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ABSTRACT

The question of how procedural knowledge is represented and inferred is a funda-
mental problem in machine learning and artificial intelligence. Recent work on
program induction has proposed neural architectures, based on abstractions like
stacks, Turing machines, and interpreters, that operate on abstract computational
machines or on execution traces. But the recursive abstraction that is central to
procedural knowledge is perhaps most naturally represented by symbolic represen-
tations that have syntactic structure, such as logical expressions and source code.
Combining abstract, symbolic reasoning with continuous neural reasoning is a
grand challenge of representation learning. As a step in this direction, we propose
a new architecture, called neural equivalence networks, for the problem of learn-
ing continuous semantic representations of mathematical and logical expressions.
These networks are trained to represent semantic equivalence, even of expressions
that are syntactically very different. The challenge is that semantic representations
must be computed in a syntax-directed manner, because semantics is compositional,
but at the same time, small changes in syntax can lead to very large changes in
semantics, which can be difficult for continuous neural architectures. We perform
an exhaustive evaluation on the task of checking equivalence on a highly diverse
class of symbolic algebraic and boolean expression types, showing that our model
significantly outperforms existing architectures.

1 INTRODUCTION

Representing and learning knowledge about the world requires not only learning declarative knowl-
edge about facts but also procedural knowledge, knowledge about how to do things, which can
be complex yet difficult to articulate explicitly. The goal of building systems that learn procedural
knowledge has motivated many recent architectures for learning representations of algorithms (Graves
et al., 2014; Reed & de Freitas, 2016; Kaiser & Sutskever, 2016). These methods generally learn
from execution traces of programs (Reed & de Freitas, 2016) or input-output pairs generated from
a program (Graves et al., 2014; Kurach et al., 2015; Riedel et al., 2016; Grefenstette et al., 2015;
Neelakantan et al., 2015).

However, the recursive abstraction that is central to procedural knowledge is perhaps most naturally
represented not by abstract models of computation, as in that work, but by symbolic representations
that have syntactic structure, such as logical expressions and source code. One type of evidence for
this claim is the simple fact that people communicate algorithms using mathematical formulae and
pseudocode rather than Turing machines. Yet, apart from some notable exceptions (Alemi et al., 2016;
Piech et al., 2015; Allamanis et al., 2016; Zaremba & Sutskever, 2014), symbolic representations of
procedures have received relatively little attention within the machine learning literature as a source
of information for representing procedural knowledge.

In this paper, we address the problem of learning continuous semantic representations (SEMVECs) of
symbolic expressions. The goal is to assign continuous vectors to symbolic expressions in such a
way that semantically equivalent, but syntactically diverse expressions are assigned to identical (or
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highly similar) continuous vectors, when given access to a training set of pairs for which semantic
equivalence is known. This is an important but hard problem; learning composable SEMVECs of
symbolic expressions requires that we learn about the semantics of symbolic elements and operators
and how they map to the continuous representation space, thus encapsulating implicit knowledge
about symbolic semantics and its recursive abstractive nature.

Our work in similar in spirit to the work of Zaremba & Sutskever (2014), who focus on learning
expression representations to aid the search for computationally efficient identities. They use recursive
neural networks (TREENN)1 (Socher et al., 2012) for modelling homogenous, single-variable
polynomial expressions. While they present impressive results, we find that the TREENN model fails
when applied to more complex symbolic polynomial and boolean expressions. In particular, in our
experiments we find that TREENNs tend to assign similar representations to syntactically similar
expressions, even when they are semantically very different. The underlying conceptual problem
is how to develop a continuous representation that follows syntax but not too much, that respects
compositionality while also representing the fact that a small syntactic change can be a large semantic
one.

To tackle this problem, we propose a new architecture, called neural equivalence networks (EQNETs).
EQNETs learn how syntactic composition recursively composes SEMVECs, like a TREENN, but
are also designed to model large changes in semantics as the network progresses up the syntax tree.
As equivalence is transitive, we formulate an objective function for training based on equivalence
classes rather than pairwise decisions. The network architecture is based on composing residual-like
multi-layer networks, which allows more flexibility in modeling the semantic mapping up the syntax
tree. To encourage representations within an equivalence class to be tightly clustered, we also
introduce a training method that we call subexpression forcing, which uses an autoencoder to force
the representation of each subexpression to be predictable from its syntactic neighbors. Experimental
evaluation on a highly diverse class of symbolic algebraic and boolean expression types shows that
EQNETs dramatically outperform existing architectures like TREENNs and RNNs.

To summarize, the main contributions of our work are: (a) We formulate the problem of learning
continuous semantic representations (SEMVECs) of symbolic expressions and develop benchmarks
for this task. (b) We present neural equivalence networks (EQNETs), a neural network architecture
that learns to represent expression semantics onto a continuous semantic representation space and
how to perform symbolic operations in this space. (c) We provide an extensive evaluation on boolean
and polynomial expressions, showing that EQNETs perform dramatically better than state-of-the-art
alternatives. Code and data are available at groups.inf.ed.ac.uk/cup/semvec.

2 MODEL

In this work, we are interested in learning semantic, composable representations of mathematical
expressions (SEMVEC) and learn to generate identical representations for expressions that are
semantically equivalent, i.e. they belong to the same equivalence class. Equivalence is a stronger
property than similarity that is habitually learned by neural networks, since equivalence is additionally
a transitive relationship.

Problem Hardness. Finding the equivalence of arbitrary symbolic expressions is a NP-hard prob-
lem or worse. For example, if we focus on boolean expressions, reducing an expression to the
representation of the false equivalence class amounts to proving its non-satisfiability — an NP-
complete problem. Of course, we do not expect to circumvent an NP-complete problem with neural
networks. A network for solving boolean equivalence would require an exponential number of nodes
in the size of the formula if P 6= NP . Instead, our goal is to develop architectures whose inductive
biases allow them to efficiently learn to solve the equivalence problems for expressions that are
similar to a smaller number of expressions in a given training set. This requires that the network
learn identical representations for expressions that may be syntactically different but semantically
equivalent and also discriminate between expressions that may be syntactically very similar but are
non-equivalent. Appendix A shows a sample of such expressions that illustrate the hardness of this
problem.

1To avoid confusion, we use TREENN for recursive neural networks and retain RNN for recurrent neural
networks.
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(a) Architectural diagram of EQNETs. Example parse tree shown is of the boolean expression (a ∨ c) ∧ a.

COMBINE (rc0 , . . . , rck , τn)
l̄0 ← [rc0 , . . . , rck ]
l̄1 ← σ

(
Wi,τn · l̄0

)
l̄out ←Wo0,τn · l̄0 +Wo1,τn · l̄1
return l̄out/

∥∥l̄out∥∥2
(b) COMBINE of EQNET.

SUBEXPFORCE (rc0 , . . . , rck , rn, τn)
x← [rc0 , . . . , rck ]
x̃← tanh (Wd · tanh (We,τn · [rn,x] · n))
x̃← x̃ · ‖x‖2 / ‖x̃‖2
r̃n ← COMBINE(x̃, τn)
return −

(
x̃>x + r̃>n rn

)
(c) Loss function used for subexpression forcing

Figure 1: EQNET architecture.

Notation and Framework. We employ the general framework of recursive neural networks
(TREENN) (Socher et al., 2012; 2013) to learn to compose subtree representations into a single
representation. The TREENNs we consider operate on tree structures of the syntactic parse of a
formula. Given a tree T , TREENNs learn distributed representations by recursively computing the
representations of its subtrees. We denote the children of a node n as ch(n) which is a (possibly
empty) ordered tuple of nodes. We also use par(n) to refer to the parent node of n. Each node in our
tree has a type, e.g. a terminal node could be of type “a” referring to the variable a or of type “and”
referring to a node of the logical and (∧) operation. We refer to the type of a node n as τn. At a high
level, TREENNs retrieve the representation of a tree T rooted at node ρ, by invoking TREENET(ρ)
that returns a vector representation rρ ∈ RD, i.e., a SEMVEC, using the function

TREENET (current node n)
if n is not a leaf then
rn ← COMBINE(TREENET(c0), . . . , TREENET(ck), τn), where (c0, . . . , ck) = ch(n)

else
rn ← LOOKUPLEAFEMBEDDING(τn)

return rn

The general framework of TREENET allows two points of variation, the implementation of LOOKU-
PLEAFEMBEDDING and COMBINE. The traditional TREENNs (Socher et al., 2013) define LOOKU-
PLEAFEMBEDDING as a simple lookup operation within a matrix of embeddings and COMBINE as a
single-layer neural network. As discussed next, these will both prove to be serious limitations in our
setting.

2.1 NEURAL EQUIVALENCE NETWORKS

We now define the neural equivalence networks (EQNET) that learn to compose representations of
equivalence classes into new equivalence classes (Figure 1a). Our network follows the TREENN
architecture, that is, our EQNETs are implemented using the TREENET, so as to model the compo-
sitional nature of symbolic expressions. However, the traditional TREENNs (Socher et al., 2013)
use a single-layer neural network at each tree node. During our preliminary investigations and in
Section 3, we found that single layer networks are not expressive enough to capture many operations,
even a simple XOR boolean operator, because representing these operations required high-curvature
operations in the continuous semantic representation space. Instead, we turn to multi-layer neural
networks. In particular, we define the COMBINE in Figure 1b. This uses a two-layer MLP with a
residual-like connection to compute the SEMVEC of each parent node in that syntax tree given that
of its children. Each node type τn, e.g., each logical operator, has a different set of weights. We
experimented with deeper networks but this did not yield any improvements. However, as TREENN
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become deeper, they suffer from optimization issues, such as diminishing and exploding gradients.
This is essentially because of the highly compositional nature of tree structures, where the same
network (i.e. the COMBINE non-linear function) is used recursively, causing it to “echo” its own
errors and producing unstable feedback loops. We observe this problem even with only two-layer
MLPs, as the overall network can become quite deep when using two layers for each node in the
syntax tree.

We resolve this issues in a few different ways. First, we constrain each SEMVEC to have unit norm.
That is, we set LOOKUPLEAFEMBEDDING(τn) = Cτn/ ‖Cτn‖2 , and we normalize the output of
the final layer of COMBINE in Figure 1b. The normalization step of l̄out and Cτn is somewhat similar
to layer normalization (Ba et al., 2016), although applying layer normalization directly did not work
for our problem. Normalizing the SEMVECs partially resolves issues with diminishing and exploding
gradients, and removes a spurious degree of freedom in the semantic representation. As simple as
this modification may seem, we found that it was vital to obtaining effective performance, and all of
our multi-layer TREENNs converged to low-performing parameters without it.

However this modification is not sufficient, since the network may learn to map expressions from
the same equivalence class to multiple SEMVECs in the continuous space. We alleviate this problem
using a method that we call subexpression forcing that guides EQNET to cluster its output to one
location per equivalence class. We encode each parent-children tuple [rc0 , . . . , rck , rn] containing
the (computed) representations of the children and parent node into a low-dimensional space using a
denoising autoencoder. We then seek to minimize the reconstruction error of the child representations
(r̃c0 , . . . , r̃ck ) as well as the reconstructed parent representation r̃n that can be computed from
the reconstructed children. Thus more formally, we minimize the return value of SUBEXPFORCE
in Figure 1c where n is a binary noise vector with κ percent of its elements set to zero. Note
that the encoder is specific to the type of τn. Although our SUBEXPFORCE may seem similar
to the recursive autoencoders of Socher et al. (2011) it differs significantly in form and purpose,
since it acts as an autoencoder on the whole parent-children representation tuple and the encoding
is not used within the computation of the parent representation. In addition, this constraint has
two effects. It forces each parent-children tuple to “live” in a low-dimensional space, providing
a clustering-like behavior. Second, it implicitly joins distinct locations that belong to the same
equivalence class. To illustrate the latter point, imagine two semantically equivalent c′0 and c′′0 child
nodes of different nodes that have two geometrically distinct representations

∥∥rc′0 − rc′′0
∥∥
2
� ε

and COMBINE(rc′0 , . . . ) ≈ COMBINE(rc′′0 , . . . ). In some cases due to the autoencoder noise, the
differences between the input tuple x′,x′′ that contain rc′0 and rc′′0 will be non-existent and the
decoder will be forced to predict a single location r̃c0 (possibly different from rc′0 and rc′′0 ). Then,
when minimizing the reconstruction error, both rc′0 and rc′′0 will be attracted to r̃c0 and eventually
should merge.

2.2 TRAINING

We train EQNETs from a dataset of expressions whose semantic equivalence is known. Given
a training set T = {T1 . . . TN} of parse trees of expressions, we assume that the training set
is partitioned into equivalence classes E = {e1 . . . eJ}. We use a supervised objective similar
to classification; the difference between classification and our setting is that whereas standard
classification problems consider a fixed set of class labels, in our setting the number of equivalence
classes in the training set will vary withN . Given an expression tree T that belongs to the equivalence
class ei ∈ E , we compute the probability

P (ei|T ) =
exp

(
TREENN(T )>qei + bi

)∑
j exp

(
TREENN(T )>qej + bj

) (1)

where qei are model parameters that we can interpret as representations of each equivalence classes
that appears in the training class, and bi are bias terms. Note that in this work, we only use
information about the equivalence class of the whole expression T , ignoring available information
about subexpressions. This is without loss of generality, because if we do know the equivalence
class of a subexpression of T , we can simply add that subexpression to the training set. Directly
maximizing P (ei|T ) would be bad for EQNET since its unit-normalized outputs cannot achieve
high probabilities within the softmax. Instead, we train a max-margin objective that maximizes
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classification accuracy, i.e.

LACC(T, ei) = max

(
0, arg max
ej 6=ei,ej∈E

logP (ej |T )− logP (ei|T ) +m

)
(2)

where m > 0 is a scalar margin. And therefore the optimized loss function for a single expression
tree T that belongs to equivalence class ei ∈ E is

L(T, ei) = LACC(T, ei) +
µ

|Q|
∑
n∈Q

SUBEXPFORCE(ch(n), n) (3)

where Q = {n ∈ T : | ch(n)| > 0}, i.e. contains the non-leaf nodes of T and µ ∈ (0, 1] a scalar
weight. We found that subexpression forcing is counterproductive early in training, before the
SEMVECs begin to represent aspects of semantics. So, for each epoch t, we set µ = 1− 10−νt with
ν ≥ 0.

Instead of the supervised objective that we propose, an alternative option for training EQNET would
be a Siamese objective (Chopra et al., 2005) that learns about similarities (rather than equivalence)
between expressions. In practice, we found the optimization to be very unstable, yielding suboptimal
performance. We believe that this has to do with the compositional and recursive nature of the task
that creates unstable dynamics and the fact that equivalence is a stronger property than similarity.

3 EVALUATION

Datasets. We generate datasets of expressions grouped into equivalence classes from two domains.
The datasets from the BOOL domain contain boolean expressions and the POLY datasets contain
polynomial expressions. In both domains, an expression is either a variable, a binary operator
that combines two expressions, or a unary operator applied to a single expression. When defining
equivalence, we interpret distinct variables as referring to different entities in the domain, so that, e.g.,
the polynomials c · (a · a+ b) and f · (d · d+ e) are not equivalent. For each domain, we generate
“simple” datasets which use a smaller set of possible operators and “standard” datasets which use a
larger set of more complex operators. We generate each dataset by exhaustively generating all parse
trees up to a maximum tree size. All expressions are then simplified into a canonical from in order
to determine their equivalence class and are grouped accordingly. Table 1 shows the datasets we
generated. We also present in Appendix A some sample expressions. For the polynomial domain, we
also generated ONEV-POLY datasets, which are polynomials over a single variable, since they are
similar to the setting considered by Zaremba & Sutskever (2014) — although ONEV-POLY is still a
little more general because it is not restricted to homogeneous polynomials. Learning SEMVECs for
boolean expressions is already a hard problem; with n boolean variables, there are 22

n

equivalence
classes (i.e. one for each possible truth table). We split the datasets into training, validation and test
sets. We create two test sets, one to measure generalization performance on equivalence classes
that were seen in the training data (SEENEQCLASS), and one to measure generalization to unseen
equivalence classes (UNSEENEQCLASS). It is easiest to describe UNSEENEQCLASS first. To create
the UNSEENEQCLASS, we randomly select 20% of all the equivalence classes, and place all of
their expressions in the test set. We select equivalence classes only if they contain at least two
expressions but less than three times the average number of expressions per equivalence class. We
thus avoid selecting very common (and hence trivial to learn) equivalence classes in the testset. Then,
to create SEENEQCLASS, we take the remaining 80% of the equivalence classes, and randomly
split the expressions in each class into training, validation, SEENEQCLASS test in the proportions
60%–15%–25%. We provide the datasets online.

Baselines. To compare the performance of our model, we train the following baselines. TF-IDF:
learns a representation given the tokens of each expression (variables, operators and parentheses).
This can capture topical/declarative knowledge but is unable to capture procedural knowledge. GRU
refers to the token-level gated recurrent unit encoder of Bahdanau et al. (2015) that encodes the
token-sequence of an expression into a distributed representation. Stack-augmented RNN refers
to the work of Joulin & Mikolov (2015) which was used to learn algorithmic patterns and uses a
stack as a memory and operates on the expression tokens. We also include two recursive neural
network (TREENN) architectures. The 1-layer TREENN which is the original TREENN also used
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Table 1: Dataset statistics and results. SIMP datasets contain simple operators (“∧, ∨, ¬” for BOOL
and “+, −” for POLY) while the rest contain all operators (i.e. “∧, ∨, ¬, ⊕,⇒” for BOOL and “+, −,
·” for POLY). ⊕ is the XOR operator. The number in the dataset name is the maximum tree size of
the parsed expressions within that dataset. L refers to a “larger” number of 10 variables. H refers to
the entropy of equivalence classes.

Dataset # # Equiv # H score5 (%) in UNSEENEQCLASS
Vars Classes Exprs tf-idf GRU Stack TREENN EQNET

RNN 1-L 2-L

SIMPBOOL8 3 120 39,048 5.6 17.4 30.9 26.7 27.4 25.5 97.4
SIMPBOOL10S 3 191 26,304 7.2 6.2 11.0 7.6 25.0 93.4 99.1
BOOL5 3 95 1,239 5.6 34.9 35.8 12.4 16.4 26.0 65.8
BOOL8 3 232 257,784 6.2 10.7 17.2 16.0 15.7 15.4 58.1
BOOL10S 10 256 51,299 8.0 5.0 5.1 3.9 10.8 20.2 71.4
SIMPBOOLL5 10 1,342 10,050 9.9 53.1 40.2 50.5 3.48 19.9 85.0
BOOLL5 10 7,312 36,050 11.8 31.1 20.7 11.5 0.1 0.5 75.2
SIMPPOLY5 3 47 237 5.0 21.9 6.3 1.0 40.6 27.1 65.6
SIMPPOLY8 3 104 3,477 5.8 36.1 14.6 5.8 12.5 13.1 98.9
SIMPPOLY10 3 195 57,909 6.3 25.9 11.0 6.6 19.9 7.1 99.3
ONEV-POLY10 1 83 1,291 5.4 43.5 10.9 5.3 10.9 8.5 81.3
ONEV-POLY13 1 677 107,725 7.1 3.2 4.7 2.2 10.0 56.2 90.4
POLY5 3 150 516 6.7 37.8 34.1 2.2 46.8 59.1 55.3
POLY8 3 1,102 11,451 9.0 13.9 5.7 2.4 10.4 14.8 86.2
SDatasets are sampled at uniform from all possible expressions, and include all equivalence classes but

sampling 200 expressions per equivalence class if more expressions can be formed.

by Zaremba & Sutskever (2014). We also include a 2-layer TREENN, where COMBINE is a classic
two-layer MLP without residual connections. This shows the effect of SEMVEC normalization and
subexpression forcing.

Hyperparameters. We tune the hyperparameters of the baselines and EQNET using Bayesian
optimization (Snoek et al., 2012), optimizing on a boolean dataset with 5 variables and maximum
tree size of 7 (not shown in Table 1). We use the average k-NN (k = 1, . . . , 15) statistics (described
next) as an optimization metric. The selected hyperparameters are detailed in Appendix C.

3.1 QUANTITATIVE EVALUATION

Metric. To evaluate the quality of the learned representations we count the proportion of k nearest
neighbors of each expression (using cosine similarity) that belong to the same equivalence class. More
formally, given a test query expression q in an equivalence class c we find the k nearest neighbors
Nk(q) of q across all expressions, and define the score as

scorek(q) =
|Nk(q) ∩ c|
min(k, |c|)

. (4)

To report results for a given testset, we simply average scorek(q) for all expressions q in the testset.

Evaluation. Figure 2 presents the average scorek across the datasets for each model. Table 1 shows
score5 of UNSEENEQCLASS for each dataset. Detailed plots can be found in Appendix B. It can be
clearly seen that EQNET performs better for all datasets, by a large margin. The only exception is
POLY5, where the two-layer TREENN performs better. However, this may have to do with the small
size of the dataset. The reader may observe that the simple datasets (containing fewer operations
and variables) are easier to learn. Understandably, introducing more variables increases the size of
the represented space reducing performance. The tf-idf method performs better in settings where
more variables are included, because it captures well the variables and operations used. Similar
observations can be made for sequence models. The one and two layer TREENNs have mixed
performance; we believe that this has to do with exploding and diminishing gradients due to the deep
and highly compositional nature of TREENNs. Although Zaremba & Sutskever (2014) consider a
different problem to us, they use data similar to the ONEV-POLY datasets with a traditional TREENN
architecture. Our evaluation suggests that EQNETs perform much better within the ONEV-POLY
setting.
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Figure 2: Average scorek (y-axis in log-scale). Markers are shown every three ticks for clarity.
TREENN refers to Socher et al. (2012). Detailed, per-dataset, plots can be found in Appendix B.

¬(c ⊕ (a ∧ ((a ⊕ c) ∧ b))) ((c ∨ (¬b))⇒ a) ∧ (a ⇒ a) ((b ⊕ (¬c)) ∧ b)⊕ (a ∨ b)

((b · a)− a) · b a − ((a + b) · a) ((c · b) · c) · a b + ((b · b) · b)

Figure 3: Visualization of score5 for all expression nodes for three BOOL10 and four POLY8 test
sample expressions using EQNET. The darker the color, the lower the score, i.e. white implies a score
of 1 and dark red a score of 0.

Evaluation of Compositionality. We evaluate whether the EQNETs have successfully learned to
compute compositional representations, rather than overfitting to expression trees of a small size.
We evaluate this by considering a type of transfer setting, in which we train on simpler datasets, but
tested on more complex ones; for example, training on the training set of BOOL5 but testing on the
testset of BOOL8. We average over 11 different train-test pairs (full list in Figure 6) and present the
results in Figure 2b-i and Figure 2b-ii (note the differences in scale to the two figures on the left).
These graphs again show that EQNETs are dramatically better than any of the other methods, and
indeed, performance is only a bit worse than in the non-transfer setting.

Impact of EQNET Components EQNETs differ from traditional TREENNs in two major compo-
nents, which we analyze here. First, SUBEXPFORCE has a positive impact on performance. When
training the network with and without subexpression forcing, on average, the area under the curve
(AUC) of the scorek decreases by 16.8% on the SEENEQCLASS and 19.7% on the UNSEENEQ-
CLASS. This difference is smaller in the transfer setting of Figure 2b-i and Figure 2b-ii, where AUC
decreases by 8.8% on average. However, even in this setting we observe that SUBEXPFORCE helps
more in large and diverse datasets. The second key difference to traditional TREENNs is the output
normalization at each layer. Comparing our model to the one-layer and two-layer TREENNs again,
we find that output normalization results in important improvements (the two-layer TREENNs have
on average 60.9% smaller AUC).

3.2 QUALITATIVE EVALUATION

Table 2 and Table 3 shows expressions whose SEMVEC nearest neighbor is of an expression of
another equivalence class. Manually inspecting boolean expressions, we find that EQNET confusions
happen more when a XOR or implication operator is involved. In fact, we fail to find any confused
expressions for EQNET not involving these operations in BOOL5 and in the top 100 expressions in
BOOL10. As expected, tf-idf confuses expressions with others that contain the same operators and
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Table 2: Non semantically equivalent first nearest-neighbors from BOOL8. A checkmark indicates
that the method correctly results in the nearest neighbor being from the same equivalence class.

Expression a ∧ (a ∧ (a ∧ (¬c))) a ∧ (a ∧ (c⇒ (¬c))) (a ∧ a) ∧ (c⇒ (¬c))
tfidf c ∧ ((a ∧ a) ∧ (¬a)) c⇒ (¬((c ∧ a) ∧ a)) c⇒ (¬((c ∧ a) ∧ a))
GRU X a ∧ (a ∧ (c ∧ (¬c))) (a ∧ a) ∧ (c⇒ (¬c))
1L-TREENN a ∧ (a ∧ (a ∧ (¬b))) a ∧ (a ∧ (c⇒ (¬b))) (a ∧ a) ∧ (c⇒ (¬b))
EQNET X X (¬(b⇒ (b ∨ c))) ∧ a

Table 3: Non semantically equivalent first nearest-neighbors from POLY8. A checkmark indicates
that the method correctly results in the nearest neighbor being from the same equivalence class.

Expression a+ (c · (a+ c)) ((a+ c) · c) + a (b · b)− b

tf-idf a+ (c+ a) · c (c · a) + (a+ c) b · (b− b)
GRU b+ (c · (a+ c)) ((b+ c) · c) + a (b+ b) · b− b
1L-TREENN a+ (c · (b+ c)) ((b+ c) · c) + a (a− c) · b− b
EQNET X X (b · b) · b− b

variables ignoring order. In contrast, GRU and TREENN tend to confuse expressions with very similar
symbolic representation differing in one or two deeply nested variables or operators. In contrast,
EQNET tends to confuse fewer expressions (as we previously showed) and the confused expressions
tend to be more syntactically diverse and semantically related.

Figure 3 shows a visualization of score5 for each node in the expression tree. One may see that
as EQNET knows how to compose expressions that achieve good score, even if the subexpressions
achieve a worse score. This suggests that for common expressions, (e.g. single variables and
monomials) the network tends to select a unique location, without merging the equivalence classes or
affecting the upstream performance of the network. Larger scale interactive t-SNE visualizations can
be found online.

Figure 4 presents two PCA visualizations of the learned embeddings of simple expressions and their
negations/negatives. It can be easily discerned that the black dots and their negations (in red) are
easily discriminated in the semantic representation space. Figure 4b shows this property in a very
clear manner: left-right discriminates between polynomials with a and −a, top-bottom between
polynomials that contain b and −b and the diagonal y = x between c and −c. We observe a similar
behavior in Figure 4a for boolean expressions.

4 RELATED WORK

Researchers have proposed compilation schemes that can transform any given program or expression
to an equivalent neural network (Gruau et al., 1995; Neto et al., 2003; Siegelmann, 1994). One can
consider a serialized version of the resulting neural network as a representation of the expression.
However, it is not clear how we could compare the serialized representations corresponding to two
expressions and whether this mapping preserves semantic distances.

Recursive neural networks (TREENN) (Socher et al., 2012; 2013) have been successfully used in
NLP with multiple applications. Socher et al. (2012) show that TREENNs can learn to compute the
values of some simple propositional statements. EQNET’s SUBEXPFORCE may resemble recursive
autoencoders (Socher et al., 2011) but differs in form and function, encoding the whole parent-children
tuple to force a clustering behavior. In addition, when encoding each expression our architecture does
not use a pooling layer but directly produces a single representation for the expression.

Mou et al. (2016) use tree convolutional neural networks to classify code into 106 student submissions
tasks. Although their model learns intermediate representations of the student tasks, it is a way
of learning task-specific features in the code, rather than of learning semantic representations of
programs. Piech et al. (2015) also learn distributed matrix representations of programs from student
submissions. However, to learn the representations, they use input and output program states
and do not test over program equivalence. Additionally, these representations do not necessarily
represent program equivalence, since they do not learn the representations over the exhaustive set
of all possible input-output states. Allamanis et al. (2016) learn variable-sized representations of
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a∧ (b∧ c)

¬(a∨ (b∨ c))

a∨ c

b

a
c

a∧ b

b∨ c ¬(a∧ (b∨ c))
a∨ (b∨ c)

¬a

¬(b∧ c)

¬(a∨ (b∧ c))
a∨ (b∧ c)

¬(a∨ c)

a∧ c

¬(a∧ c)

a∧ (b∨ c)

¬c

¬(a∧ b)

a∨ b

¬(b∨ c)

¬b

b∧ c

¬(a∧ (b∧ c))

¬(a∨ b)

(a) Negation in BOOL expressions

b− a

a− b(a+ c)− (c+ b)

(c− c)− (a− b)

c− (a+ b)

a− (b+ c)

(a+ b)− (b+ c)

a− (c− b)

c− a

(b− a) + c

(b− b)− (a− c)

a− (b− c)

a− c

b− (a+ c)

(b) Negatives in POLY expressions

Figure 4: A PCA visualization of some simple non-equivalent boolean and polynomial expressions
(black-square) and their negations (red-circle). The lines connect the negated expressions.
source code snippets to summarize them with a short function-like name. This method aims to
learn summarization features in code rather than to learn representations of symbolic expression
equivalence.

More closely related is the work of Zaremba & Sutskever (2014) who use a recursive neural network
(TREENN) to guide the tree search for more efficient mathematical identities, limited to homoge-
neous single-variable polynomial expressions. In contrast, EQNETs consider at a much wider set
of expressions, employ subexpression forcing to guide the learned SEMVECs to better represent
equivalence, and do not use search when looking for equivalent expressions. Alemi et al. (2016)
use RNNs and convolutional neural networks to detect features within mathematical expressions
and speed the search for premise selection during automated theorem proving but do not explicitly
account for semantic equivalence. In the future, SEMVECs may find useful applications within this
work.

Our work is also related to recent work on neural network architectures that learn controllers/programs
(Gruau et al., 1995; Graves et al., 2014; Joulin & Mikolov, 2015; Grefenstette et al., 2015; Dyer et al.,
2015; Reed & de Freitas, 2015; Neelakantan et al., 2015; Kaiser & Sutskever, 2016). In contrast
to this work, we do not aim to learn how to evaluate expressions or execute programs with neural
network architectures but to learn continuous semantic representations (SEMVECs) of expression
semantics irrespectively of how they are syntactically expressed or evaluated.

5 DISCUSSION & CONCLUSIONS

In this work, we presented EQNETs, a first step in learning continuous semantic representations
(SEMVECs) of procedural knowledge. SEMVECs have the potential of bridging continuous repre-
sentations with symbolic representations, useful in multiple applications in artificial intelligence,
machine learning and programming languages.

We show that EQNETs perform significantly better than state-of-the-art alternatives. But further
improvements are needed, especially for more robust training of compositional models. In addition,
even for relatively small symbolic expressions, we have an exponential explosion of the semantic
space to be represented. Fixed-sized SEMVECs, like the ones used in EQNET, eventually limit the
capacity that is available to represent procedural knowledge. In the future, to represent more complex
procedures, variable-sized representations would seem to be required.
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A SYNTHETIC EXPRESSION DATASETS

Below are sample expressions within an equivalence class for the two types of datasets we consider.

BOOL8
(¬a) ∧ (¬b) (¬a ∧ ¬c) ∨ (¬b ∧ a ∧ c) ∨ (¬c ∧ b) (¬a) ∧ b ∧ c

a¬((¬a)⇒ ((¬a) ∧ b)) c⊕ (((¬a)⇒ a)⇒ b) ¬((¬b) ∨ ((¬c) ∨ a))
¬((b ∨ (¬(¬a))) ∨ b) ¬((b⊕ (b ∨ a))⊕ c) ((a ∨ b) ∧ c) ∧ (¬a)
(¬a)⊕ ((a ∨ b)⊕ a) ¬((¬(b ∨ (¬a)))⊕ c) (¬((¬(¬b))⇒ a)) ∧ c

(b⇒ (b⇒ a)) ∧ (¬a) ((b ∨ a)⊕ (¬b))⊕ c) (c ∧ (c⇒ (¬a))) ∧ b
((¬a)⇒ b)⇒ (a⊕ a) (¬((b⊕ a) ∧ a))⊕ c b ∧ (¬(b ∧ (c⇒ a)))

False (¬a) ∧ (¬b) ∨ (∧c) ¬a ∨ b
(a⊕ a) ∧ (c⇒ c) (a⇒ (¬c))⊕ (a ∨ b) a⇒ ((b ∧ (¬c)) ∨ b)
(¬b) ∧ (¬(b⇒ a)) (a⇒ (c⊕ b))⊕ b ¬(¬((b ∨ a)⇒ b))
b ∧ ((a ∨ a)⊕ a) b⊕ (a⇒ (b⊕ c)) (¬a)⊕ (¬(b⇒ (¬a)))

((¬b) ∧ b)⊕ (a⊕ a) (b ∨ a)⊕ (x⇒ (¬a)) b ∨ (¬((¬b) ∧ a))
c ∧ ((¬(a⇒ a)) ∧ c) b⊕ ((¬a) ∨ (c⊕ b)) ¬((a⇒ (a⊕ b)) ∧ a)

POLY8
−a− c c2 b2c2

(b− a)− (c+ b) (c · c) + (b− b) (b · b) · (c · c)
b− (c+ (b+ a)) ((c · c)− c) + c c · (c · (b · b))
a− ((a+ a) + c) ((b+ c)− b) · c (c · b) · (b · c)
(a− (a+ a))− c c · (c− (a− a)) ((c · b) · c) · b
(b− b)− (a+ c) c · c ((c · c) · b) · b

c b · c b− c
c− ((c− c) · a) (c− (b− b)) · b (a− (a+ c)) + b
c− ((a− a) · c) (b− (c− c)) · c (a− c)− (a− b)
((a− a) · b) + c (b− b) + (b · c) (b− (c+ c)) + c

(c+ a)− a c · ((b− c) + c) (b− (c− a))− a
(a · (c− c)) + c (b · c) + (c− c) b− ((a− a) + c)

B DETAILED EVALUATION

Figure 5 presents a detailed evaluation for our k-NN metric for each dataset. Figure 6 shows the
detailed evaluation when using models trained on simpler datasets but tested on more complex ones,
essentially evaluating the learned compositionality of the models. Figure 9 show how the performance
varies across the datasets based on their characteristics. As expected as the number of variables
increase, the performance worsens (Figure 9a) and expressions with more complex operators tend
to have worse performance (Figure 9b). In contrast, Figure 9c suggests no obvious correlation
between performance and the entropy of the equivalence classes within the datasets. The results for
UNSEENEQCLASS look very similar and are not plotted here.

C MODEL HYPERPARAMETERS

The optimized hyperparameters are detailed in Table 4. All hyperparameters were optimized using
the Spearmint (Snoek et al., 2012) Bayesian optimization package. The same range of values was
used for all common model hyperparameters.
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(a) SEENEQCLASS evaluation using model trained on the respective training set.
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(b) UNSEENEQCLASS evaluation using model trained on the respective training set.

Figure 5: Evaluation of scorex (y axis) for x = 1, . . . , 15. on the respective SEENEQCLASS and
UNSEENEQCLASS where each model has been trained on. The markers are shown every five ticks of
the x-axis to make the graph more clear. TREENN refers to the model of Socher et al. (2012).
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(a) SEENEQCLASS evaluation using model trained on simpler datasets. Caption is “model trained on”→“Test
dataset”.
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(b) Evaluation of compositionality. UNSEENEQCLASS evaluation using model trained on simpler datasets.
Caption is “model trained on”→“Test dataset”.

tf-idf GRU StackRNN TreeNN-1Layer TreeNN-2Layer EqNet

Figure 6: Evaluation of compositionality. Evaluation of scorex (y axis) for x = 1, . . . , 15. The
markers are shown every five ticks of the x-axis to make the graph more clear. TREENN refers to the
model of Socher et al. (2012).
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Figure 7: Precision-Recall curves averaged across datasets.
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Figure 8: Receiver operating characteristic (ROC) curves averaged across datasets.

Table 4: Hyperparameters used in this work.

Model Hyperparameters

EQNET learning rate 10−2.1, rmsprop ρ = 0.88, momentum 0.88, minibatch size
900, representation size D = 64, autoencoder size M = 8, autoencoder
noise κ = 0.61, gradient clipping 1.82, initial parameter standard devi-
ation 10−2.05, dropout rate .11, hidden layer size 8, ν = 4, curriculum
initial tree size 6.96, curriculum step per epoch 2.72, objective margin
m = 0.5

1-layer-TREENN learning rate 10−3.5, rmsprop ρ = 0.6, momentum 0.01, minibatch size
650, representation size D = 64, gradient clipping 3.6, initial parameter
standard deviation 10−1.28, dropout 0.0, curriculum initial tree size 2.8,
curriculum step per epoch 2.4, objective margin m = 2.41

2-layer-TREENN learning rate 10−3.5, rmsprop ρ = 0.9, momentum 0.95, minibatch size
1000, representation size D = 64, gradient clipping 5, initial parameter
standard deviation 10−4, dropout 0.0, hidden layer size 16, curriculum
initial tree size 6.5, curriculum step per epoch 2.25, objective margin
m = 0.62

GRU learning rate 10−2.31, rmsprop ρ = 0.90, momentum 0.66, minibatch
size 100, representation size D = 64, gradient clipping 0.87, token
embedding size 128, initial parameter standard deviation 10−1, dropout
rate 0.26

StackRNN learning rate 10−2.9, rmsprop ρ = 0.99, momentum 0.85, minibatch size
500, representation size D = 64, gradient clipping 0.70, token embed-
ding size 64, RNN parameter weights initialization standard deviation
10−4, embedding weight initialization standard deviation 10−3, dropout
0.0, stack count 40
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Figure 9: EQNET performance on SEENEQCLASS for various dataset characteristics
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