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ABSTRACT

Sum-Product Networks (SPNs) are a class of expressive yet tractable hierarchical
graphical models. LearnSPN is a structure learning algorithm for SPNs that uses
hierarchical co-clustering to simultaneously identifying similar entities and simi-
lar features. The original LearnSPN algorithm assumes that all the variables are
discrete and there is no missing data. We introduce a practical, simplified version
of LearnSPN, MiniSPN, that runs faster and can handle missing data and hetero-
geneous features common in real applications. We demonstrate the performance
of MiniSPN on standard benchmark datasets and on two datasets from Google’s
Knowledge Graph exhibiting high missingness rates and a mix of discrete and
continuous features.

1 INTRODUCTION

The Sum-Product Network (SPN) [Poon & Domingos, 2011] is a tractable and interpretable deep
model. An advantage of SPNs over other graphical models such as Bayesian Networks is that they
allow efficient exact inference in linear time with network size. An SPN represents a multivari-
ate probability distribution with a directed acyclic graph consisting of sum nodes (clusters over
instances), product nodes (partitions over features), and leaf nodes (univariate distributions over
features), as shown in Figure 1.

The standard algorithms for learning SPN structure assume discrete data with no missingness, and
mostly test on the same set of benchmark data sets that satisfy these criteria [Rooshenas & Lowd,
2014]. This is not a reasonable assumption when dealing with messy data sets in real applications.
The Google Knowledge Graph (KG) is a semantic network of facts, based on Freebase [Bollacker
et al., 2008], used to generate Knowledge Panels in Google Search. KG data is quite heterogeneous,
with a lot of it missing, since much more is known about some entities in the graph than others.
High missingness rates can also worsen the impact of discretizing continuous variables before doing
structure learning, which results in losing more of the already scarce covariance information.

Applications like the KG are common, and there is a need for an SPN learning algorithm that can
handle this kind of data. In this paper, we present MiniSPN, a simplification of a state-of-the-art
SPN learning algorithm that improves its applicability, performance and speed. We demonstrate the
performance of MiniSPN on KG data and on standard benchmark data sets.

2 VARIATION ON THE LEARNSPN ALGORITHM

LearnSPN [Gens & Domingos, 2013] is a greedy algorithm that performs co-clustering by recur-
sively partitioning variables into approximately independent sets and partitioning the training data
into clusters of similar instances, as shown in Figure 2. The variable and instance partitioning
steps are applied to data slices (subsets of instances and variables) produced by previous steps. The
variable partition step uses pairwise independence tests on the variables, and the approximately
independent sets are the connected components in the resulting dependency graph. The instance
clustering step uses a naive Bayes mixture model for the clusters, where the variables in each cluster
are assumed independent. The clusters are learned using hard EM with restarts, avoiding overfitting
using an exponential prior on the number of clusters. The splitting process continues until the data
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Figure 1: Example of an SPN structure
(figure from Zhao et al. [2015])

Figure 2: Recursive partitioning process in the
LearnSPN algorithm
(figure from Gens & Domingos [2013])

slice has too few instances to test for independence, at which point all the variables in that slice are
considered independent. The end result is a tree-structured SPN.

The standard LearnSPN algorithm assumes that all the variables are discrete and there is no missing
data. Hyperparameter values for the cluster penalty and the independence test critical value are
determined using grid search. The clustering step seems unnecessarily complex, involving a penalty
prior, EM restarts, and hyperparameter tuning. It is by far the most complicated part of the algorithm
in a way that seems difficult to justify, and likely the most time-consuming due to the restarts and
hyperparameter tuning. We propose a variation on LearnSPN called MiniSPN that handles missing
data, performs lazy discretization of continuous data in variable partition step, simplifies the model
in the instance clustering step, and does not require hyperparameter search.

We simplify the naive Bayes mixture model in the instance clustering step by attempting a split into
two clusters at any given point, and eliminating the cluster penalty prior, which results in a more
greedy approach than in LearnSPN that does not require restarts or hyperparameter tuning. This
seems like a natural choice of simplification - an extension of the greedy approach used at the the
top level of the LearnSPN algorithm. We compare a partition into univariate leaves to a mixture of
two partitions into univariate leaves (generated using hard EM), and the split succeeds if the two-
cluster version has higher validation set likelihood. If the split succeeds, we apply it to each of the
two resulting data slices, and only move on to a variable partition step after the clustering step fails.
The greedy approach is similar to the one used in the SPN-B method [Vergari et al., 2015], which
however alternates between variable and instance splits by default, thus building even deeper SPNs.

In the variable partition step, we perform an independence test using the subset of rows where both
variables are not missing, and conclude independence if the number of such rows is below threshold.
We apply binary binning to each continuous variable, using its median in the data slice as a cutoff.

We compare to the “Pareto” algorithm, previously used for learning SPN models in KG, inspired by
the work of Grosse et al. [2012]. It produces a Pareto-optimal set of models, trading off between
degrees of freedom and validation set log likelihood score. At each iteration, production rules are
randomly applied to add partition and mixture splits to the models in the current model set, and
the new models are added to the model set. If a model in the model set has both lower degrees of
freedom and higher log likelihood score than another model, the inferior model is removed from
the set. The algorithm returns the model from the Pareto model set with the highest validation log
likelihood. We also compare to a hybrid method, with the Pareto algorithm initialized by MiniSPN.

3 SUMMARY OF EXPERIMENTS

We use two data sets from the Knowledge Graph People collection. In the KG Professions data
set, most of the variables are boolean indicators of whether each person belongs to a particular
profession. There are 83 boolean variables and 4 continuous variables. In the KG Dates data set,
there are 14 continuous variables representing dates of life events for each person and their spouse(s),
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Table 1: Average log likelihood and runtime comparison on KG data sets (best performing methods
are shown in bold).

Test set log likelihood Runtime (seconds)
Data set Pareto Hybrid MiniSPN Pareto Hybrid MiniSPN
Professions-10K -10.2 -6.2 -6.09 5.3 3.7 0.4
Professions-100K -6.61 -6.53 -6.44 72 131 7.2
Dates-10K -8.66 -8.53 -8.68 1.7 2.4 0.26
Dates-100K -17.1 -16.7 -16.5 29 566 5.4

Table 2: Average log likelihood and runtime comparison on literature data sets (best performing
methods are shown in bold).

Test set log likelihood Runtime (seconds)
Data set Pareto Hybrid MiniSPN LearnSPN Pareto Hybrid MiniSPN LearnSPN
NLTCS -6.33 -6.03 -6.12 -6.11 4.8 35 1.4 623
MSNBC -6.54 -6.4 -6.61 -6.1 61 212 5.6 5843
KDDCup -2.17 -2.13 -2.14 -2.18 152 2080 23 9943
Plants -17.3 -13.1 -13.2 -13 28 780 11 2318
Audio -41.9 -39.9 -40 -40.5 28 556 12 3977
Jester -54.6 -52.9 -53 -53.5 13 193 6.7 3946
Netflix -59.5 -56.7 -56.8 -57.3 27 766 14 5062
Accidents -40.4 -32.5 -32.6 -30 31 1140 18 681
Retail -11.1 -11 -11.1 -11.04 25 63 7.3 671
Pumsb-star -40.8 -28.4 -28.3 -24.8 47 1100 22 684
DNA -98.1 -91.5 -93.9 -82 6.3 45 3 339
Kosarek -11.2 -10.8 -10.9 -11 90 537 22 1068
MSWeb -10.7 -9.94 -10.1 -10.25 75 572 34 1404
Book -35.1 -34.7 -34.7 -35.9 83 181 32 4137
EachMovie -55 -52.3 -52.2 -52.5 62 218 22 406
WebKB -161 -155 -155 -158.2 37 169 38 2616
Reuters-52 -92 -85.2 -84.7 -85 76 656 95 4166
Newsgroup -156 -152 -152 -156 181 1190 139 44341
BBC -258 -250 -249 -250.7 33 123 42 20199
Ad -52.3 -49.5 -49.2 -19.7 58 92 50 969

with around 95% of the data missing. We use subsets of 10000 and 100000 instances from each of
these data sets, and randomly split the data sets into a training and test set.

On the KG data sets, we compare MiniSPN, Pareto and Hybrid algorithms. We were not able to
apply the standard LearnSPN algorithm on these data sets, since they contain missing data. Table
1 shows log likelihood performance on the test set and runtime performance. MiniSPN does better
than Pareto, both in terms of log likelihood and runtime. Hybrid performs comparably to MiniSPN,
but is usually the slowest of the three.

We use 20 benchmark data sets from the literature (exactly the same ones used in the LearnSPN
paper [Gens & Domingos, 2013]) to compare the performance of MiniSPN with the standard Learn-
SPN algorithm. We are particularly interested in the effect of MiniSPN’s simple two-cluster instance
split relative to the more complex instance split with the exponential prior and EM restarts used in
the standard LearnSPN. Table 2 shows log likelihood performance on the test set and runtime per-
formance. Like on the KG data, we find that MiniSPN uniformly outperforms Pareto, and performs
similarly to Hybrid and LearnSPN but runs much faster (on the most time-intensive data set, News-
group, MiniSPN takes 2 minutes while LearnSPN takes 12 hours).

4 CONCLUSION

Sum-product networks have been receiving increasing attention from researchers due to their expres-
siveness, efficient inference and interpretability, and many learning algorithms have been developed
in the past few years. While recent developments have mostly focused on improving performance on
benchmark data sets, our variation on a classical learning algorithm is simple yet has a large impact
on usability, by improving speed and making it possible to apply to messy real data sets.
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