log-likelihoods than GANs or GMMNs. It is not surprising
that the VAEs achieved higher likelihood, because they were trained using a likelihood-based objective
while the GANs and GMMNs were not. However, it is interesting that the difference in log-likelihoods
was so large; in the rest of this section, we attempt to analyze what exactly is causing this large
difference.

We note that the KDE errors were of the same order of magnitude as the differences between models,
indicating that it cannot be used reliably to compare log-likelihoods. Furthermore, KDE did not
identify the correct ordering of models; for instance, it estimated a lower log-likelihood for VAE-
50 than for VAE-10, even though its true log-likelihood was almost 300 nats higher. KDE also
underestimated by an order of magnitude the log-likelihood improvements that resulted from using
the larger architectures. (E.g., it estimated a 15 nat difference between GMMN-10 and GMMN-50,
even though the true difference was 247 nats as estimated by AIS.)

These differences are also hard to observe simply by looking at samples; for instance, we were unable
to visually distinguish the quality of samples for GAN-10 and GAN-50 (see Fig. 1), even though their
log-likelihoods differed by almost 300 nats on both the training and test sets.

5.4.2 MEASURING THE DEGREE OF OVERFITTING

One question that arises in evaluation of decoder-based generative models is whether they memorize
parts of the training dataset. One cannot test this by looking only at model samples. The commonly
reported nearest-neighbors from the training set can be misleading (Theis et al., 2016), and interpola-
tion in the latent space between different samples can be visually appealing, but does not provide a
quantitative measure of the degree of generalization.

8

Published as a conference paper at ICLR 2017

100200 400 600 800 1000
number of Epochs

200

250

300

350

400

450

500

550

600

650

Lo
g
-l

ik
e
lih

o
o
d

GAN50 training curves

Train AIS

Valid AIS

Train KDE

Valid KDE

100200 400 600 800 1000
number of Epochs

400

600

800

1000

1200

Lo
g
-l

ik
e
lih

o
o
d

VAE50 training curves

Train AIS

Valid AIS
Train KDE

Valid KDE

Train IWAE

Valid IWAE

2000 4000 6000 8000 10000
number of Epochs

200

300

400

500

600

Lo
g-

lik
el

ih
oo

d

GMMN50 training curves

Train AIS
Valid AIS
Train KDE
Valid KDE

(a) GAN-50: LLD vs. Num epochs (b) VAE-50: LLD vs. Num epochs (c) GMMN-50: LLD vs. Num epochs

Figure 3: Training curves for (a) GAN-50, (b) VAE-50, and (c) GMMN-10, as measured by AIS, KDE, and (if
applicable) the IWAE lower bound. All estimates shown here are lower bounds. In (c), the gap between training
and validation log-likelihoods is not fairly small (see Table 2).

To analyze the degree of overfitting, Fig. 3 shows training curves for three networks as measured by
AIS, KDE, and the IWAE bound. We observe that GAN-50’s training and test log-likelihoods are
nearly identical throughout training, disconfirming the hypothesis that it was memorizing training
data. Both GAN-50 and GMMN-50 overfit less than VAE-50.

We also observed two phenomena which could not be measured using existing techniques. First,
in the case of VAE-50, the IWAE lower bound starts to decline after 200 epochs, while the AIS
estimates hold steady, suggesting it is the recognition network rather than the generative network
which is overfitting most. Second, the GMMN-50 training and validation error continue to improve
at 10,000 epochs, even though KDE erroneously indicates that performance has leveled off.

5.4.3 HOW APPROPRIATE IS THE OBSERVATION MODEL?

Appendix B addresses the questions of whether the spherical Gaussian observation model is a good
fit and whether the log-likelihood differences could be an artifact of the observation model. We find
that all of the models can be substantially improved by accounting for non-Gaussianity, but that this
effect is insufficient to explain the gap between the VAEs and the other models.

5.4.4 ARE THE NETWORKS MISSING MODES?

It was previously observed that one of the potential failure modes of Boltzmann machines is to fail to
generate one or more modes of a distribution or to drastically misallocate probability mass between
modes (Salakhutdinov & Murray, 2008). Here we analyze this for decoder-based models.

First, we ask a coarse-grained version of this question: do the networks allocate probability mass
correctly between the 10 digit classes, and if not, can this explain the difference in log-likelihood
scores? In Fig. 1, we see that GAN-50’s distribution of digit classes was heavily skewed: out of 100
samples, it generated 37 images of 1’s, but only a single 2. This appears to be a large effect, but it does
not explain the magnitude of the log-likelihood difference from VAEs. In particular, if the allocation
of digit classes were off by a factor of 10, this effect by itself could cost at most log 10 ≈ 2.3 nats
of log-likelihood. Since VAE-50 outperformed GAN-50 by 364 nats, this effect cannot explain the
difference.

However, MNIST has many factors of variability beyond simply the 10 digit classes. In order to
determine whether any of the models missed more fine-grained modes, we visualized posterior
samples for each model conditioned on training and test images. In particular, for each image x
under consideration, we used AIS to approximately sample z from the posterior distribution p(z|x),
and then ran the decoder on z. While these samples are approximate, Grosse et al. (2016) point
out that the BDMC gap also bounds the KL divergence of approximate samples from the true
posterior. With the exception of GAN-50, our BDMC gaps were on the order of 1 nat, suggesting
our approximate posterior samples are fairly representative. The results are shown in Fig. 4. Further
posterior visualizations for digit class 2 (the most difficult for the models we considered) are shown
in Appendix C.

Both VAEs’ posterior samples match the observations almost perfectly. (We observed a few poorly
reconstructed examples on the test set, but not on the training set.) The GANs and GMMNs fail to

9

Published as a conference paper at ICLR 2017

Data
GAN10

VAE10

GMMN10

GAN50

VAE50

GMMN50

(a) The visualization of posterior of 10 training examples (b)The visualization of posterior of 10 validation examples (c)The visualization of posterior of 10 ex-
amples of digit “2" of training set

Figure 4: (a) and (b) show visualization of posterior samples of 10 training/validation examples. (c) shows
visualization of posterior samples of 10 training examples of digit “2". Each column of 10 digits comes from
true data and the six models. The order of visualization is: True data, GAN-10, VAE-10, GMMN-10, GAN-50,
VAE-50, GMMN-50.

reconstruct some of the examples on both the training and validation sets, suggesting that they failed
to learn some modes of the distribution.

ACKNOWLEDGMENTS

We like to thank Yujia Li for providing his original GMMN model and codebase, and thank Jimmy
Ba for advice on training GANs. Ruslan Salakhutdinov is supported in part by Disney and ONR grant
N000141310721. We also thank the developers of Lasagne (Battenberg et al., 2014) and Theano
(Al-Rfou et al., 2016).

REFERENCES

Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, and et al. Theano: A python framework for fast
computation of mathematical expressions, 2016.

Eric Battenberg, Sander Dieleman, Daniel Nouri, Eben Olson, Aäron van den Oord, Colin Raffel, Jan
Schlüter, and Søren Kaae Sønderby. lasagne. https://github.com/Lasagne/Lasagne,
2014.

Y. Bengio, L. Yao, and K. Cho. Bounding the test log-likelihood of generative models.
arXiv:1311.6184, 2013.

Wacha Bounliphone, Eugene Belilovsky, Matthew B. Blaschko, Ioannis Antonoglou, and Arthur
Gretton. A test of relative similarity for model selection in generative models. In ICLR. 2016.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In ICLR,
2016.

E. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models using a laplacian
pyramid of adversarial networks. In NIPS, 2015.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv:1605.08803, 2016.

Gintare Karolina Dziugaite, Daniel M. Roy, and Zoubin Ghahramani. Training generative neural
networks via Maximum Mean Discrepancy optimization. In UAI. 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.), Advances in Neural Information Process-
ing Systems 27, pp. 2672–2680. Curran Associates, Inc., 2014. URL http://papers.nips.
cc/paper/5423-generative-adversarial-nets.pdf.

10

https://github.com/Lasagne/Lasagne
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Published as a conference paper at ICLR 2017

Roger Grosse, Siddharth Ancha, and Daniel M. Roy. Measuring the reliability of MCMC inference
with bidirectional Monte Carlo. In NIPS, 2016.

Roger B. Grosse, Zoubin Ghahramani, and Ryan P. Adams. Sandwiching the marginal likelihood
using bidirectional monte carlo. arXiv preprint arXiv:1511.02543, 2015.

Daniel Jiwoong Im, Chris Dongjoo Kim, Hui Jiang, and Roland Memisevic. Generating images with
recurrent adversarial networks. arXiv preprint arXiv:1602.05110, 2016.

Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

Yujia Li and Kevin Swersky. Generative moment matching networks. In In ICML 32, 2015.

D. J. C. MacKay and M. N. Gibbs. Density networks. In J. W. Kay and D. M. Titterington (eds.),
Statistics and Neural Networks, pp. 129–146. O.U.P., 1998.

Radford M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, April
2001. ISSN 0960-3174. doi: 10.1023/A:1008923215028. URL http://dx.doi.org/10.
1023/A:1008923215028.

Radford M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,
54:113–162, 2010.

Emanuel Parzen. On estimation of a probability density function and mode. The Annals of Mathe-
matical Statistics, 33(3):pp. 1065–1076, 1962. ISSN 00034851. URL http://www.jstor.
org/stable/2237880.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In ICLR, 2016.

Marc’Aurelio Ranzato, Alex Krizhevsky, and Geoffrey E Hinton. Factored 3-way restricted Boltz-
mann machines for modeling natural images. In International Conference on Artificial Intelligence
and Statistics (AISTATS), pp. 621–628, 2010.

Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approxi-
mate inference in deep generative models. In Tony Jebara and Eric P. Xing (eds.), Proceedings
of the 31st International Conference on Machine Learning (ICML-14), pp. 1278–1286. JMLR
Workshop and Conference Proceedings, 2014. URL http://jmlr.org/proceedings/
papers/v32/rezende14.pdf.

Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of Deep Belief Networks.
In Andrew McCallum and Sam Roweis (eds.), Proceedings of the 25th Annual International
Conference on Machine Learning (ICML 2008), pp. 872–879. Omnipress, 2008.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In NIPS, 2016.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. In ICLR, 2016.

Dustin Tran, Rajesh Ranganath, and David M. Blei. The variational Gaussian process. In ICLR,
2016.

Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The real-valued neural autoregressive
density-estimator. In Advances in Neural Information Processing Systems 26, pp. 2175–2183. 2013.
URL http://www.benignouria.com/en/research/papers/Uria2013.pdf.

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In ICML, 2016.

11

http://dx.doi.org/10.1023/A:1008923215028
http://dx.doi.org/10.1023/A:1008923215028
http://www.jstor.org/stable/2237880
http://www.jstor.org/stable/2237880
http://jmlr.org/proceedings/papers/v32/rezende14.pdf
http://jmlr.org/proceedings/papers/v32/rezende14.pdf
http://www.benignouria.com/en/research/papers/Uria2013.pdf

Published as a conference paper at ICLR 2017

Martin J. Wainwright and Eero P. Simoncelli. Scale mixtures of Gaussians and the statistics of natural
images. In NIPS, 1999.

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Generative visual manipula-
tion on the natural image manifold. In Proceedings of European Conference on Computer Vision
(ECCV), 2016.

A NETWORK ARCHITECTURES/TRAINING

A.1 MODELS ON CONTINUOUS MNIST

The decoders have all fully connected layers, and the number of units in each layer was 10–64–256–
256-1024–784 for the smaller architecture and 50–1024–1024–1024–784 for the larger one. Other
architecture details are summarized as follows.

• For GAN-10, we used a discriminator with the architecture 784-512-256-1, where each layer
used dropout with parameter 0.5. For GAN-50, we used a discriminator with architecture
784-4096-4096-4096-4096-1. All hidden layers used dropout with parameter 0.8. All hidden
layers in both networks used the tanh activation function, and the output layers used the
logistic function.

• The larger model uses an encoder of an architecture 784-1024-1024-1024-100. We add
dropout layer between each hidden layer, with a dropout rate of 0.2. The smaller model uses
an encoder of an architecture 784-256-64-20. Generator’s hidden layers use tanh activation
function, and the output layer uses sigmoid unit. Encoder’s hidden layers use tanh activation
function, and the output layer uses linear activation.

• GMMN: The hidden layers use ReLU activation function, and the output layer uses sigomid
unit.

For training GAN/VAE, we use our own implementation. We use Adam for optimization, and
perform grid search of learning rate from {0.001, 0.0001, 0.00001}. For training GMMN, we
take the implementation from https://github.com/yujiali/gmmn.git. Following the
implementation, we use SGD with momentum for optimization, and perform grid search of learning
rate from {0.1, 0.5, 1, 2}, with momentum 0.9.

A.2 MODELS ON BINARIZED MNIST

Its decoder has the architecture 50-200-200-784 with all tanh hidden layers and sigmoid output layer,
and its encoder is symmetric in architecture, with linear output layer. We take the implementation at
https://github.com/yburda/iwae.git for training the IWAE model.The IWAE bound
was computed with 50 samples during training. We keep all the hyperparameter choices the same as
in the implementation.

B HOW PROBLEMATIC IS THE GAUSSIAN OBSERVATION MODEL?

(Nats) Train Valid

Optimal Fixed Improvement Optimal Fixed Improvement
GAN-50 711.405 620.498 90.907 702.699 623.492 79.207

GMMN-50 655.807 571.803 84.004 661.652 594.612 67.040
GAN-10 376.788 318.948 57.840 368.585 316.614 51.971

GMMN-10 393.976 345.177 48.799 371.325 332.360 38.965

Table 3: Optimal variance vs. Fixed variance

In this section, we consider whether the difference in log-likelihood between models could be an
artifact of the Gaussian noise model (which we know to be a poor fit). In principle, the Gaussian noise
assumption could be unfair to the GANs and GMMNs, because the VAE training uses the correct

12

https://github.com/yujiali/gmmn.git
https://github.com/yburda/iwae.git

Published as a conference paper at ICLR 2017

observation model, while the GAN and GMMN objectives do not have any particular observation
model built in.

To determine the size of this effect, we evaluated the models under a different regime where, instead
of choosing a fixed value of the observation noise σ on a validation set, σ was tuned independently
for each example.2 This is not a proper generative model, but it can be viewed as an upper bound on
the log-likelihood that would be achievable with a heavy-tailed and radially symmetric noise model.3
Results are shown in Table 3. We see that adapting σ for each example results in a log-likelihood
improvement between 30 and 100 nats for all of the networks. In general, the examples which show
the largest performance jump are images of 1’s (which prefer smaller σ) and 2’s (which prefer larger
σ). This is a significant effect, and suggests that one could significantly improve the log-likelihood
scores by picking a better observation model. However, this effect is smaller in magnitude than
the differences between VAE and GAN/GMMN log-likelihoods, so it fails to explain the likelihood
difference.

C POSTERIOR VISUALIZATION OF DIGIT “2"

According to the log-likelihood evaluation, we find digit “2" is the hardest digit for modelling. In this
section we investigate the quality of modelling “2" of each model. We randomly sampled a fixed
set of 100 samples of digit “2" from training data and compare whether model capture this mode.
We show the plots of “2" for GAN-10, GAN-50, VAE-10 and true data in the following figures for
illustration. We see that GAN-10 fails at capturing many instances of digit “2" in the training data!
We see instead of generating “2", it tries to generate digit “1", “7" “9", “4", “8" from reconstruction.
GAN-50 does much better, its reconstruction are all digit “2" and there is only some style difference
from the true data. VAE-10 totally dominates this competition, where it perfectly reconstructs all
the samples of digit “2". We emphasize if directly sampling from each model, samples look visually
indistinguishable (see Fig. 1), but we can clearly see differences in posterior samples.

2We pick the best variance parameter among {0.005, 0.01, 0.015, 0.02, 0.025} for each training/validation
examples when evaluating GAN-50 and GMMN-50 and {0.015, 0.02, 0.025, 0.03, 0.035} when evaluating
GAN-10 and GMMN-10.

3In particular, heavy-tailed radially symmetric distributions can be viewed as Gaussian scale mixtures
(Wainwright & Simoncelli, 1999). I.e., one has a prior distribution on σ (possibly learned) and integrates it out
for each test example. Clearly the probability under such a mixture cannot exceed the maximum value with
respect to σ.

13

Published as a conference paper at ICLR 2017

Figure 5: Posterior samples of digit “2" for GAN-10.

14

Published as a conference paper at ICLR 2017

Figure 6: Posterior samples of digit “2" for GAN-50.

15

Published as a conference paper at ICLR 2017

Figure 7: Posterior samples of digit “2" for VAE-10.

16

Published as a conference paper at ICLR 2017

Figure 8: 100 digit “2" from training data.

17

	Introduction
	Background
	Decoder-based generative models
	Variational Autoencoder
	Generative Adversarial Network (GAN)
	Generative Moment Matching Network (GMMN)

	Annealed importance sampling
	Bidirectional Monte Carlo

	Methodology
	Related work
	Experiments
	Datasets
	Models
	Validation of log-likelihood estimates
	Validation of AIS
	How accurate is kernel density estimation?
	How accurate is the IWAE bound?

	Scientific findings
	Model likelihood comparison
	Measuring the degree of overfitting
	How appropriate is the observation model?
	Are the networks missing modes?

	Network architectures/Training
	Models on Continuous MNIST
	Models on binarized MNIST

	How problematic is the Gaussian observation model?
	Posterior visualization of digit ``2"

