
Published as a conference paper at ICLR 2017

DEEP PREDICTIVE CODING NETWORKS FOR VIDEO
PREDICTION AND UNSUPERVISED LEARNING

William Lotter, Gabriel Kreiman & David Cox
Harvard University
Cambridge, MA 02215, USA
{lotter,davidcox}@fas.harvard.edu
gabriel.kreiman@tch.harvard.edu

ABSTRACT

While great strides have been made in using deep learning algorithms to solve
supervised learning tasks, the problem of unsupervised learning — leveraging un-
labeled examples to learn about the structure of a domain — remains a difficult
unsolved challenge. Here, we explore prediction of future frames in a video se-
quence as an unsupervised learning rule for learning about the structure of the
visual world. We describe a predictive neural network (“PredNet”) architecture
that is inspired by the concept of “predictive coding” from the neuroscience lit-
erature. These networks learn to predict future frames in a video sequence, with
each layer in the network making local predictions and only forwarding deviations
from those predictions to subsequent network layers. We show that these networks
are able to robustly learn to predict the movement of synthetic (rendered) objects,
and that in doing so, the networks learn internal representations that are useful
for decoding latent object parameters (e.g. pose) that support object recognition
with fewer training views. We also show that these networks can scale to com-
plex natural image streams (car-mounted camera videos), capturing key aspects
of both egocentric movement and the movement of objects in the visual scene,
and the representation learned in this setting is useful for estimating the steer-
ing angle. Altogether, these results suggest that prediction represents a powerful
framework for unsupervised learning, allowing for implicit learning of object and
scene structure.

1 INTRODUCTION

Many of the most successful current deep learning architectures for vision rely on supervised learn-
ing from large sets of labeled training images. While the performance of these networks is un-
doubtedly impressive, reliance on such large numbers of training examples limits the utility of deep
learning in many domains where such datasets are not available. Furthermore, the need for large
numbers of labeled examples stands at odds with human visual learning, where one or a few views
of an object is often all that is needed to enable robust recognition of that object across a wide range
of different views, lightings and contexts. The development of a representation that facilitates such
abilities, especially in an unsupervised way, is a largely unsolved problem.

In addition, while computer vision models are typically trained using static images, in the real world,
visual objects are rarely experienced as disjoint snapshots. Instead, the visual world is alive with
movement, driven both by self-motion of the viewer and the movement of objects within the scene.
Many have suggested that temporal experience with objects as they move and undergo transforma-
tions can serve as an important signal for learning about the structure of objects (Földiák, 1991;
Softky, 1996; Wiskott & Sejnowski, 2002; George & Hawkins, 2005; Palm, 2012; O’Reilly et al.,
2014; Agrawal et al., 2015; Goroshin et al., 2015a; Lotter et al., 2015; Mathieu et al., 2016; Srivas-
tava et al., 2015; Wang & Gupta, 2015; Whitney et al., 2016). For instance, Wiskott and Sejnowski
proposed “slow feature analysis” as a framework for exploiting temporal structure in video streams
(Wiskott & Sejnowski, 2002). Their approach attempts to build feature representations that extract

Code and video examples can be found at: https://coxlab.github.io/prednet/

1

https://coxlab.github.io/prednet/


Published as a conference paper at ICLR 2017

slowly-varying parameters, such as object identity, from parameters that produce fast changes in the
image, such as movement of the object. While approaches that rely on temporal coherence have
arguably not yet yielded representations as powerful as those learned by supervised methods, they
nonetheless point to the potential of learning useful representations from video (Mohabi et al., 2009;
Sun et al., 2014; Goroshin et al., 2015a; Maltoni & Lomonaco, 2015; Wang & Gupta, 2015).

Here, we explore another potential principle for exploiting video for unsupervised learning: pre-
diction of future image frames (Softky, 1996; Palm, 2012; O’Reilly et al., 2014; Goroshin et al.,
2015b; Srivastava et al., 2015; Mathieu et al., 2016; Patraucean et al., 2015; Finn et al., 2016; Von-
drick et al., 2016). A key insight here is that in order to be able to predict how the visual world
will change over time, an agent must have at least some implicit model of object structure and the
possible transformations objects can undergo. To this end, we have designed a neural network archi-
tecture, which we informally call a “PredNet,” that attempts to continually predict the appearance
of future video frames, using a deep, recurrent convolutional network with both bottom-up and top-
down connections. Our work here builds on previous work in next-frame video prediction (Ranzato
et al., 2014; Michalski et al., 2014; Srivastava et al., 2015; Mathieu et al., 2016; Lotter et al., 2015;
Patraucean et al., 2015; Oh et al., 2015; Finn et al., 2016; Xue et al., 2016; Vondrick et al., 2016;
Brabandere et al., 2016), but we take particular inspiration from the concept of “predictive coding”
from the neuroscience literature (Rao & Ballard, 1999; Rao & Sejnowski, 2000; Lee & Mumford,
2003; Friston, 2005; Summerfield et al., 2006; Egner et al., 2010; Bastos et al., 2012; Spratling,
2012; Chalasani & Principe, 2013; Clark, 2013; O’Reilly et al., 2014; Kanai et al., 2015). Predictive
coding posits that the brain is continually making predictions of incoming sensory stimuli (Rao &
Ballard, 1999; Friston, 2005). Top-down (and perhaps lateral) connections convey these predictions,
which are compared against actual observations to generate an error signal. The error signal is then
propagated back up the hierarchy, eventually leading to an update of the predictions.

We demonstrate the effectiveness of our model for both synthetic sequences, where we have access
to the underlying generative model and can investigate what the model learns, as well as natural
videos. Consistent with the idea that prediction requires knowledge of object structure, we find
that these networks successfully learn internal representations that are well-suited to subsequent
recognition and decoding of latent object parameters (e.g. identity, view, rotation speed, etc.). We
also find that our architecture can scale effectively to natural image sequences, by training using
car-mounted camera videos. The network is able to successfully learn to predict both the movement
of the camera and the movement of objects in the camera’s view. Again supporting the notion
of prediction as an unsupervised learning rule, the model’s learned representation in this setting
supports decoding of the current steering angle.

–

–

input

output

Representation

Prediction

Target

Error

Figure 1: Predictive Coding Network (PredNet). Left: Illustration of information flow within two
layers. Each layer consists of representation neurons (Rl), which output a layer-specific prediction at
each time step (Âl), which is compared against a target (Al) (Bengio, 2014) to produce an error term
(El), which is then propagated laterally and vertically in the network. Right: Module operations for
case of video sequences.

2



Published as a conference paper at ICLR 2017

2 THE PREDNET MODEL

The PredNet architecture is diagrammed in Figure 1. The network consists of a series of repeating
stacked modules that attempt to make local predictions of the input to the module, which is then
subtracted from the actual input and passed along to the next layer. Briefly, each module of the
network consists of four basic parts: an input convolutional layer (Al), a recurrent representation
layer (Rl), a prediction layer (Âl), and an error representation (El). The representation layer, Rl, is
a recurrent convolutional network that generates a prediction, Âl, of what the layer input, Al, will
be on the next frame. The network takes the difference between Al and Âl and outputs an error
representation, El, which is split into separate rectified positive and negative error populations. The
error, El, is then passed forward through a convolutional layer to become the input to the next layer
(Al+1). The recurrent prediction layerRl receives a copy of the error signalEl, along with top-down
input from the representation layer of the next level of the network (Rl+1). The organization of the
network is such that on the first time step of operation, the “right” side of the network (Al’s andEl’s)
is equivalent to a standard deep convolutional network. Meanwhile, the “left” side of the network
(the Rl’s) is equivalent to a generative deconvolutional network with local recurrence at each stage.
The architecture described here is inspired by that originally proposed by (Rao & Ballard, 1999), but
is formulated in a modern deep learning framework and trained end-to-end using gradient descent,
with a loss function implicitly embedded in the network as the firing rates of the error neurons. Our
work also shares motivation with the Deep Predictive Coding Networks of Chalasani & Principe
(2013); however, their framework is based upon sparse coding and a linear dynamical system with
greedy layer-wise training, whereas ours is rooted in convolutional and recurrent neural networks
trained with backprop.

While the architecture is general with respect to the kinds of data it models, here we focus on image
sequence (video) data. Consider a sequence of images, xt. The target for the lowest layer is set
to the the actual sequence itself, i.e. At0 = xt ∀t. The targets for higher layers, Atl for l > 0, are
computed by a convolution over the error units from the layer below, Etl−1, followed by rectified
linear unit (ReLU) activation and max-pooling. For the representation neurons, we specifically
use convolutional LSTM units (Hochreiter & Schmidhuber, 1997; Shi et al., 2015). In our setting,
the Rtl hidden state is updated according to Rt−1

l , Et−1
l , as well as Rtl+1, which is first spatially

upsampled (nearest-neighbor), due to the pooling present in the feedforward path. The predictions,
Âtl are made through a convolution of the Rtl stack followed by a ReLU non-linearity. For the
lowest layer, Âtl is also passed through a saturating non-linearity set at the maximum pixel value:
SatLU(x; pmax) := min(pmax, x). Finally, the error response, Etl , is calculated from the difference
between Âtl and Atl and is split into ReLU-activated positive and negative prediction errors, which
are concatenated along the feature dimension. As discussed in (Rao & Ballard, 1999), although not
explicit in their model, the separate error populations are analogous to the existence of on-center,
off-surround and off-center, on-surround neurons early in the visual system.

The full set of update rules are listed in Equations (1) to (4). The model is trained to minimize
the weighted sum of the activity of the error units. Explicitly, the training loss is formalized in
Equation 5 with weighting factors by time, λt, and layer, λl, and where nl is the number of units in
the lth layer. With error units consisting of subtraction followed by ReLU activation, the loss at each
layer is equivalent to an L1 error. Although not explored here, other error unit implementations,
potentially even probabilistic or adversarial (Goodfellow et al., 2014), could also be used.

Atl =

{
xt if l = 0

MAXPOOL(RELU(CONV(Etl−1))) l > 0
(1)

Âtl = RELU(CONV(Rtl)) (2)

Etl = [RELU(Atl − Âtl); RELU(Âtl −Atl)] (3)

Rtl = CONVLSTM(Et−1
l , Rt−1

l ,UPSAMPLE(Rtl+1)) (4)

Ltrain =
∑
t

λt
∑
l

λl
nl

∑
nl

Etl (5)

3



Published as a conference paper at ICLR 2017

Algorithm 1 Calculation of PredNet states

Require: xt
1: At0 ← xt
2: E0

l , R
0
l ← 0

3: for t = 1 to T do
4: for l = L to 0 do . Update Rtl states
5: if l = L then
6: RtL = CONVLSTM(Et−1

L , Rt−1
L )

7: else
8: Rtl = CONVLSTM(Et−1

l , Rt−1
l ,UPSAMPLE(Rtl+1))

9: for l = 0 to L do . Update Âtl , A
t
l , E

t
l states

10: if l = 0 then
11: Ât0 = SATLU(RELU(CONV(Rt0)))
12: else
13: Âtl = RELU(CONV(Rtl ))
14: Etl = [RELU(Atl − Âtl); RELU(Âtl −Alt)]
15: if l < L then
16: Atl+1 = MAXPOOL(CONV(Elt))

The order in which each unit in the model is updated must also be specified, and our implementa-
tion is described in Algorithm 1. Updating of states occurs through two passes: a top-down pass
where the Rtl states are computed, and then a forward pass to calculate the predictions, errors, and
higher level targets. A last detail of note is that Rl and El are initialized to zero, which, due to the
convolutional nature of the network, means that the initial prediction is spatially uniform.

3 EXPERIMENTS

3.1 RENDERED IMAGE SEQUENCES

To gain an understanding of the representations learned in the proposed framework, we first trained
PredNet models using synthetic images, for which we have access to the underlying generative
stimulus model and all latent parameters. We created sequences of rendered faces rotating with two
degrees of freedom, along the “pan” (out-of-plane) and “roll” (in-plane) axes. The faces start at a
random orientation and rotate at a random constant velocity for a total of 10 frames. A different face
was sampled for each sequence. The images were processed to be grayscale, with values normalized
between 0 and 1, and 64x64 pixels in size. We used 16K sequences for training and 800 for both
validation and testing.

Predictions generated by a PredNet model are shown in Figure 2. The model is able to accumulate
information over time to make accurate predictions of future frames. Since the representation neu-
rons are initialized to zero, the prediction at the first time step is uniform. On the second time step,
with no motion information yet, the prediction is a blurry reconstruction of the first time step. After
further iterations, the model adapts to the underlying dynamics to generate predictions that closely
match the incoming frame.

For choosing the hyperparameters of the model, we performed a random search and chose the model
that had the lowest L1 error in frame prediction averaged over time steps 2-10 on a validation set.
Given this selection criteria, the best performing models tended to have a loss solely concentrated at
the lowest layer (i.e. λ0 = 1, λl>0 = 0), which is the case for the model shown. Using an equal loss
at each layer considerably degraded predictions, but enforcing a moderate loss on upper layers that
was one magnitude smaller than the lowest layer (i.e. λ0 = 1, λl>0 = 0.1) led to only slightly worse
predictions, as illustrated in Figure 9 in the Appendix. In all cases, the time loss weight, λt, was set to
zero for the first time step and then one for all time steps after. As for the remaining hyperparameters,
the model shown has 5 layers with 3x3 filter sizes for all convolutions, max-pooling of stride 2, and
number of channels per layer, for bothAl andRl units, of (1, 32, 64, 128, 256). Model weights were
optimized using the Adam algorithm (Kingma & Ba, 2014).

4



Published as a conference paper at ICLR 2017

Actual

Predicted

time →

Actual

Predicted

Actual

Predicted

Figure 2: PredNet next-frame predictions for sequences of rendered faces rotating with two degrees
of freedom. Faces shown were not seen during training.

Table 1: Evaluation of next-frame predictions
on Rotating Faces Dataset (test set).

MSE SSIM

PredNet L0 0.0152 0.937
PredNet Lall 0.0157 0.921
CNN-LSTM Enc.-Dec. 0.0180 0.907
Copy Last Frame 0.125 0.631

Quantitative evaluation of generative models is a
difficult, unsolved problem (Theis et al., 2016), but
here we report prediction error in terms of mean-
squared error (MSE) and the Structural Similarity
Index Measure (SSIM) (Wang et al., 2004). SSIM
is designed to be more correlated with perceptual
judgments, and ranges from−1 and 1, with a larger
score indicating greater similarity. We compare the
PredNet to the trivial solution of copying the last
frame, as well as a control model that shares the overall architecture and training scheme of the
PredNet, but that sends forward the layer-wise activations (Al) rather than the errors (El). This
model thus takes the form of a more traditional encoder-decoder pair, with a CNN encoder that has
lateral skip connections to a convolutional LSTM decoder. The performance of all models on the
rotating faces dataset is summarized in Table 1, where the scores were calculated as an average over
all predictions after the first frame. We report results for the PredNet model trained with loss only
on the lowest layer, denoted as PredNet L0, as well as the model trained with an 0.1 weight on
upper layers, denoted as PredNet Lall. Both PredNet models outperformed the baselines on both
measures, with the L0 model slightly outperforming Lall, as expected for evaluating the pixel-level
predictions.

Synthetic sequences were chosen as the initial training set in order to better understand what is
learned in different layers of the model, specifically with respect to the underlying generative model
(Kulkarni et al., 2015). The rotating faces were generated using the FaceGen software package (Sin-
gular Inversions, Inc.), which internally generates 3D face meshes by a principal component analysis
in “face space”, derived from a corpus of 3D face scans. Thus, the latent parameters of the image
sequences used here consist of the initial pan and roll angles, the pan and roll velocities, and the prin-
cipal component (PC) values, which control the “identity” of the face. To understand the information
contained in the trained models, we decoded the latent parameters from the representation neurons
(Rl) in different layers, using a ridge regression. The Rl states were taken at the earliest possible
informative time steps, which, in the our notation, are the second and third steps, respectively, for
the static and dynamic parameters. The regression was trained using 4K sequences with 500 for
validation and 1K for testing. For a baseline comparison of the information implicitly embedded
in the network architecture, we compare to the decoding accuracies of an untrained network with
random initial weights. Note that in this randomly initialized case, we still expect above-chance de-
coding performance, given past theoretical and empirical work with random networks (Pinto et al.,
2009; Jarrett et al., 2009; Saxe et al., 2010).

5



Published as a conference paper at ICLR 2017

Latent variable decoding accuracies of the pan and roll velocities, pan initial angle, and first PC are
shown in the left panel of Figure 3. There are several interesting patterns. First, the trained models
learn a representation that generally permits a better linear decoding of the underlying latent factors
than the randomly initialized model, with the most striking difference in terms of the the pan rotation
speed (αpan). Second, the most notable difference between the Lall and L0 versions occurs with
the first principle component, where the model trained with loss on all layers has a higher decoding
accuracy than the model trained with loss only on the lowest layer.

Figure 3: Information contained in PredNet representation for rotating faces sequences. Left: De-
coding of latent variables using a ridge regression (αpan: pan (out-of-frame) angular velocity, θpan:
pan angle, PC-1: first principal component of face, αroll: roll (in-frame) angular velocity). Right:
Orientation-invariant classification of static faces.

The latent variable decoding analysis suggests that the model learns a representation that may gen-
eralize well to other tasks for which it was not explicitly trained. To investigate this further, we
assessed the models in a classification task from single, static images. We created a dataset of 25
previously unseen FaceGen faces at 7 pan angles, equally spaced between [−π2 ,

π
2 ], and 8 roll angles,

equally spaced between [0, 2π). There were therefore 7 · 8 = 56 orientations per identity, which
were tested in a cross-validated fashion. A linear SVM to decode face identity was fit on a model’s
representation of a random subset of orientations and then tested on the remaining angles. For each
size of the SVM training set, ranging from 1-40 orientations per face, 50 different random splits
were generated, with results averaged over the splits.

For the static face classification task, we compare the PredNets to a standard autoencoder and a
variant of the Ladder Network (Valpola, 2015; Rasmus et al., 2015). Both models were constructed
to have the same number of layers and channel sizes as the PredNets, as well as a similar alternat-
ing convolution/max-pooling, then upsampling/convolution scheme. As both networks are autoen-
coders, they were trained with a reconstruction loss, with a dataset consisting of all of the individual
frames from the sequences used to train the PredNets. For the Ladder Network, which is a denois-
ing autoencoder with lateral skip connections, one must also choose a noise parameter, as well as
the relative weights of each layer in the total cost. We tested noise levels ranging from 0 to 0.5
in increments of 0.1, with loss weights either evenly distributed across layers, solely concentrated
at the pixel layer, or 1 at the bottom layer and 0.1 at upper layers (analogous to the PredNet Lall
model). Shown is the model that performed best for classification, which consisted of 0.4 noise and
only pixel weighting. Lastly, as in our architecture, the Ladder Network has lateral and top-down
streams that are combined by a combinator function. Inspired by (Pezeshki et al., 2015), where a
learnable MLP improved results, and to be consistent in comparing to the PredNet, we used a purely
convolutional combinator. Given the distributed representation in both networks, we decoded from
a concatenation of the feature representations at all layers, except the pixel layer. For the PredNets,
the representation units were used and features were extracted after processing one input frame.

6



Published as a conference paper at ICLR 2017

Face classification accuracies using the representations learned by the L0 and Lall PredNets, a stan-
dard autoencoder, and a Ladder Network variant are shown in the right panel of Figure 3. Both
PredNets compare favorably to the other models at all sizes of the training set, suggesting they learn
a representation that is relatively tolerant to object transformations. Similar to the decoding accu-
racy of the first principle component, the PredNet Lall model actually outperformed the L0 variant.
Altogether, these results suggest that predictive training with the PredNet can be a viable alternative
to other models trained with a more traditional reconstructive or denoising loss, and that the relative
layer loss weightings (λl’s) may be important for the particular task at hand.

3.2 NATURAL IMAGE SEQUENCES

We next sought to test the PredNet architecture on complex, real-world sequences. As a testbed, we
chose car-mounted camera videos, since these videos span across a wide range of settings and are
characterized by rich temporal dynamics, including both self-motion of the vehicle and the motion
of other objects in the scene (Agrawal et al., 2015). Models were trained using the raw videos from
the KITTI dataset (Geiger et al., 2013), which were captured by a roof-mounted camera on a car
driving around an urban environment in Germany. Sequences of 10 frames were sampled from the
“City”, “Residential”, and “Road” categories, with 57 recording sessions used for training and 4
used for validation. Frames were center-cropped and downsampled to 128x160 pixels. In total, the
training set consisted of roughly 41K frames.

A random hyperparameter search, with model selection based on the validation set, resulted in a 4
layer model with 3x3 convolutions and layer channel sizes of (3, 48, 96, 192). Models were again
trained with Adam (Kingma & Ba, 2014) using a loss either solely computed on the lowest layer
(L0) or with a weight of 1 on the lowest layer and 0.1 on the upper layers (Lall). Adam parameters
were initially set to their default values (α = 0.001, β1 = 0.9, β2 = 0.999) with the learning rate, α,
decreasing by a factor of 10 halfway through training. To assess that the network had indeed learned
a robust representation, we tested on the CalTech Pedestrian dataset (Dollár et al., 2009), which
consists of videos from a dashboard-mounted camera on a vehicle driving around Los Angeles.
Testing sequences were made to match the frame rate of the KITTI dataset and again cropped to
128x160 pixels. Quantitative evaluation was performed on the entire CalTech test partition, split
into sequences of 10 frames.

Sample PredNet predictions (for the L0 model) on the CalTech Pedestrian dataset are shown in
Figure 4, and example videos can be found at https://coxlab.github.io/prednet/. The
model is able to make fairly accurate predictions in a wide range of scenarios. In the top sequence
of Fig. 4, a car is passing in the opposite direction, and the model, while not perfect, is able to predict
its trajectory, as well as fill in the ground it leaves behind. Similarly in Sequence 3, the model is
able to predict the motion of a vehicle completing a left turn. Sequences 2 and 5 illustrate that the
PredNet can judge its own movement, as it predicts the appearance of shadows and a stationary
vehicle as they approach. The model makes reasonable predictions even in difficult scenarios, such
as when the camera-mounted vehicle is turning. In Sequence 4, the model predicts the position of a
tree, as the vehicle turns onto a road. The turning sequences also further illustrate the model’s ability
to “fill-in”, as it is able to extrapolate sky and tree textures as unseen regions come into view. As an
additional control, we show a sequence at the bottom of Fig. 4, where the input has been temporally
scrambled. In this case, the model generates blurry frames, which mostly just resemble the previous
frame. Finally, although the PredNet shown here was trained to predict one frame ahead, it is also
possible to predict multiple frames into the future, by feeding back predictions as the inputs and
recursively iterating. We explore this in Appendix 5.3.

Table 2: Evaluation of Next-Frame Predictions on
CalTech Pedestrian Dataset.

MSE SSIM
PredNet L0 3.13 × 10−3 0.884
PredNet Lall 3.33× 10−3 0.875
CNN-LSTM Enc.-Dec. 3.67× 10−3 0.865
Copy Last Frame 7.95× 10−3 0.762

Quantitatively, the PredNet models again
outperformed the CNN-LSTM Encoder-
Decoder. To ensure that the difference in
performance was not simply because of the
choice of hyperparameters, we trained mod-
els with four other sets of hyperparameters,
which were sampled from the initial ran-
dom search over the number of layers, fil-
ter sizes, and number of filters per layer. For each of the four additional sets, the PredNet L0 had
the best performance, with an average error reduction of 14.7% and 14.9% for MSE and SSIM,

7

https://coxlab.github.io/prednet/


Published as a conference paper at ICLR 2017

1

Predicted

Actual

2

Predicted

Actual

3

Predicted

Actual

4

Predicted

Actual

5

Predicted

Actual

6

Predicted

Actual

7

Predicted

Actual

8

Predicted

Scrambled

time →

Figure 4: PredNet predictions for car-cam videos. The first rows contain ground truth and the second
rows contain predictions. The sequence below the red line was temporally scrambled. The model
was trained on the KITTI dataset and sequences shown are from the CalTech Pedestrian dataset.

respectively, compared to the CNN-LSTM Encoder-Decoder. More details, as well as a thorough
investigation of systematically simplified models on the continuum between the PredNet and the
CNN-LSTM Encoder-Decoder can be found in Appendix 5.1. Briefly, the elementwise subtraction
operation in the PredNet seems to be beneficial, and the nonlinearity of positive/negative splitting
also adds modest improvements. Finally, while these experiments measure the benefits of each com-
ponent of our model, we also directly compare against recent work in a similar car-cam setting, by
reporting results on a 64x64 pixel, grayscale car-cam dataset released by Brabandere et al. (2016).
Our PredNet model outperforms the model by Brabandere et al. (2016) by 29%. Details can be
found in Appendix 5.2. Also in Appendix 5.2, we present results for the Human3.6M (Ionescu
et al., 2014) dataset, as reported by Finn et al. (2016). Without re-optimizing hyperparameters, our

8



Published as a conference paper at ICLR 2017

model underperforms the concurrently developed DNA model by Finn et al. (2016), but outperforms
the model by Mathieu et al. (2016).

To test the implicit encoding of latent parameters in the car-cam setting, we used the internal rep-
resentation in the PredNet to estimate the car’s steering angle (Bojarski et al., 2016; Biasini et al.,
2016). We used a dataset released by Comma.ai (Biasini et al., 2016) consisting of 11 videos total-
ing about 7 hours of mostly highway driving. We first trained networks for next-frame prediction
and then fit a linear fully-connected layer on the learned representation to estimate the steering an-
gle, using a MSE loss. We again concatenate the Rl representation at all layers, but first spatially
average pool lower layers to match the spatial size of the upper layer, in order to reduce dimension-
ality. Steering angle estimation results, using the representation on the 10th time step, are shown
in Figure 5. Given just 1K labeled training examples, a simple linear readout on the PredNet L0

representation explains 74% of the variance in the steering angle and outperforms the CNN-LSTM
Enc.-Dec. by 35%. With 25K labeled training examples, the PredNet L0 has a MSE (in degrees2)
of 2.14. As a point of reference, a CNN model designed to predict the steering angle (Biasini
et al., 2016), albeit from a single frame instead of multiple frames, achieve a MSE of ~4 when
trained end-to-end using 396K labeled training examples. Details of this analysis can be found in
Appendix 8. Interestingly, in this task, the PredNet Lall model actually underperformed the L0

model and slightly underperformed the CNN-LSTM Enc.-Dec, again suggesting that the λl param-
eter can affect the representation learned, and different values may be preferable in different end
tasks. Nonetheless, the readout from the Lall model still explained a substantial proportion of the
steering angle variance and strongly outperformed the random initial weights. Overall, this anal-
ysis again demonstrates that a representation learned through prediction, and particularly with the
PredNet model with appropriate hyperparameters, can contain useful information about underlying
latent parameters.

Figure 5: Steering angle estimation accuracy on the Comma.ai dataset (Biasini et al., 2016). Left:
Example steering angle curve with model estimations for a segment in the test set. Decoding was
performed using a fully-connected readout on the PredNet representation trained with 25K labeled
training examples. PredNet representation was trained for next-frame prediction on Comma.ai train-
ing set. Right: Mean-squared error of steering angle estimation.

4 DISCUSSION

Above, we have demonstrated a predictive coding inspired architecture that is able to predict future
frames in both synthetic and natural image sequences. Importantly, we have shown that learning to
predict how an object or scene will move in a future frame confers advantages in decoding latent
parameters (such as viewing angle) that give rise to an object’s appearance, and can improve recog-
nition performance. More generally, we argue that prediction can serve as a powerful unsupervised
learning signal, since accurately predicting future frames requires at least an implicit model of the
objects that make up the scene and how they are allowed to move. Developing a deeper understand-
ing of the nature of the representations learned by the networks, and extending the architecture, by,
for instance, allowing sampling, are important future directions.

9



Published as a conference paper at ICLR 2017

ACKNOWLEDGMENTS

We would like to thank Rasmus Berg Palm for fruitful discussions and early brainstorming. We
would also like to thank the developers of Keras (Chollet, 2016). This work was supported by IARPA
(contract D16PC00002), the National Science Foundation (NSF IIS 1409097), and the Center for
Brains, Minds and Machines (CBMM, NSF STC award CCF-1231216).

REFERENCES

Pulkit Agrawal, João Carreira, and Jitendra Malik. Learning to see by moving. CoRR, 2015.

Andre M. Bastos, W. Martin Usrey, Rick A. Adams, George R. Mangun, Pascal Fries, and Karl J.
Friston. Canonical microcircuits for predictive coding. Neuron, 2012.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. CoRR, 2015.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. CoRR, 2014.

Riccardo Biasini, George Hotz, Sam Khalandovsky, Eder Santana, and Niel van der Westhuizen.
Comma.ai research, 2016. URL https://github.com/commaai/research.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao,
and Karol Zieba. End to end learning for self-driving cars. CoRR, 2016.

Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc Van Gool. Dynamic filter networks. CoRR,
2016.

Rakesh Chalasani and Jose C. Principe. Deep predictive coding networks. CoRR, 2013.

François Chollet. Comma.ai, 2016. URL http://keras.io/.

Andy Clark. Whatever next? predictive brains, situated agents, and the future of cognitive science.
Behavioral and Brain Sciences, 2013.

Piotr Dollár, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian detection: A benchmark.
In CVPR, 2009.

Tobias Egner, Jim M. Monti, and Christopher Summerfield. Expectation and surprise determine
neural population responses in the ventral visual stream. J Neurosci, 2010.

Chelsea Finn, Ian J. Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
through video prediction. CoRR, 2016.

Peter Földiák. Learning invariance from transformation sequences. Neural Computation, 1991.

Karl Friston. A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci, 2005.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. International Journal of Robotics Research (IJRR), 2013.

Dileep George and Jeff Hawkins. A hierarchical bayesian model of invariant pattern recognition
in the visual cortex. In Proceedings of the International Joint Conference on Neural Networks.
IEEE, 2005.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS. 2014.

Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, and Yann LeCun. Unsupervised
learning of spatiotemporally coherent metrics. CoRR, 2015a.

Ross Goroshin, Michaël Mathieu, and Yann LeCun. Learning to linearize under uncertainty. CoRR,
2015b.

10

https://github.com/commaai/research
http://keras.io/


Published as a conference paper at ICLR 2017

Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural Computation, 1997.

Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2014.

Kevin Jarrett, Koray Kavukcuoglu, MarcAurelio Ranzato, and Yann LeCun. What is the best multi-
stage architecture for object recognition? In ICCV. 2009.

Ryota Kanai, Yutaka Komura, Stewart Shipp, and Karl Friston. Cerebral hierarchies : predictive
processing , precision and the pulvinar. Philos Trans R Soc Lond B Biol Sci, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, 2014.

Tejas D. Kulkarni, Will Whitney, Pushmeet Kohli, and Joshua B. Tenenbaum. Deep convolutional
inverse graphics network. CoRR, 2015.

Tai Sing Lee and David Mumford. Hierarchical bayesian inference in the visual cortex. J Opt Soc
Am A Opt Image Sci Vis, 2003.

William Lotter, Gabriel Kreiman, and David Cox. Unsupervised learning of visual structure using
predictive generative networks. CoRR, 2015.

Davide Maltoni and Vincenzo Lomonaco. Semi-supervised tuning from temporal coherence. CoRR,
2015.

Michaël Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond
mean square error. ICLR, 2016.

Vincent Michalski, Roland Memisevic, and Kishore Konda. Modeling deep temporal dependencies
with recurrent ”grammar cells”. In NIPS. 2014.

Hossein Mohabi, Ronan Collobert, and Jason Weston. Deep learning from temporal coherence in
video. In ICML. 2009.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder P. Singh. Action-
conditional video prediction using deep networks in atari games. CoRR, 2015.

Randall C. O’Reilly, Dean Wyatte, and John Rohrlich. Learning through time in the thalamocortical
loops. CoRR, 2014.

Rasmus Berg Palm. Prediction as a candidate for learning deep hierarchical models of data. Master’s
thesis, Technical University of Denmark, 2012.

Viorica Patraucean, Ankur Handa, and Roberto Cipolla. Spatio-temporal video autoencoder with
differentiable memory. CoRR, 2015.

Mohammad Pezeshki, Linxi Fan, Philemon Brakel, Aaron C. Courville, and Yoshua Bengio. De-
constructing the ladder network architecture. CoRR, 2015.

Nicolas Pinto, David Doukhan, James J. DiCarlo, and David D. Cox. A high-throughput screening
approach to discovering good forms of biologically inspired visual representation. PLoS Comput
Biol, 2009.

Marc’Aurelio Ranzato, Arthur Szlam, Joan Bruna, Michaël Mathieu, Ronan Collobert, and Sumit
Chopra. Video (language) modeling: a baseline for generative models of natural videos. CoRR,
2014.

Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: a functional interpre-
tation of some extra-classical receptive-field effects. Nature Neuroscience, 1999.

Rajesh P. N. Rao and T. J. Sejnowski. Predictive sequence learning in recurrent neocortical circuits.
NIPS, 2000.

11



Published as a conference paper at ICLR 2017

Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani Raiko. Semi-
supervised learning with ladder network. CoRR, 2015.

Eder Santana and George Hotz. Learning a driving simulator. CoRR, 2016.

Andrew Saxe, Maneesh Bhand, Zhenghao Chen, Pang Wei Koh, Bipin Suresh, and Andrew Y.
Ng. On random weights and unsupervised feature learning. In Workshop: Deep Learning and
Unsupervised Feature Learning (NIPS). 2010.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional LSTM network: A machine learning approach for precipitation nowcasting. CoRR,
2015.

Singular Inversions, Inc. FaceGen. http://facegen.com.

William R. Softky. Unsupervised pixel-prediction. NIPS, 1996.

M. W. Spratling. Unsupervised learning of generative and discriminative weights encoding elemen-
tary image components in a predictive coding model of cortical function. Neural Computation,
2012.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video
representations using lstms. CoRR, 2015.

Christopher Summerfield, Tobias Egner, Matthew Greene, Etienne Koechlin, Jennifer Mangels, and
Joy Hirsch. Predictive codes for forthcoming perception in the frontal cortex. Science, 314, 2006.

Lin Sun, Kui Jia, Tsung-Han Chan, Yuqiang Fang, Gang Wang, and Shuicheng Yan. Dl-sfa: Deeply-
learned slow feature analysis for action recognition. CVPR, 2014.

Lucas Theis, Aaron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. ICLR, 2016.

Harri Valpola. From neural pca to deep unsupervised learning. CoRR, 2015.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics.
CoRR, 2016.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos.
CoRR, 2015.

Zhou Wang, Alan Bovik, Hamid Sheikh, and Eero Simoncelli. Image quality assessment: From
error visibility to structural similarity. IEEE Transactions on Image Processing, 2004.

William F. Whitney, Michael Chang, Tejas D. Kulkarni, and Joshua B. Tenenbaum. Understanding
visual concepts with continuation learning. CoRR, 2016.

Laurenz Wiskott and Terrence J. Sejnowski. Learning invariance from transformation sequences.
Neural Computation, 2002.

Tianfan Xue, Jiajun Wu, Katherine L. Bouman, and William T. Freeman. Visual dynamics: Proba-
bilistic future frame synthesis via cross convolutional networks. CoRR, 2016.

12

http://facegen.com


Published as a conference paper at ICLR 2017

5 APPENDIX

5.1 ADDITIONAL CONTROL MODELS

Table 3 contains results for additional variations of the PredNet and CNN-LSTM Encoder-Decoder
evaluated on the CalTech Pedestrian Dataset after being trained on KITTI. We evaluate the models
in terms of pixel prediction, thus using the PredNet model trained with loss only on the lowest layer
(PredNet L0) as the base model. In addition to mean-squared error (MSE) and the Structural Sim-
ilarity Index Measure (SSIM), we include calculations of the Peak Signal-To-Noise Ratio (PSNR).
For each model, we evaluate it with the original set of hyperparameters (controlling the number of
layers, filter sizes, and number of filters per layer), as well as with the four additional sets of hy-
perparameters that were randomly sampled from the initial random search (see main text for more
details). Below is an explanation of the additional control models:

• PredNet (no E split): PredNet model except the error responses (El) are simply linear
(Âl −Al) instead of being split into positive and negative rectifications.

• CNN-LSTM Enc.-Dec. (2x Al filts): CNN-LSTM Encoder-Decoder model (Al’s are
passed instead of El’s) except the number of filters in Al is doubled. This controls for
the total number of filters in the model compared to the PredNet, since the PredNet has fil-
ters to produce Âl at each layer, which is integrated into the model’s feedforward response.

• CNN-LSTM Enc.-Dec. (except pass E0): CNN-LSTM Encoder-Decoder model except
the error is passed at the lowest layer. All remaining layers pass the activations Al. With
training loss taken at only the lowest layer, this variation allows us to determine if the
“prediction” subtraction operation in upper layers, which is essentially unconstrained and
learnable in the L0 case, aids in the model’s performance.

• CNN-LSTM Enc.-Dec. (+/- split): CNN-LSTM Encoder-Decoder model except the ac-
tivations Al are split into positive and negative populations before being passed to other
layers in the network. This isolates the effect of the additional nonlinearity introduced by
this procedure.

Table 3: Quantitative evaluation of additional controls for next-frame prediction in CalTech Pedes-
trian Dataset after training on KITTI. First number indicates score with original hyperparameters.
Number in parenthesis indicates score averaged over total of five different hyperparameters.

MSE (x 10−3) PSNR SSIM
PredNet 3.13 (3.33) 25.8 (25.5) 0.884 (0.878)
PredNet (no El split) 3.20 (3.37) 25.6 (25.4) 0.883 (0.878)
CNN-LSTM Enc.-Dec. 3.67 (3.91) 25.0 (24.6) 0.865 (0.856)
CNN-LSTM Enc.-Dec. (2x Al filts) 3.82 (3.97) 24.8 (24.6) 0.857 (0.853)
CNN-LSTM Enc.-Dec. (except pass E0) 3.41 (3.61) 25.4 (25.1) 0.873 (0.866)
CNN-LSTM Enc.-Dec. (+/- split) 3.71 (3.84) 24.9 (24.7) 0.861 (0.857)
Copy Last Frame 7.95 20.0 0.762

Equalizing the number of filters in the CNN-LSTM Encoder-Decoder (2x Al filts) cannot account
for its performance difference with the PredNet, and actually leads to overfitting and a decrease in
performance. Passing the error at the lowest layer (E0) in the CNN-LSTM Enc.-Dec. improves
performance, but still does not match the PredNet, where errors are passed at all layers. Finally,
splitting the activationsAl into positive and negative populations in the CNN-LSTM Enc.-Dec. does
not help, but the PredNet with linear error activation (“no El split”) performs slightly worse than the
original split version. Together, these results suggest that the PredNet’s error passing operation can
lead to improvements in next-frame prediction performance.

5.2 COMPARING AGAINST OTHER MODELS

While our main comparison in the text was a control model that isolates the effects of the more
unique components in the PredNet, here we directly compare against other published models. We
report results on a 64x64 pixel, grayscale car-cam dataset and the Human3.6M dataset (Ionescu
et al., 2014) to compare against the two concurrently developed models by Brabandere et al. (2016)

13



Published as a conference paper at ICLR 2017

and Finn et al. (2016), respectively. For both comparisons, we use a model with the same hyperpa-
rameters (# of layers, # of filters, etc.) of the PredNet L0 model trained on KITTI, but train from
scratch on the new datasets. The only modification we make is to train using an L2 loss instead
of the effective L1 loss, since both models train with an L2 loss and report results using L2-based
metrics (MSE for Brabandere et al. (2016) and PSNR for Finn et al. (2016)). That is, we keep the
original PredNet model intact but directly optimize using MSE between actual and predicted frames.
We measure next-frame prediction performance after inputting 3 frames and 10 frames, respectively,
for the 64x64 car-cam and Human3.6M datasets, to be consistent with the published works. We also
include the results using a feedforward multi-scale network, similar to the model of Mathieu et al.
(2016), on Human3.6M, as reported by Finn et al. (2016).

Table 4: Evaluation of Next-Frame Predictions
on 64x64 Car-Cam Dataset. MSE (per-pixel)

DFN (Brabandere et al., 2016) 1.71× 10−3

PredNet 1.16 × 10−3

Copy Last Frame 3.58× 10−3

Table 5: Evaluation of Next-Frame Predic-
tions on Human3.6M PSNR
DNA (Finn et al., 2016) 42.1
PredNet 38.9
FF multi-scale (Mathieu et al., 2016) 26.7
Copy Last Frame 32.0

On a dataset similar to KITTI, our model outperforms the model proposed by Brabandere et al.
(2016). On Human3.6M, our model outperforms a model similar to (Mathieu et al., 2016), but
underperforms Finn et al. (2016), although we note we did not perform any hyperparameter opti-
mization.

5.3 MULTIPLE TIME STEP PREDICTION

Actual

Orig.
Model

Fine-
Tuned

Actual

Orig.
Model

Fine-
Tuned

Actual

Orig.
Model

Fine-
Tuned

𝑡 + 1 Predictions Extrapolations

𝑡 + 2 𝑡 + 3 𝑡 + 4 𝑡 + 5last seen frame

Figure 6: Extrapolation sequences generated by feeding PredNet predictions back into model. Left
of the orange line: Normal t+ 1 predictions; Right: Generated by recursively using the predictions
as input. First row: Ground truth sequences. Second row: Generated frames of the original model,
trained to solely predict t+ 1. Third row: Model fine-tuned for extrapolation.

14



Published as a conference paper at ICLR 2017

While the models presented here were originally trained to predict one frame ahead, they can be
made to predict multiple frames by treating predictions as actual input and recursively iterating.
Examples of this process are shown in Figure 6 for the PredNet L0 model. Although the next frame
predictions are reasonably accurate, the model naturally breaks down when extrapolating further into
the future. This is not surprising since the predictions will unavoidably have different statistics than
the natural images for which the model was trained to handle (Bengio et al., 2015). If we additionally
train the model to process its own predictions, the model is better able to extrapolate. The third row
for every sequence shows the output of the original PredNet fine-tuned for extrapolation. Starting
from the trained weights, the model was trained with a loss over 15 time steps, where the actual
frame was inputted for the first 10 and then the model’s predictions were used as input to the network
for the last 5. For the first 10 time steps, the training loss was calculated on the El activations as
usual, and for the last 5, it was calculated directly as the mean absolute error with respect to the
ground truth frames. Despite eventual blurriness (which might be expected to some extent due to
uncertainty), the fine-tuned model captures some key structure in its extrapolations after the tenth
time step. For instance, in the first sequence, the model estimates the general shape of an upcoming
shadow, despite minimal information in the last seen frame. In the second sequence, the model is
able to extrapolate the motion of a car moving to the right. The reader is again encouraged to visit
https://coxlab.github.io/prednet/ to view the predictions in video form. Quantitatively,
the MSE of the model’s predictions stay well below the trivial solution of copying the last seen
frame, as illustrated in Fig 7. The MSE increases fairly linearly from time steps 2-10, even though
the model was only trained for up to t+ 5 prediction.

Time Steps Ahead
1 2 3 4 5 6 7 8 9 10

M
e
a
n
-S
q
u
a
re
d
E
rr
o
r

0

0:005

0:01

0:015

0:02

0:025

0:03

0:035

Copy Last Seen Frame
PredNet t + 5 Fine-Tuned

Figure 7: MSE of PredNet predictions as a function of number of time steps ahead predicted. Model
was fine-tuned for up to t+ 5 prediction.

5.4 ADDITIONAL STEERING ANGLE ANALYSIS

In Figure 8, we show the steering angle estimation accuracy on the Comma.ai (Biasini et al., 2016)
dataset using the representation learned by the PredNet L0 model, as a function of the number of
frames inputted into the model. The PredNet’s representation at all layers was concatenated (after
spatially pooling lower layers to a common spatial resolution) and a fully-connected readout was fit
using MSE. For each level of the number of training examples, we average over 10 cross-validation
splits. To serve as points of reference, we include results for two static models. The first model is an
autoencoder trained on single frame reconstruction with appropriately matching hyperparameters.
A fully-connected layer was fit on the autoencoder’s representation to estimate the steering angle in
the same fashion as the PredNet. The second model is the default model in the posted Comma.ai
code (Biasini et al., 2016), which is a five layer CNN. This model is trained end-to-end to estimate

15

https://coxlab.github.io/prednet/


Published as a conference paper at ICLR 2017

Figure 8: Steering angle estimation accuracy as a function of the number of input frames.

the steering angle given the current frame as input, with a MSE loss. In addition to 25K examples,
we trained a version using all of the frames in the Comma dataset (~396K). For all models, the final
weights were chosen at the minimum validation error during training. Given the relatively small
number of videos in the dataset compared to the average duration of each video, we used 5% of each
video for validation and testing, chosen as a random continuous chunk, and discarded the 10 frames
before and after the chosen segments from the training set.

As illustrated in Figure 8, the PredNet’s performance gets better over time, as one might expect,
as the model is able to accumulate more information. Interestingly, it performs reasonably well
after just one time step, in a regime that is orthogonal to the training procedure of the PredNet where
there are no dynamics. Altogether, these results again point to the usefulness of the model in learning
underlying latent parameters.

5.5 PREDNET Lall NEXT-FRAME PREDICTIONS

Figures 9 and 10 compare next-frame predictions by the PredNet Lall model, trained with a predic-
tion loss on all layers (λ0 = 1, λl>0 = 0.1), and the PredNet L0 model, trained with a loss only
on the lowest layer. At first glance, the difference in predictions seem fairly minor, and indeed, in
terms of MSE, the Lall model only underperformed the L0 version by 3% and 6%, respectively, for
the rotating faces and CalTech Pedestrian datasets. Upon careful inspection, however, it is apparent
that the Lall predictions lack some of the finer details of the L0 predictions and are more blurry in
regions of high variance. For instance, with the rotating faces, the facial features are less defined
and with CalTech, details of approaching shadows and cars are less precise.

16



Published as a conference paper at ICLR 2017

Actual

PredNet 𝐿0

PredNet 𝐿𝑎𝑙𝑙

Error 𝐿𝑎𝑙𝑙 - 𝐿0

time →

Actual

PredNet 𝐿0

PredNet 𝐿𝑎𝑙𝑙

Error 𝐿𝑎𝑙𝑙 - 𝐿0

Figure 9: Next-frame predictions of PredNetLall model on the rotating faces dataset and comparison
toL0 version. The ”ErrorLall−L0” visualization shows where the pixel error was smaller for theL0

model than the Lall model. Green regions correspond to where L0 was better and red corresponds
to where Lall was better.

17



Published as a conference paper at ICLR 2017

Actual

PredNet 𝐿0

PredNet 𝐿𝑎𝑙𝑙

Error 𝐿𝑎𝑙𝑙 - 𝐿0

time →

Actual

PredNet 𝐿0

PredNet 𝐿𝑎𝑙𝑙

Error 𝐿𝑎𝑙𝑙 - 𝐿0

Figure 10: Next-frame predictions of PredNet Lall model on the CalTech Pedestrian dataset and
comparison to L0 version. The ”Error Lall − L0” visualization shows where the pixel error was
smaller for the L0 model than the Lall model. Green regions correspond to where L0 was better and
red corresponds to where Lall was better.

18


	Introduction
	The PredNet Model
	Experiments
	Rendered Image Sequences
	Natural Image Sequences

	Discussion
	Appendix
	Additional Control Models
	Comparing Against Other Models
	Multiple Time Step Prediction
	Additional Steering Angle Analysis
	PredNet Lall Next-Frame Predictions


