
Published as a conference paper at ICLR 2017

PIXELVAE: A LATENT VARIABLE MODEL FOR
NATURAL IMAGES

Ishaan Gulrajani1∗, Kundan Kumar1,2, Faruk Ahmed1, Adrien Ali Taiga1,3,
Francesco Visin1,5, David Vazquez1,4, Aaron Courville1,6

1 Montreal Institute for Learning Algorithms, Université de Montréal
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ABSTRACT

Natural image modeling is a landmark challenge of unsupervised learning. Varia-
tional Autoencoders (VAEs) learn a useful latent representation and model global
structure well but have difficulty capturing small details. PixelCNN models de-
tails very well, but lacks a latent code and is difficult to scale for capturing large
structures. We present PixelVAE, a VAE model with an autoregressive decoder
based on PixelCNN. Our model requires very few expensive autoregressive lay-
ers compared to PixelCNN and learns latent codes that are more compressed than
a standard VAE while still capturing most non-trivial structure. Finally, we ex-
tend our model to a hierarchy of latent variables at different scales. Our model
achieves state-of-the-art performance on binarized MNIST, competitive perfor-
mance on 64 × 64 ImageNet, and high-quality samples on the LSUN bedrooms
dataset.

1 INTRODUCTION

Building high-quality generative models of natural images has been a long standing challenge. Al-
though recent work has made significant progress (Kingma & Welling, 2014; van den Oord et al.,
2016a;b), we are still far from generating convincing, high-resolution natural images.

Many recent approaches to this problem are based on an efficient method for performing amor-
tized, approximate inference in continuous stochastic latent variables: the variational autoencoder
(VAE) (Kingma & Welling, 2014) jointly trains a top-down decoder generative neural network with
a bottom-up encoder inference network. VAEs for images typically use rigid decoders that model
the output pixels as conditionally independent given the latent variables. The resulting model learns
a useful latent representation of the data and effectively models global structure in images, but has
difficulty capturing small-scale features such as textures and sharp edges due to the conditional inde-
pendence of the output pixels, which significantly hurts both log-likelihood and quality of generated
samples compared to other models.

PixelCNNs (van den Oord et al., 2016a;b) are another state-of-the-art image model. Unlike VAEs,
PixelCNNs model image densities autoregressively, pixel-by-pixel. This allows it to capture fine
details in images, as features such as edges can be precisely aligned. By leveraging carefully con-
structed masked convolutions (van den Oord et al., 2016b), PixelCNNs can be trained efficiently in
parallel on GPUs. Nonetheless, PixelCNN models are still very computationally expensive. Unlike
typical convolutional architectures they do not apply downsampling between layers, which means
that each layer is computationally expensive and that the depth of a PixelCNN must grow linearly
with the size of the images in order for it to capture dependencies between far-away pixels. Pix-
elCNNs also do not explicitly learn a latent representation of the data, which can be useful for
downstream tasks such as semi-supervised learning.
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Figure 1: Samples from hierarchical PixelVAE on the LSUN bedrooms dataset.

Our contributions are as follows:

• We present PixelVAE, a latent variable model which combines the largely complementary
advantages of VAEs and PixelCNNs by using PixelCNN-based masked convolutions in the
conditional output distribution of a VAE.

• We extend PixelVAE to a hierarchical model with multiple stochastic layers and autore-
gressive decoders at each layer. This lets us autoregressively model not only the output
pixels but also higher-level latent feature maps.

• On MNIST, we show that PixelVAE: (1) establishes a new state-of-the-art likelihood, (2)
performs comparably to PixelCNN using far fewer computationally expensive autoregres-
sive layers, (3) learns more compressed latent codes than a standard VAE while still ac-
counting for most non-trivial structure, and (4) learns a latent code which separates digits
better than a standard VAE.

• We evaluate hierarchical PixelVAE on two challenging natural image datasets (64 × 64
ImageNet and LSUN bedrooms). On 64× 64 ImageNet, we report likelihood competitive
with the state of the art at significantly less computational cost. On LSUN bedrooms,
we generate high-quality samples and show that hierarchical PixelVAE learns to model
different properties of the scene with each of its multiple layers.

2 RELATED WORK

There have been many recent advancements in generative modeling of images. We briefly discuss
some of these below, especially those that are related to our approach.

The Variational Autoencoder (VAE) (Kingma & Welling, 2014) is a framework to train neural net-
works for generation and approximate inference jointly by optimizing a variational bound on the
data log-likelihood. The use of normalizing flows (Rezende & Mohamed, 2015) improves the flex-
ibility of the VAE approximate posterior. Based on this, Kingma et al. (2016) develop an efficient
formulation of an autoregressive approximate posterior model using MADE (Germain et al., 2015).
In our work, we avoid the need for such flexible inference models by using autoregressive priors.

The idea of using autoregressive conditional likelihoods in VAEs has been explored in the context of
language modeling in (Bowman et al., 2016), however in that work the use of latent variables fails
to improve likelihood over a purely autoregressive model.
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Figure 2: Our proposed model, PixelVAE, makes use of PixelCNN to model an autoregressive de-
coder for a VAE. VAEs, which assume (conditional) independence among pixels, are known to suffer
from blurry samples, while PixelCNN, modeling the joint distribution, produces sharp samples, but
lack a latent representation that might be more useful for downstream tasks. PixelVAE combines the
best of both worlds, providing a meaningful latent representation, while producing sharp samples.

Simultaneously to our work, Chen et al. (2016) present a VAE model for images with an an autore-
gressive output distribution. In constrast to Chen et al. (2016), who focus on models with a single
layer of latent variables, we also investigate models with a hierarchy of latent variables (and cor-
responding autoregressive priors) and show that they enable us to scale our model to challenging
natural image datasets.

Another promising recent approach is Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014), which pit a generator network and a discriminator network against each other. Recent work
has improved training stability (Radford et al., 2015; Salimans et al., 2016) and incorporated in-
ference networks into the GAN framework (Dumoulin et al., 2016; Donahue et al., 2016). GANs
generate compelling samples compared to our work, but still exhibit unstable training dynamics and
are known to underfit by ignoring modes of the data distribution (Dumoulin et al., 2016). Further, it
is difficult to accurately estimate the data likelihood in GANs.

3 PIXELVAE MODEL

Like a VAE, our model jointly trains an “encoder” inference network, which maps an image x to a
posterior distribution over latent variables z, and a “decoder” generative network, which models a
distribution over x conditioned on z. The encoder and decoder networks are composed of a series
of convolutional layers, respectively with strided convolutions for downsampling in the encoder and
transposed convolutions for upsampling in the decoder.

As opposed to most VAE decoders that model each dimension of the output independently (for
example, by modeling the output as a Gaussian with diagonal covariance), we use a conditional
PixelCNN in the decoder. Our decoder models x as the product of each dimension xi conditioned
on all previous dimensions and the latent variable z:

p(x|z) =
∏
i

p(xi|x1, . . . , xi−1, z)

We first transform z through a series of convolutional layers into feature maps with the same spatial
resolution as the output image and then concatenate the resulting feature maps with the image.
The resulting concatenated feature maps are then further processed by several PixelCNN masked
convolutional layers and a final PixelCNN 256-way softmax output.

Unlike typical PixelCNN implementations, we use very few PixelCNN layers in our decoder, relying
on the latent variables to model the structure of the input at scales larger than the combined receptive
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Figure 3: We generate top-down through a hierarchical latent space decomposition. The inference
network generates latent variables by composing successive deterministic functions to compute pa-
rameters of the stochastic random variables. Dotted lines denote contributions to the cost.

field of our PixelCNN layers. As a result of this, our architecture captures global structure at a much
lower computational cost than a standard PixelCNN implementation.

3.1 HIERARCHICAL ARCHITECTURE

The performance of VAEs can be improved by stacking them to form a hierarchy of stochastic latent
variables: in the simplest configuration, the VAE at each level models a distribution over the latent
variables at the level below, with generation proceeding downward and inference upward through
each level (i.e. as in Fig. 3). In convolutional architectures, the intermediate latent variables are
typically organized into feature maps whose spatial resolution decreases toward higher levels.

Our model can be extended in the same way. At each level, the generator is a conditional PixelCNN
over the latent features in the level below. This lets us autoregressively model not only the output
distribution over pixels but also the prior over each set of latent feature maps. The higher-level
PixelCNN decoders use diagonal Gaussian output layers instead of 256-way softmax, and model
the dimensions within each spatial location (i.e. across feature maps) independently. This is done
for simplicity, but is not a limitation of our model.

The output distributions over the latent variables for the generative and inference networks decom-
pose as follows (see Fig. 3).

p(z1, · · · , zL) = p(zL)p(zL−1|zL) · · · p(z1|z2)
q(z1, · · · , zL|x) = q(z1|x) · · · q(zL|x)

We optimize the negative of the evidence lower bound (sum of data negative log-likelihood and
KL-divergence of the posterior over latents with the prior).

−L(x, q, p) = −Ez1∼q(z1|x) log p(x|z1) +DKL(q(z1, · · · zL|x)||p(z1, · · · , zL))

= −Ez1∼q(z1|x) log p(x|z1) +
∫

z1,··· ,zL

L∏
j=1

q(zj |x)
L∑

i=1

log
q(zi|x)
p(zi|zi+1)

dz1...dzL

= −Ez1∼q(z1|x) log p(x|z1) +
L∑

i=1

∫
z1,··· ,zL

L∏
j=1

q(zj |x) log
q(zi|x)
p(zi|zi+1)

dz1...dzL

= −Ez1∼q(z1|x) log p(x|z1) +
L∑

i=1

∫
zi,zi+1

q(zi+1|x)q(zi|x) log
q(zi|x)
p(zi|zi+1)

dzidzi+1
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= −Ez1∼q(z1|x) log p(x|z1) +
L∑

i=1

Ezi+1∼q(zi+1|x)
[
DKL(q(zi|x)||p(zi|zi+1))

]

Note that when specifying an autoregressive prior over each latent level zi, we can leverage masked
convolutions (van den Oord et al., 2016b) and samples drawn independently from the approximate
posterior q(zi | x) (i.e. from the inference network) to train efficiently in parallel on GPUs.

4 EXPERIMENTS

4.1 MNIST

Model NLL Test
DRAW (Gregor et al., 2016) ≤ 80.97
Discrete VAE (Rolfe, 2016) = 81.01
IAF VAE (Kingma et al., 2016) ≈ 79.88
PixelCNN (van den Oord et al., 2016a) = 81.30
PixelRNN (van den Oord et al., 2016a) = 79.20
VLAE (Chen et al., 2016) = 79.03
Convolutional VAE ≤ 87.41
PixelVAE ≤ 80.64
Gated PixelCNN (our implementation) = 80.10
Gated PixelVAE ≈ 79.48 (≤ 80.02)
Gated PixelVAE without upsampling ≈ 78.96 (≤ 79.58)

Table 1: We compare performance of different models on binarized MNIST. “PixelCNN” is the
model described in van den Oord et al. (2016a). Our corresponding latent variable model is “Pixel-
VAE”. “Gated PixelCNN” and “Gated PixelVAE” use the gated activation function in van den Oord
et al. (2016b). In “Gated PixelVAE without upsampling”, a linear transformation of latent variable
conditions the (gated) activation in every PixelCNN layer instead of using upsampling layers.

We evaluate our model on the binarized MNIST dataset (Salakhutdinov & Murray, 2008; Lecun
et al., 1998) and report results in Table 1. We also experiment with a variant of our model in which
each PixelCNN layer is directly conditioned on a linear transformation of latent variable, z (rather
than transforming z first through several upsampling convolutional layers) (as in (van den Oord et al.,
2016b) and find that this further improves performance, achieving an NLL upper bound comparable
with the current state of the art. We estimate the marginal likelihood of our MNIST model using
the importance sampling technique in Burda et al. (2015), which computes a lower bound on the
likelihood whose tightness increases with the number of importance samples per datapoint. We use
N = 5000 samples per datapoint (higher values don’t appear to significantly affect the likelihood
estimate) and achieve state-of-the-art likelihood.

4.1.1 USING FEW PIXELCNN LAYERS

The masked convolutional layers in PixelCNN are computationally expensive because they operate
at the full resolution of the image and in order to cover the full receptive field of the image, PixelCNN
typically needs a large number of them. One advantage of our architecture is that we can achieve
strong performance with very few PixelCNN layers, which makes training and sampling from our
model significantly faster than PixelCNN. To demonstrate this, we compare the performance of our
model to PixelCNN as a function of the number of PixelCNN layers (Fig. 4a). We find that with
fewer than 10 autoregressive layers, our PixelVAE model performs much better than PixelCNN.
This is expected since with few layers, the effective receptive field of the PixelCNN output units is
too small to capture long-range dependencies in the data.

We also observe that adding even a single PixelCNN layer has a dramatic impact on the NLL bound
of PixelVAE. This is not surprising since the PixelCNN layer helps model local characteristics which
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Figure 4: (a) Comparison of Negative log-likelihood upper bound of PixelVAE and NLL for Pixel-
CNN as a function of the number of PixelCNN layers used. (b) Cost break down into KL divergence
and reconstruction cost.

are complementary to the global characteristics which a VAE with a factorized output distribution
models.

4.1.2 LATENT VARIABLE INFORMATION CONTENT

Because the autoregressive conditional likelihood function of PixelVAE is expressive enough to
model some properties of the image distribution, it isn’t forced to account for those properties
through its latent variables as a standard VAE is. As a result, we can expect PixelVAE to learn
latent representations which are invariant to textures, precise positions, and other attributes which
are more efficiently modeled by the autoregressive decoder. To empirically validate this, we train
PixelVAE models with different numbers of autoregressive layers (and hence, different PixelCNN
receptive field sizes) and plot the breakdown of the NLL bound for each of these models into the
reconstruction term log p(x|z) and the KL divergence term DKL(q(z|x)||p(z)) (Fig. 4b). The KL
divergence term can be interpreted as a measure of the information content in the posterior distri-
bution q(z|x) (in the sense that in expectation, samples from q(z|x) require KL(q||p) fewer bits to
code under a code optimized for q than under one optimized for p (Burnham & Anderson, 2003))
and hence, models with smaller KL terms encode less information in their latent variables.

We observe a sharp drop in the KL divergence term when we use a single autoregressive layer
compared to no autoregressive layers, indicating that the latent variables have been freed from having
to encode small-scale details in the images. Since the addition of a single PixelCNN layer allows the
decoder to model interactions between pixels which are at most 2 pixels away from each other (since
our masked convolution filter size is 5×5), we can also say that most of the non-trivial (long-range)
structure in the images is still encoded in the latent variables.

4.1.3 LATENT REPRESENTATIONS

On MNIST, given a sufficiently high-dimensional latent space, VAEs have already been shown to
learn representations in which digits are well-separated (Sønderby et al., 2016). However, this task
becomes more challenging as the capacity of the latent space is decreased. PixelVAE’s flexible
output distribution should allow it to learn a latent representation which is invariant to small details
and thus better models global factors of variation given limited capacity.

To test this, we train a PixelVAE with a two-dimensional latent space, and an equivalent VAE.
We visualize the distribution of test set images in latent space and observe that PixelVAE’s latent
representation separates digits significantly better than VAE (Figure 5). To quantify this difference,
we train a K-nearest neighbors classifier in the latent space of each model and find that PixelVAE
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(a) (b)

Figure 5: Visualization of the MNIST test set in the latent space of (a) convolutional VAE and (b)
PixelVAE with two latent dimensions. PixelVAE separates classes more completely than VAE.

Figure 6: We visually inspect the variation in image features captured by the different levels of
stochasticity in our model. For the two-level latent variable model trained on 64 × 64 LSUN bed-
rooms, we vary only the top-level sampling noise (top) while holding the other levels constant,
vary only the middle-level noise (middle), and vary only the bottom (pixel-level) noise (bottom).
It appears that the top-level latent variables learn to model room structure and overall geometry,
the middle-level latents model color and texture features, and the pixel-level distribution models
low-level image characteristics such as texture, alignment, shading.

significantly outperforms VAE, achieving a test error of 7.2% compared to VAE’s 22.9%. We also
note that unlike VAE, PixelVAE learns a representation in which digit identity is largely disentangled
from other generative factors.

4.2 LSUN BEDROOMS

To evaluate our model’s performance with more data and complicated image distributions, we per-
form experiments on the LSUN bedrooms dataset (Yu et al., 2015). We use the same preprocessing
as in Radford et al. (2015) to remove duplicate images in the dataset. For quantitative experiments
we use a 32× 32 downsampled version of the dataset, and we present samples from a model trained
on the 64× 64 version.

We train a two-level PixelVAE with latent variables at 1×1 and 8×8 spatial resolutions. We find that
this outperforms both a two-level convolutional VAE with diagonal Gaussian output and a single-
level PixelVAE in terms of log-likelihood and sample quality. We also try replacing the PixelCNN
layers at the higher level with a diagonal Gaussian decoder and find that this hurts log-likelihood,
which suggests that multi-scale PixelVAE uses those layers effectively to autoregressively model
latent features.
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Figure 7: Samples from hierarchical PixelVAE on the 64x64 ImageNet dataset.

4.2.1 FEATURES MODELED AT EACH LAYER

To see which features are modeled by each of the multiple layers, we draw multiple samples while
varying the sampling noise at only a specific layer (either at the pixel-wise output or one of the
latent layers) and visually inspect the resulting images (Fig. 6). When we vary only the pixel-
level sampling (holding z1 and z2 fixed), samples are almost indistinguishable and differ only in
precise positioning and shading details, suggesting that the model uses the pixel-level autoregressive
distribution to model only these features. Samples where only the noise in the middle-level (8 ×
8) latent variables is varied have different objects and colors, but appear to have similar basic room
geometry and composition. Finally, samples with varied top-level latent variables have diverse room
geometry.

4.3 64× 64 IMAGENET

The 64×64 ImageNet generative modeling task was introduced in (van den Oord et al., 2016a) and
involves density estimation of a difficult, highly varied image distribution. We trained a heirarchical
PixelVAE model (with a similar architecture to the model in section 4.2) on 64× 64 ImageNet and
report validation set likelihood in Table 2. Our model achieves a likelihood competitive with van den
Oord et al. (2016a;b), despite being substantially less computationally complex. A visual inspection
of ImageNet samples from our model (Fig. 7) also reveals them to be significantly more globally
coherent than samples from PixelRNN.

Model NLL Validation (Train) FLOPs
Convolutional DRAW (Gregor et al., 2016) ≤ 4.10 (4.04) —
Real NVP (Dinh et al., 2016) = 4.01 (3.93) —
PixelRNN (van den Oord et al., 2016a) = 3.63 (3.57) 154× 109

Gated PixelCNN (van den Oord et al., 2016b) = 3.57 (3.48) 134× 109

Hierarchical PixelVAE ≤ 3.62 (3.55) 63× 109

Table 2: Model performance on 64×64 ImageNet. We achieve competitive NLL at a fraction of the
computational complexity of other leading models.
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5 CONCLUSIONS

In this paper, we introduced a VAE model for natural images with an autoregressive decoder that
achieves strong performance across a number of datasets. We explored properties of our model,
showing that it can generate more compressed latent representations than a standard VAE and that it
can use fewer autoregressive layers than PixelCNN. We established a new state-of-the-art on bina-
rized MNIST dataset in terms of likelihood on 64× 64 ImageNet and demonstrated that our model
generates high-quality samples on LSUN bedrooms.

The ability of PixelVAE to learn compressed representations in its latent variables by ignoring the
small-scale structure in images is potentially very useful for downstream tasks. It would be interest-
ing to further explore our model’s capabilities for semi-supervised classification and representation
learning in future work.
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A LSUN BEDROOMS AND 64×64 IMAGENET RECONSTRUCTIONS

(a) (b)

Figure 8: Reconstructions for (a) LSUN Bedrooms and (b) 64×64 ImageNet. Left-most columns
are images from the test set, and the following 5 columns are top-down generations from the highest
level of latent variables. We see that the reconstructions capture high-level semantic properties of
the original images while varying in most of the details. We also visualized similar reconstructions
by generations from the lower level of latent variables, and in this case the reconstructions were
visually indistinguishable from the original images.

11



Published as a conference paper at ICLR 2017

B MNIST SAMPLES

Figure 9: Samples from a PixelVAE with a receptive field of 7 pixels (left), a PixelCNN with an
11-pixel receptive field (middle; roughly the same computational complexity as the PixelVAE), and
a PixelCNN with a 7-pixel receptive field (right).

C MNIST RECONSTRUCTIONS

Figure 10: Reconstructions from the MNIST test set. Alternate columns are original (left) and
reconstructed images (right).
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D MORE SAMPLES FOR HIERARCHICAL LATENT SPACE VISUALIZATIONS

Figure 11: More examples for visualizations of the variation in image features captured at different
levels of stochasticity. Holding the other levels constant, we vary only the top-level sampling noise
(top), only the middle-level noise (middle), and only the bottom (pixel-level) noise (bottom).

E MODEL ARCHITECTURE

E.1 MNIST

For our quantitative MNIST experiments, the architectures of our encoder and decoder are as fol-
lows. Unless otherwise specified, all convolutional layers use ReLU nonlinearity. We also make
an open-source implementation of this model available at https://github.com/igul222/
PixelVAE.
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Encoder x→ (µ, σ)

Kernel size Stride Output channels

Convolution 3x3 1 32
Convolution 3x3 2 32
Convolution 3x3 1 32
Convolution 3x3 2 64

Pad 7×7 feature maps to 8×8

Convolution 3x3 1 64
Convolution 3x3 2 64
Convolution 3x3 1 64
Convolution 3x3 1 64
Convolution 3x3 1 64

Flatten

Linear - - 2×latent dimensionality

Decoder z → x

Kernel size Stride Output channels

Linear - - 4×4×64

Reshape to (64, 4, 4)
Convolution 3x3 1 64
Convolution 3x3 1 64
Transposed convolution 3x3 2 64
Convolution 3x3 1 64

Crop 8×8 feature maps to 7×7

Transposed convolution 3x3 2 32
Convolution 3x3 1 32
Transposed convolution 3x3 2 32
Convolution 3x3 1 32
PixelCNN gated residual block 7x7 1 32

PixelCNN gated residual block(s) [ 5x5 ] ×N 1 32

PixelCNN gated convolution 1x1 1 32
PixelCNN gated convolution 1x1 1 32
Convolution 1x1 1 1

E.2 LSUN BEDROOMS AND 64×64 IMAGENET

The LSUN and ImageNet models use the same architecture: all encoders and decoders are residual
networks; we use pre-activation residual blocks with two 3 × 3 convolutional layers each and ELU
nonlinearity. Some residual blocks perform downsampling, using a 2 × 2 stride in the second con-
volutional layer, or upsampling, using subpixel convolution in the first convolutional layer. Weight
normalization is used in masked convolutional layers; in all other layers, batch normalization is
used. We optimize using Adam with learning rate 1e-3. Training proceeds for 400K iterations using
batch size 48.

For further architectural details, please refer to our open-source implementation at https://
github.com/igul222/PixelVAE.
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Bottom-level Encoder x→ h1

Kernel size Resample Output channels

Embedding - - 48
Convolution 1x1 - 192
Residual block [ 3x3 ] × 2 - 192
Residual block [ 3x3 ] × 2 Down ×2 256
Residual block [ 3x3 ] × 2 - 256
Residual block [ 3x3 ] × 2 Down ×2 512
Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 - 512

Bottom-level Decoder z1 → x

Kernel size Resample Output channels

Convolution 1x1 1 512
Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 Up ×2 256
Residual block [ 3x3 ] × 2 - 256
Residual block [ 3x3 ] × 2 Up ×2 192
Residual block [ 3x3 ] × 2 - 192

Embedding - - 48
PixelCNN gated residual block [ 3x3 ] × 2 - 384
PixelCNN gated residual block [ 3x3 ] × 2 - 384
PixelCNN gated residual block [ 3x3 ] × 2 - 384

Top-level Encoder h1 → h2

Kernel size Resample Output channels

Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 Down ×2 512
Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 Down ×2 512
Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 - 512
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Top-level Decoder z2 → z1

Kernel size Resample Output channels

Linear - - 4×4×512

Reshape to (512, 4, 4)

Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 Up ×2 512
Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 Up ×2 512
Residual block [ 3x3 ] × 2 - 512
Residual block [ 3x3 ] × 2 - 512

PixelCNN convolution 5x5 - 512
PixelCNN gated residual block [ 3x3 ] × 2 - 512
PixelCNN gated residual block [ 3x3 ] × 2 - 512
PixelCNN gated residual block [ 3x3 ] × 2 - 512
Convolution 1x1 - 256
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