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ABSTRACT

PixelCNNs are a recently proposed class of powerful generative models with
tractable likelihood. Here we discuss our implementation of PixelCNNs which
we make available at https://github.com/openai/pixel-cnn. Our
implementation contains a number of modifications to the original model that both
simplify its structure and improve its performance. 1) We use a discretized logistic
mixture likelihood on the pixels, rather than a 256-way softmax, which we find to
speed up training. 2) We condition on whole pixels, rather than R/G/B sub-pixels,
simplifying the model structure. 3) We use downsampling to efficiently capture
structure at multiple resolutions. 4) We introduce additional short-cut connec-
tions to further speed up optimization. 5) We regularize the model using dropout.
Finally, we present state-of-the-art log likelihood results on CIFAR-10 to demon-
strate the usefulness of these modifications.

1 INTRODUCTION

The PixelCNN, introduced by van den Oord et al. (2016b), is a generative model of images with a
tractable likelihood. The model fully factorizes the probability density function on an image x over
all its sub-pixels (color channels in a pixel) as p(x) =

∏
i p(xi|x<i). The conditional distributions

p(xi|x<i) are parameterized by convolutional neural networks and all share parameters. The Pixel-
CNN is a powerful model as the functional form of these conditionals is very flexible. In addition
it is computationally efficient as all conditionals can be evaluated in parallel on a GPU for an ob-
served image x. Thanks to these properties, the PixelCNN represents the current state-of-the-art in
generative modeling when evaluated in terms of log-likelihood. Besides being used for modeling
images, the PixelCNN model was recently extended to model audio (van den Oord et al., 2016a),
video (Kalchbrenner et al., 2016b) and text (Kalchbrenner et al., 2016a).

For use in our research, we developed our own internal implementation of PixelCNN and made a
number of modifications to the base model to simplify its structure and improve its performance.
We now release our implementation at https://github.com/openai/pixel-cnn, hoping
that it will be useful to the broader community. Our modifications are discussed in Section 2, and
evaluated experimentally in Section 3. State-of-the-art log-likelihood results confirm their useful-
ness.

2 MODIFICATIONS TO PIXELCNN

We now describe the most important modifications we have made to the PixelCNN model archite-
cure as described by van den Oord et al. (2016c). For complete details see our code release at
https://github.com/openai/pixel-cnn.

2.1 DISCRETIZED LOGISTIC MIXTURE LIKELIHOOD

The standard PixelCNN model specifies the conditional distribution of a sub-pixel, or color channel
of a pixel, as a full 256-way softmax. This gives the model a lot of flexibility, but it is also very costly
in terms of memory. Moreover, it can make the gradients with respect to the network parameters
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very sparse, especially early in training. With the standard parameterization, the model does not
know that a value of 128 is close to a value of 127 or 129, and this relationship first has to be learned
before the model can move on to higher level structures. In the extreme case where a particular
sub-pixel value is never observed, the model will learn to assign it zero probability. This would be
especially problematic for data with higher accuracy on the observed pixels than the usual 8 bits: In
the extreme case where very high precision values are observed, the PixelCNN, in its current form,
would require a prohibitive amount of memory and computation, while learning very slowly. We
therefore propose a different mechanism for computing the conditional probability of the observed
discretized pixel values. In our model, like in the VAE of Kingma et al. (2016), we assume there is
a latent color intensity ν with a continuous distribution, which is then rounded to its nearest 8-bit
representation to give the observed sub-pixel value x. By choosing a simple continuous distribution
for modeling ν (like the logistic distribution as done by Kingma et al. (2016)) we obtain a smooth and
memory efficient predictive distribution for x. Here, we take this continuous univariate distribution
to be a mixture of logistic distributions which allows us to easily calculate the probability on the
observed discretized value x, as shown in equation (2). For all sub-pixel values x excepting the edge
cases 0 and 255 we have:

ν ∼
K∑
i=1

πilogistic(µi, si) (1)

P (x|π, µ, s) =

K∑
i=1

πi [σ((x+ 0.5− µi)/si)− σ((x− 0.5− µi)/si)] , (2)

where σ() is the logistic sigmoid function. For the edge case of 0, replace x − 0.5 by −∞, and for
255 replace x + 0.5 by +∞. Our provided code contains a numerically stable implementation for
calculating the log of the probability in equation 2.

Our approach follows earlier work using continuous mixture models (Domke et al., 2008; Theis
et al., 2012; Uria et al., 2013; Theis & Bethge, 2015), but avoids allocating probability mass to
values outside the valid range of [0, 255] by explicitly modeling the rounding of ν to x. In addi-
tion, we naturally assign higher probability to the edge values 0 and 255 than to their neighboring
values, which corresponds well with the observed data distribution as shown in Figure 1. Experi-
mentally, we find that only a relatively small number of mixture components, say 5, is needed to
accurately model the conditional distributions of the pixels. The output of our network is thus of
much lower dimension, yielding much denser gradients of the loss with respect to our parameters. In
our experiments this greatly sped up convergence during optimization, especially early on in train-
ing. However, due to the other changes in our architecture compared to that of van den Oord et al.
(2016c) we cannot say with certainty that this would also apply to the original PixelCNN model.

Figure 1: Marginal distribution of all sub-pixel values in CIFAR-10. The edge value of 255 is
much more frequent than its neighbouring values: This is easy to model using our rounding based
approach, but harder using continuous or truncated distributions.
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2.2 CONDITIONING ON WHOLE PIXELS

The pixels in a color image consist of three real numbers, giving the intensities of the red, blue and
green colors. The original PixelCNN factorizes the generative model over these 3 sub-pixels. This
allows for very general dependency structure, but it also complicates the model: besides keeping
track of the spatial location of feature maps, we now have to separate out all feature maps in 3
groups depending on whether or not they can see the R/G/B sub-pixel of the current location. This
added complexity seems to be unnecessary as the dependencies between the color channels of a pixel
are likely to be relatively simple and do not require a deep network to model. Therefore, we instead
condition only on whole pixels up and to the left in an image, and output joint predictive distributions
over all 3 channels of a predicted pixel. The predictive distribution on a pixel itself can be interpreted
as a simple factorized model: We first predict the red channel using a discretized mixture of logistics
as described in section 2.1. Next, we predict the green channel using a predictive distribution of the
same form. Here we allow the means of the mixture components to linearly depend on the value of
the red sub-pixel. Finally, we model the blue channel in the same way, where we again only allow
linear dependency on the red and green channels. For the pixel (ri,j , gi,j , bi,j) at location (i, j) in
our image, the distribution conditional on the context Ci,j , consisting of the mixture indicator and
the previous pixels, is thus

p(ri,j , gi,j , bi,j |Ci,j) = P (ri,j |µr(Ci,j), sr(Ci,j))× P (gi,j |µg(Ci,j , ri,j), sg(Ci,j))

×P (bi,j |µb(Ci,j , ri,j , gi,j), sb(Ci,j))

µg(Ci,j , ri,j) = µg(Ci,j) + α(Ci,j)ri,j

µb(Ci,j , ri,j , gi,j) = µb(Ci,j) + β(Ci,j)ri,j + γ(Ci,j)bi,j , (3)

with α, β, γ scalar coefficients depending on the mixture component and previous pixels.

The mixture indicator is shared across all 3 channels; i.e. our generative model first samples a mix-
ture indicator for a pixel, and then samples the color channels one-by-one from the corresponding
mixture component. Had we used a discretized mixture of univariate Gaussians for the sub-pixels,
instead of logistics, this would have been exactly equivalent to predicting the complete pixel using
a (discretized) mixture of 3-dimensional Gaussians with full covariance. The logistic and Gaus-
sian distributions are very similar, so this is indeed very close to what we end up doing. For full
implementation details we refer to our code at https://github.com/openai/pixel-cnn.

2.3 DOWNSAMPLING VERSUS DILATED CONVOLUTION

The original PixelCNN only uses convolutions with small receptive field. Such convolutions are
good at capturing local dependencies, but not necessarily at modeling long range structure. Al-
though we find that capturing these short range dependencies is often enough for obtaining very
good log-likelihood scores (see Table 2), explicitly encouraging the model to capture long range
dependencies can improve the perceptual quality of generated images (compare Figure 3 and Fig-
ure 5). One way of allowing the network to model structure at multiple resolutions is to introduce
dilated convolutions into the model, as proposed by van den Oord et al. (2016a) and Kalchbren-
ner et al. (2016b). Here, we instead propose to use downsampling by using convolutions of stride
2. Downsampling accomplishes the same multi-resolution processing afforded by dilated convo-
lutions, but at a reduced computational cost: where dilated convolutions operate on input of ever
increasing size (due to zero padding), downsampling reduces the input size by a factor of 4 (for
stride of 2 in 2 dimensions) at every downsampling. The downside of using downsampling is that
it loses information, but we can compensate for this by introducing additional short-cut connections
into the network as explained in the next section. With these additional short-cut connections, we
found the performance of downsampling to be the same as for dilated convolution.

2.4 ADDING SHORT-CUT CONNECTIONS

For input of size 32 × 32 our suggested model consists of 6 blocks of 5 ResNet layers. In between
the first and second block, as well as the second and third block, we perform subsampling by strided
convolution. In between the fourth and fifth block, as well as the fifth and sixth block, we perform
upsampling by transposed strided convolution. This subsampling and upsampling process loses
information, and we therefore introduce additional short-cut connections into the model to recover
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this information from lower layers in the model. The short-cut connections run from the ResNet
layers in the first block to the corresponding layers in the sixth block, and similarly between blocks
two and five, and blocks three and four. This structure resembles the VAE model with top down
inference used by Kingma et al. (2016), as well as the U-net used by Ronneberger et al. (2015) for
image segmentation. Figure 2 shows our model structure graphically.

= Identity (skip) 
      connection

x

32x32 16x16 8x8 8x8

x

= Sequence of 6 
    layers

16x16 32x32

= Convolutional 
    connection

= Downward stream

= Downward and  
      rightward stream

Figure 2: Like van den Oord et al. (2016c), our model follows a two-stream (downward, and
downward+rightward) convolutional architecture with residual connections; however, there are two
significant differences in connectivity. First, our architecture incorporates downsampling and up-
sampling, such that the inner parts of the network operate over larger spatial scale, increasing com-
putational efficiency. Second, we employ long-range skip-connections, such that each k-th layer
provides a direct input to the (K − k)-th layer, where K is the total number of layers in the net-
work. The network is grouped into sequences of six layers, where most sequences are separated by
downsampling or upsampling.

2.5 REGULARIZATION USING DROPOUT

The PixelCNN model is powerful enough to overfit on training data. Moreover, rather than just
reproducing the training images, we find that overfitted models generate images of low perceptual
quality, as shown in Figure 8. One effective way of regularizing neural networks is dropout (Srivas-
tava et al., 2014). For our model, we apply standard binary dropout on the residual path after the first
convolution. This is similar to how dropout is applied in the wide residual networks of Zagoruyko
& Komodakis (2016). Using dropout allows us to successfully train high capacity models while
avoiding overfitting and producing high quality generations (compare figure 8 and figure 3).

3 EXPERIMENTS

We apply our model to modeling natural images in the CIFAR-10 data set. We achieve state-of-the-
art results in terms of log-likelihood, and generate images with coherent global structure.

3.1 UNCONDITIONAL GENERATION ON CIFAR-10

We apply our PixelCNN model, with the modifications as described above, to generative modeling of
the images in the CIFAR-10 data set. For the encoding part of the PixelCNN, the model uses 3 Resnet
blocks consisting of 5 residual layers, with 2× 2 downsampling in between. The same architecture
is used for the decoding part of the model, but with upsampling instead of downsampling in between
blocks. All residual layers use 192 feature maps and a dropout rate of 0.5. Table 1 shows the state-
of-the-art test log-likelihood obtained by our model. Figure 3 shows some samples generated by the
model.
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Figure 3: Samples from our PixelCNN model trained on CIFAR-10.

Model Bits per sub-pixel
Deep Diffusion (Sohl-Dickstein et al., 2015) 5.40
NICE (Dinh et al., 2014) 4.48
DRAW (Gregor et al., 2015) 4.13
Deep GMMs (van den Oord & Dambre, 2015) 4.00
Conv DRAW (Gregor et al., 2016) 3.58
Real NVP (Dinh et al., 2016) 3.49
PixelCNN (van den Oord et al., 2016b) 3.14
VAE with IAF (Kingma et al., 2016) 3.11
Gated PixelCNN (van den Oord et al., 2016c) 3.03
PixelRNN (van den Oord et al., 2016b) 3.00
PixelCNN++ 2.92

Table 1: Negative log-likelihood for generative models on CIFAR-10 expressed as bits per sub-pixel.

3.2 CLASS-CONDITIONAL GENERATION

Next, we follow van den Oord et al. (2016c) in making our generative model conditional on the
class-label of the CIFAR-10 images. This is done by linearly projecting a one-hot encoding of the
class-label into a separate class-dependent bias vector for each convolutional unit in our network. We
find that making the model class-conditional makes it harder to avoid overfitting on the training data:
our best test log-likelihood is 2.94 in this case. Figure 4 shows samples from the class-conditional
model, with columns 1-10 corresponding the 10 classes in CIFAR-10. The images clearly look
qualitatively different across the columns and for a number of them we can clearly identify their
class label.
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Figure 4: Class-conditional samples from our PixelCNN for CIFAR-10 (left) and real CIFAR-10
images for comparison (right).

3.3 EXAMINING NETWORK DEPTH AND FIELD OF VIEW SIZE

It is hypothesized that the size of the receptive field and additionally the removal of blind spots in
the receptive field are important for PixelCNN’s performance (van den Oord et al., 2016b). Indeed
van den Oord et al. (2016c) specifically introduced an improvement over the previous PixelCNN
model to remove the blind spot in the receptive field that was present in their earlier model.

Here we present the surprising finding that in fact a PixelCNN with rather small receptive field can
attain competitive generative modelling performance on CIFAR-10 as long as it has enough capacity.
Specifically, we experimented with our proposed PixelCNN++ model without downsampling blocks
and reduce the number of layers to limit the receptive field size. We investigate two receptive field
sizes: 11x5 and 15x8, and a receptive field size of 11x5, for example, means that the conditional
distribution of a pixel can depends on a rectangle above the pixel of size 11x5 as well as 11−1

2 = 5x1
block to the left of the pixel.

As we limit the size of the receptive field, the capacity of the network also drops significantly since
it contains many fewer layers than a normal PixelCNN. We call the type of PixelCNN that’s simply
limited in depth “Plain” Small PixelCNN. Interestingly, this model already has better performance
than the original PixelCNN in van den Oord et al. (2016b) which had a blind spot. To increase
capacity, we introduced two simple variants that make Small PixelCNN more expressive without
growing the receptive field:

• NIN (Network in Network): insert additional gated ResNet blocks with 1x1 convolution be-
tween regular convolution blocks that grow receptive field. In this experiment, we inserted
3 NIN blocks between every other layer.
• Autoregressive Channel: skip connections between sets of channels via 1x1 convolution

gated ResNet block.

Both modifications increase the capacity of the network, resulting in improved log-likelihood as
shown in Table 2. Although the model with small receptive field already achieves an impressive
likelihood score, its samples do lack global structure, as seen in Figure 5.
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Table 2: CIFAR-10 bits per sub-pixel for Small PixelCNN

Model Bits per sub-pixel
Field=11x5, Plain 3.11
Field=11x5, NIN 3.09
Field=11x5, Autoregressive Channel 3.07
Field=15x8, Plain 3.07
Field=15x8, NIN 3.04
Field=15x8, Autoregressive Channel 3.03

Figure 5: Samples from 3.03 bits/dim Small PixelCNN

3.4 ABLATION EXPERIMENTS

In order to test the effect of our modifications to PixelCNN, we run a number of ablation experiments
where for each experiment we remove a specific modification.

3.4.1 SOFTMAX LIKELIHOOD INSTEAD OF DISCRETIZED LOGISTIC MIXTURE

In order to test the contribution of our logistic mixture likelihood, we re-run our CIFAR-10 experi-
ment with the 256-way softmax as the output distribution instead. We allow the 256 logits for each
sub-pixel to linearly depend on the observed value of previous sub-pixels, with coefficients that are
given as output by the model. Our model with softmax likelihood is thus strictly more flexible than
our model with logistic mixture likelihood, although the parameterization is quite different from that
used by van den Oord et al. (2016c). The model now outputs 1536 numbers per pixel, describing the
logits on the 256 potential values for each sub-pixel, as well as the coefficients for the dependencies
between the sub-pixels. Figure 6 shows that this model trains more slowly than our original model.
In addition, the running time per epoch is significantly longer for our tensorflow implementation.
For our architecture, the logistic mixture model thus clearly performs better. Since our architecture
differs from that of van den Oord et al. (2016c) in other ways as well, we cannot say whether this
would also apply to their model.

3.4.2 CONTINUOUS MIXTURE LIKELIHOOD INSTEAD OF DISCRETIZATION

Instead of directly modeling the discrete pixel values in an image, it is also possible to de-quantize
them by adding noise from the standard uniform distribution, as used by Uria et al. (2013) and others,
and modeling the data as being continuous. The resulting model can be interpreted as a variational
autoencoder (Kingma & Welling, 2013; Rezende et al., 2014), where the dequantized pixels z form
a latent code whose prior distribution is captured by our model. Since the original discrete pixels x
can be perfectly reconstructed from z under this model, the usual reconstruction term vanishes from
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Figure 6: Training curves for our model with logistic mixture likelihood versus our model with
softmax likelihood.

the variational lower bound. The entropy of the standard uniform distribution is zero, so the term
that remains is the log likelihood of the dequantized pixels, which thus gives us a variational lower
bound on the log likelihood of our original data.

We re-run our model for CIFAR-10 using the same model settings as those used for the 2.92 bits
per dimension result in Table 1, but now we remove the discretization in our likelihood model and
instead add standard uniform noise to the image data. The resulting model is a continuous mixture
model in the same class as that used by Theis et al. (2012); Uria et al. (2013); Theis & Bethge (2015)
and others. After optimization, this model gives a variational lower bound on the data log likelihood
of 3.11 bits per dimension. The difference with the reported 2.92 bits per dimension shows the
benefit of using discretization in the likelihood model.

3.4.3 NO SHORT-CUT CONNECTIONS

Next, we test the importance of the additional parallel short-cut connections in our model, indicated
by the dotted lines in Figure 2. We re-run our unconditional CIFAR-10 experiment, but remove the
short-cut connections from the model. As seen in Figure 7, the model fails to train without these
connections. The reason for needing these extra short-cuts is likely to be our use of sub-sampling,
which discards information that otherwise cannot easily be recovered,

Figure 7: Training curves for our model with and without short-cut connections.

3.4.4 NO DROPOUT

We re-run our CIFAR-10 model without dropout regularization. The log-likelihood we achieve on
the training set is below 2.0 bits per sub-pixel, but the final test log-likelihood is above 6.0 bits per
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sub-pixel. At no point during training does the unregularized model get a test-set log-likelihood
below 3.0 bits per sub-pixel. Contrary to what we might naively expect, the perceptual quality of
the generated images by the overfitted model is not great, as shown in Figure 8.

Figure 8: Samples from intentionally overfitted PixelCNN model trained on CIFAR-10, with train
log-likelihood of 2.0 bits per dimension: Overfitting does not result in great perceptual quality.

4 CONCLUSION

We presented PixelCNN++, a modification of PixelCNN using a discretized logistic mixture like-
lihood on the pixels among other modifications. We demonstrated the usefulness of these mod-
ifications with state-of-the-art results on CIFAR-10. Our code is made available at https:
//github.com/openai/pixel-cnn and can easily be adapted for use on other data sets.
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