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ABSTRACT

The number of word embedding models is growing every year. Most of them learn
word embeddings based on the co-occurrence information of words and their con-
text. However, it’s still an open question what is the best definition of context. We
provide the first systematical investigation of different context types and represen-
tations for learning word embeddings. We conduct comprehensive experiments
to evaluate their effectiveness under 4 tasks (21 datasets), which give us some in-
sights about context selection. We hope that this paper, along with the published
code, can serve as a guideline of choosing context for our community.

1 INTRODUCTION

Recently, there is a growing research interest on word embedding models, where words are em-
bedded into low-dimensional real vectors. Words that share similar meanings tend to have short dis-
tances in the vector space. The trained word embeddings are not only useful by themselves (e.g. used
for calculating word similarities) but also effective when used as the input of the downstream mod-
els, such as chunking, tagging (Collobert & Weston, 2008; Collobert et al., 2011), parsing (Socher
et al., 2011), text classification Socher et al. (2013); Kim (2014) and speech recognition (Schwenk,
2007).

For almost all word embedding models, the training objectives are based on Distributed Hypothesis
(Harris, 1954), which can be stated as: “words that occur in the same contexts tend to have similar
meanings”. The “context” is usually defined as the words which precede and follow the target word
within some fixed distance in most word embedding models with various architectures (Bengio
et al., 2003; Mnih & Hinton, 2007; Mikolov et al., 2013b; Pennington et al., 2014). Among them,
Global Vectors (GloVe) proposed by Pennington et al. (2014), Continuous Skip-Gram (CSG) 1 and
Continuous Bag-Of-Words (CBOW) proposed by Mikolov et al. (2013a) achieve the state-of-the-art
results on a wide range of linguistic tasks, and scales well to corpus with billion words.

Since the simplest way of defining context is used by these classic word embedding models, it is
worth investigating the best definition of “context”. For example, 1) the “context” can also be defined
as the syntactic neighbours of the target word based on dependency parse tree. Is dependency-
based context more reasonable than linear context defined by the positional neighbours of the target
word in plain texts? 2) do the relative position of each contextual word and the relation between

1Many researches refer Continuous Skip-Gram as SG. However, in order to distinguish linear (continuous)
context and dependency-based context, we refer it as CSG.
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Table 1: Generalized Skip-Gram, Bag-Of-Words and GloVe with different context types and context
representations. For linear context, bound word indicates word associated with positional infor-
mation. For dependency-based context, bound word indicates word associated with dependency
relation.

basic model context
representation

context
type linear dependency-based

generalized word CSG (Mikolov et al., 2013a) this work

Skip-Gram bound word Structured SG (Ling et al., 2015)
POSIT (Levy & Goldberg, 2014a)

Deps
(Levy & Goldberg, 2014c)

generalized word CBOW (Mikolov et al., 2013a) this work
Bag-Of-Words bound word CWINDOW (Ling et al., 2015) this work

generalized word GloVe (Pennington et al., 2014) this work
GloVe bound word this work this work

contextual word and target word contribute to the learning process? 3) do different word embedding
models have preference for different context? This paper tries to answer these questions based on
the experimental results according to different tasks.

Previously, Levy & Goldberg (2014a); Ling et al. (2015) 2 improve the CSG and CBOW by intro-
ducing position-aware context, where each contextual word is associated with their relative position
to the target word. Levy & Goldberg (2014c) proposes DEPS, which considers the words that are
connected to target word in dependency parse tree as context. We classify these models based on
different context types (linear or dependency-based) and different context representations (word or
bound word) in Table 1. We implement the models that previously not proposed and give system-
atical comparisons of different context types and context representations on popular CSG, CBOW,
and GloVe. Comprehensive experiments are conducted on a wide range of word similarity, word
analogy, sequence labeling, and text classification datasets. Some insights about determining the
context in different situations are presented. We expect this paper to be an useful complementary in
the word embedding literature.

2 METHODOLOGY

2.1 CONTEXT TYPES

It is necessary to discover more effective ways to define “context”. In the current literature, there are
two types of context: linear (most word embedding models) and dependency-based (DEPS (Levy
& Goldberg, 2014c)). Linear context is defined as the positional neighbours of the target word in
text. Dependency based context is defined as the syntactic neighbours of the target word based on
dependency parse tree, as shown in Figure 1 3.

Compared to linear context, dependency-based context can capture more long-range context. For
example, linear context does not consider the word-context pair (discovers, telescope), while
dependency-based context contains these information. Dependency-based context can also exclude
some uninformative word-context pairs like (with, star) and (telescope, with).

2.2 CONTEXT REPRESENTATIONS

In the CSG and CBOW, context is represented by words without additional information. Levy &
Goldberg (2014a); Ling et al. (2015) improve them by introducing position-bound words, where
each contextual word is associated with their relative position to the target word. This allows CSG

2In these two papers, the description of position-aware context are quite different. However, their ideas is
actually identical.

3This example is originally shown in Levy & Goldberg (2014c)
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in the text. The context vocabulary C is thus
identical to the word vocabulary W . However,
this restriction is not required by the model; con-
texts need not correspond to words, and the num-
ber of context-types can be substantially larger
than the number of word-types. We generalize
SKIPGRAM by replacing the bag-of-words con-
texts with arbitrary contexts.

In this paper we experiment with dependency-
based syntactic contexts. Syntactic contexts cap-
ture different information than bag-of-word con-
texts, as we demonstrate using the sentence “Aus-
tralian scientist discovers star with telescope”.

Linear Bag-of-Words Contexts This is the
context used by word2vec and many other neu-
ral embeddings. Using a window of size k around
the target word w, 2k contexts are produced: the
k words before and the k words after w. For
k = 2, the contexts of the target word w are
w−2, w−1, w+1, w+2. In our example, the contexts
of discovers are Australian, scientist, star, with.2

Note that a context window of size 2 may miss
some important contexts (telescope is not a con-
text of discovers), while including some acciden-
tal ones (Australian is a context discovers). More-
over, the contexts are unmarked, resulting in dis-
covers being a context of both stars and scientist,
which may result in stars and scientists ending
up as neighbours in the embedded space. A win-
dow size of 5 is commonly used to capture broad
topical content, whereas smaller windows contain
more focused information about the target word.

Dependency-Based Contexts An alternative to
the bag-of-words approach is to derive contexts
based on the syntactic relations the word partic-
ipates in. This is facilitated by recent advances
in parsing technology (Goldberg and Nivre, 2012;
Goldberg and Nivre, 2013) that allow parsing to
syntactic dependencies with very high speed and
near state-of-the-art accuracy.

After parsing each sentence, we derive word
contexts as follows: for a target word w with
modifiers m1, . . . ,mk and a head h, we consider
the contexts (m1, lbl1), . . . , (mk, lblk), (h, lbl

−1
h ),

2word2vec’s implementation is slightly more compli-
cated. The software defaults to prune rare words based on
their frequency, and has an option for sub-sampling the fre-
quent words. These pruning and sub-sampling happen before
the context extraction, leading to a dynamic window size. In
addition, the window size is not fixed to k but is sampled
uniformly in the range [1, k] for each word.

Australian scientist discovers star with telescope

amod nsubj dobj

prep

pobj

Australian scientist discovers star telescope

amod nsubj dobj

prep with

WORD CONTEXTS

australian scientist/amod−1

scientist australian/amod, discovers/nsubj−1

discovers scientist/nsubj, star/dobj, telescope/prep with
star discovers/dobj−1

telescope discovers/prep with−1

Figure 1: Dependency-based context extraction example.
Top: preposition relations are collapsed into single arcs,
making telescope a direct modifier of discovers. Bottom: the
contexts extracted for each word in the sentence.

where lbl is the type of the dependency relation be-
tween the head and the modifier (e.g. nsubj, dobj,
prep with, amod) and lbl−1 is used to mark the
inverse-relation. Relations that include a preposi-
tion are “collapsed” prior to context extraction, by
directly connecting the head and the object of the
preposition, and subsuming the preposition itself
into the dependency label. An example of the de-
pendency context extraction is given in Figure 1.

Notice that syntactic dependencies are both
more inclusive and more focused than bag-of-
words. They capture relations to words that are
far apart and thus “out-of-reach” with small win-
dow bag-of-words (e.g. the instrument of discover
is telescope/prep with), and also filter out “coinci-
dental” contexts which are within the window but
not directly related to the target word (e.g. Aus-
tralian is not used as the context for discovers). In
addition, the contexts are typed, indicating, for ex-
ample, that stars are objects of discovery and sci-
entists are subjects. We thus expect the syntactic
contexts to yield more focused embeddings, cap-
turing more functional and less topical similarity.

4 Experiments and Evaluation

We experiment with 3 training conditions: BOW5
(bag-of-words contexts with k = 5), BOW2
(same, with k = 2) and DEPS (dependency-based
syntactic contexts). We modified word2vec to
support arbitrary contexts, and to output the con-
text embeddings in addition to the word embed-
dings. For bag-of-words contexts we used the
original word2vec implementation, and for syn-
tactic contexts, we used our modified version. The
negative-sampling parameter (how many negative
contexts to sample for every correct one) was 15.

Figure 1: Illustration of dependency parse tree for sentence “Australian scientist discovers star with
telescope”. Note that preposition relation is collapsed in the right sub-figure, where telescope is
considered as a direct modifier of discovers.

and CBOW to distinguish different sequential positions and capture context’s structural informa-
tion. We name the method that bind additional information to contextual word as bound context
representation, as opposite to unbound context representation where word is used alone.

For dependency-based context, the original DEPS uses bound context representation by default:
words are associated with their dependency relation to the target word. Similar to bound context
representation in linear context type, this allows word embedding models to capture more depen-
dency information. An example is shown in Table 2

Table 2: Illustration of bound and unbound context representations under linear and dependency-
based context types. This example is based on Figure 1 and the target word is “discovers”.

context
representation

context
type linear dependency-based

unbound australian, scientist, star, with scientist, star, telescope
bound australian/-2, scientist/-1, star/+1, with/+2 scientist/nsubj, star/dobj, telescope/prep with

Note that bound context representation is sparse, especially for dependency-based context. There are
47 dependency relations in dependency parse tree. Although not every combination of dependency
relations and words appear in the word-context pair collection, it still enlarges the context vocabulary
about 5 times in practice. In this paper, we investigate the simpler context representation where no
dependency relation are considered. This also makes a fair comparison with linear context models
like CSG, CBOW and GloVe, since they do not use bound context representation neither.

Table 3: Illustration of collection P , M and M for sentence “australian scientist discovers star with
telescope”. Unbound context representation is used in this example. Words in the collections are
Bold and contexts in the collections are Normal.

linear (window size equals 1) dependency-based

P

(australian, scientist)
(scientist, australian) (scientist, discovers)
(discovers, scientist) (discovers, star)
. . .

(australian, scientist)
(scientist, australian) (scientist, discovers)
(discovers, scientist) (discovers, star)
(discovers, telescope)
. . .

M

(australian, scientist)
(scientist, australian, discovers)
(discovers, scientist, star)
. . .

(australian, scientist)
(scientist, australian, discovers)
(discovers, scientist, star, telescope)
. . .

M

(australian, scientist, 1)
(scientist, australian, 1) (scientist, discovers, 1)
(discovers, scientist, 1) (discovers, star, 1)
. . .

(australian, scientist, 1)
(scientist, australian, 1) (scientist, discovers, 1)
(discovers, scientist, 1) (discovers, star, 1)
(discovers, telescope, 1)
. . .
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2.3 GENERALIZATION

For convenient and general representation, we first define the collection of word-context pairs as
P . P can be merged based on the words to form a collection M with size of |C|. Each element
(w, c1, c2, .., cnw

) ∈M is the wordw and its contexts, where nw is the number of wordw’s contexts.
P can also be merge based on both words and contexts to form a collection M . Each element
(w, c,#(w, c)) ∈ M is the word w, context c, and the times they appears in collection P . An
example of these collections is shown in Table 3.

2.3.1 GENERALIZED BAG-OF-WORDS

The objective function of Generalized Bag-Of-Words (GBOW) with negative sampling technique is
defined as:∑
(w,c1,..,cnw )∈M

log p

(
w

∣∣∣∣∣
nw∑
i=1

~ci

)
=

∑
(w,c1,..,cnw )∈M

[
log σ

(
~w ·

nw∑
i=1

~ci

)
−

K∑
k=1

log σ

(
~wN ·

nw∑
1=i

~ci

)]
(1)

where σ is the sigmoid function, K is the negative sampling size, ~w and ~c is the vector for word
w and c respectively. The negatively sampled random word wN is selected based on its unigram
distribution ( #(w)∑

w #(w) )
ds, where #(w) is the number of times that word w appears in the corpus, ds

is the distribution smoothing hyper-parameter which is usually defined as 0.75.

Note that in original CBOW with negative sampling technique, the probability is actually p (c|
∑

~wi)
instead of p (w|

∑
~ci). In other word, original CBOW uses the sum of word vectors to predict

context. This works well for linear context. But for dependency-based context with bound word,
there is only one contextual word available for prediction. For example in Figure 1, the context
“scientist/nsubj” can only be predicted by word “discovers”. However, a word can be predicted by
the sum of several contexts. Due to this reason, we exchange the role of word and context in GBOW.
The negative sampling objective is also changed from context cN to word wN .

2.3.2 GENERALIZED SKIP-GRAM

For generalized Skip-Gram (GSG), the definition is straightforward and actually need no modifica-
tion of the objective function, as discussed in (Levy & Goldberg, 2014a). However, in order to make
it consistent with our GBOW, we also exchange the role of word and context. the objective function
of GSG is defined as:∑

(w,c)∈P

log p (w|~c) =
∑

(w,c)∈P

[
log σ (~w · ~c)−

K∑
k=1

log σ ( ~wN · ~c)

]
(2)

2.3.3 GLOVE

Unlike GSG and GBOW, GloVe explicitly optimizes a log-bilinear regression model based on word
co-occurrence matrix. Since GloVe is already a very generalized model, with our previous defined
collection M , the final objective function is easily written as:∑

(w,c)∈M

f(#(w, c))(~w · ~c+ ~bw + ~bc − log#(w, c)) (3)

where f is a non-decreasing weighting function and ensures the weight of large #(w, c) to be
relatively small.

Note that the inputs of GSG, GBOW and Glove are the collection P , M and M respectively. Once
the corpus and hyper-parameters are fixed, these collections (and thus the learned word embedings)
are determined only by the choice of context types and representations.

3 EXPERIMENTS

We evaluate the effectiveness of different context types and representations on word similarity task,
word analogy task, sequence labeling task, and text classification task. In this Section, we first
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describe the training details of word embedding models. We then report and discuss the experimental
results on each task. The full experimental results can be found in the Appendix.

3.1 TRAINING DETAILS

The word2vecf toolkit 4 (Levy et al., 2015) extends the word2vec toolkit 5 (Mikolov et al.,
2013b) to accept the input of collection P rather than raw corpus. This makes CSG model accept
any arbitrary contexts (e.g. dependency-based context). However, CBOW model is not considered
in that toolkit. We implement word2vecPM 6, a further extension of word2vecf, which supports
both generalized SG and generalized BOW with the input of collection P and M respectively.

We use English Wikipedia (August 2013 dump) as the training corpus in all of our experiments. The
Stanford CoreNLP (Manning et al., 2014) is used for dependency parsing. All words and contexts
are converted to lower case after parsing. Words and contexts that appear less than 100 times in
collection P and M are directly ignored. Note that this is slightly different from ignoring rare word
that appear less than 100 times in corpus, since each word may appear more times in collection than
that in corpus.

Most hyper-parameters are the same as Levy et al. (2015)’s best configuration. For example, negative
sampling size K is set to 5 for GSG and 2 for GBOW. Distribution smoothing cds is set to 0.75. No
dynamic context or “dirty” sub-sampling is used. The window size wn is fixed to 2 for constructing
linear context, which insures the number of the (merged) word-context pair collection for both linear
context and dependency-based context is comparable. The number of iteration is set to 2, 5 and 30
for GSG, GBOW and GloVe respectively. Unless otherwise noted, the number of word embedding
dimension is set to 500. Since the aim of this paper is not comparing the performance of different
word embedding models, the results of GSG, GBOW and GloVe are reported respectively.

3.2 WORD SIMILARITY TASK

Word similarity task aims at producing a semantic similarity score of a word pair, which is compared
with the human label. The cosine distance is used for scoring similarities between two words,
and measured by Spearman’s correlation. Six datasets are used in our experiments: WordSim353
(Finkelstein et al., 2001) with similarity and relatedness partition (Zesch et al., 2008; Agirre et al.,
2009), MEN dataset (Bruni et al., 2012), Mechanical Turk dataset (Radinsky et al., 2011), Rare
Words dataset (Luong et al., 2013), SimLex-999 dataset (Hill et al., 2016).

Table 4: Results on 6 word similarity datasets. Best results in group are marked Bold.

model context context WS353 WS353 MEN Mech Rare SimLex
type rep sim related Turk Words 999

GSG
linear word .757 .563 .732 .632 .414 .417

bound .762 .543 .695 .608 .421 .434

dep word .776 .531 .728 .644 .422 .418
bound .792 .483 .674 .643 .413 .421

GBOW
linear word .747 .503 .718 .644 .436 .439

bound .689 .427 .659 .512 .403 .428

dep word .669 .395 .667 .541 .412 .386
bound .799 .502 .640 .587 .434 .403

GloVe
linear word .645 .545 .662 .587 .354 .323

bound .670 .481 .563 .587 .400 .363

dep word .696 .539 .692 .603 .371 .342
bound .734 .468 .541 .557 .409 .406

As shown in the numerical results in Table 4, there is no single model consistently outperform
the rest across all datasets. Although the overall trend of GSG, GBOW and GloVe using different
context types and representations is similar, GBOW seems more benefit from linear context than

4https://bitbucket.org/yoavgo/word2vecf
5http://code.google.com/p/word2vec/
6https://github.com/libofang/word2vecPM
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Figure 2: Results on WordSim353 (similarity and relatedness) datasets.

GSG and GloVe. GBOW takes the sum of context vectors as prediction function’s input, thus is less
sensitive syntactic structure. In other words, since the “right” context is summed with other context,
it’s information contributes less than that in GSG.

More conclusion could be conducted if we focus on the WordSim353 dataset with similarity and re-
latedness partition. It’s previously commonly believed that compared to linear context, dependency-
based context can capture more functional similarity (e.g. tiger/cat) rather than topical similari-
ty/relatedness (e.g., tiger/jungle) (Levy & Goldberg, 2014c; Melamud et al., 2016). However, these
experiments do not distinguish the effect of different context representations: unbound represen-
tation is used for linear context ((Mikolov et al., 2013b)) while bound representation is used for
dependency-based context ((Levy & Goldberg, 2014c)). Moreover, only CSG model is compared.

We revisit previous claims based on more systematical results. As shown in Figure 2’s upper-left
sub-figure, compared to linear context (solid and dotted blue line), the better results of dependency-
based context for GSG and GloVe (solid and dotted red line) on ws353’s similarity partition confirms
its ability of capturing functional similarity. However, the good performance of dependency-based
context for GSG do not fully transfer to GBOW. Although dependency-based context with bound
representation for GBOW is still the best performer, dependency-based context with unbound rep-
resentation for GBOW (solid red line) performs worst on ws353’s similarity partition. Note that the
results are also reversed on ws353’s relatedness partition (Figure 2’s right sub-figures), which shows
the use of linear context is more suitable for capturing topical relatedness.

3.3 WORD ANALOGY TASK

Word analogy task aims at answering the question like “a is to b as c is to ?”. For example,
“London is to UK as Tokyo is to Japan”. We follow the evaluation protocol in Levy & Goldberg
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Table 5: Results on 6 word similarity datasets and 3 word analogy datasets. Best results in group are
marked Bold.

model context context Google Google MSR Inflectional Derivational Encyclopedic Lexicographictype rep Sem Syn morphology morphology

GSG
linear word .708 .639 .642 .678 .110 .242 .083

bound .702 .454 .653 .668 .111 .208 .099

dep word .716 .661 .644 .691 .122 .253 .095
bound .600 .307 .600 .668 .112 .170 .099

GBOW
linear word .628 .566 .601 .618 .096 .201 .074

bound .602 .376 .569 .572 .091 .157 .081

dep word .573 .553 .520 .496 .094 .216 .076
bound .495 .248 .516 .563 .086 .126 .078

GloVe
linear word .471 .719 .454 .425 .033 .226 .054

bound .502 .218 .542 .559 .044 .129 .095

dep word .513 .700 .525 .491 .043 .227 .063
bound .402 .121 .525 .446 .033 .093 .083
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Figure 3: Results on Google (Sem and Syn) and BATS datasets (Encyclopedic and Lexicographic).

(2014a), answering the questions using both 3CosAdd and 3CosMul. Our experiments show that
3CosMul works consistently better than 3CosAdd, thus only the results of 3CosMul are reported.
We follow previous researches, use Google’s analogy dataset (Mikolov et al., 2013a) (with semantic
and syntactic partition), MSR’s analogy dataset (Mikolov et al., 2013c), and BATS analogy dataset
(Gladkova et al., 2016) in our experiments.

Numerical results are shown in Table 5. We observe that the context representation plays an impor-
tant role in word analogy task. The choice of context representation (word or bound word) actually
has much larger impact than the choice of context type (linear or dependency). The results on
Google Syn dataset (Figure 3’s sub-figures in second column) is perhaps most evident. The per-
formance of linear context and dependency-based context with unbound representation is similar.
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However, when bound context representation is used, the performance of GSG and GBOW drops
more than 30 percent for dependency-based context and around 20 percent for linear context. The
main reason for this phenomenon may be that the bound representation already contains syntactic
information, thus word embedding models can not learn it from the input word-context pairs. It can
also be observed that GloVe is more sensitive to different context representations than Skip-Gram
and CBOW, which is probably due to its explicitly defined/optimized objective function.

3.4 SEQUENCE LABELING TASK

Although intrinsic evaluations like word similarity and word analogy tasks could provide direct
insights of different context types and representations, the experimental results above cannot be
translated to typical uses of word embeddings. For example, these tasks aren’t necessarily correlated
with downstream tasks’ accuracy, as shown in (Schnabel et al., 2015; Linzen, 2016; Chiu et al.,
2016). More extrinsic tasks should be considered.

0 100 200 300 400 500
dimension

84

86

88

90

92

94

96

98

a
cc

u
ra

cy
 (

%
)

GSG on Part-of-Speech Tagging

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep

0 100 200 300 400 500
dimension

86

88

90

92

94

96

98

a
cc

u
ra

cy
 (

%
)

GBOW on Part-of-Speech Tagging

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep

0 100 200 300 400 500
dimension

80

82

84

86

88

90

92

94

96

a
cc

u
ra

cy
 (

%
)

GloVe on Part-of-Speech Tagging

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep

0 100 200 300 400 500
dimension

65

70

75

80

85

90
F1

-s
co

re
 (

%
)

GSG on Chunking

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep

0 100 200 300 400 500
dimension

65

70

75

80

85

90

F1
-s

co
re

 (
%

)

GBOW on Chunking

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep

0 100 200 300 400 500
dimension

60

65

70

75

80

85

90

F1
-s

co
re

 (
%

)

GloVe on Chunking

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep

0 100 200 300 400 500
dimension

66

68

70

72

74

76

78

F1
-s

co
re

 (
%

)

GSG on Named Entity Recognition

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep

0 100 200 300 400 500
dimension

66

68

70

72

74

76

F1
-s

co
re

 (
%

)
GBOW on Named Entity Recognition

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep

0 100 200 300 400 500
dimension

60

62

64

66

68

70

72

74

76

F1
-s

co
re

 (
%

)

GloVe on Named Entity Recognition

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep

Figure 4: Results on sequence labeling task.

In this Subsection, we evaluate the effectiveness of different word embedding models with different
contexts on sequence labeling task. Sequence labeling aims at automatically assigning words in
texts with labels. Three sub-tasks are considered: Part-of-Speech Tagging (POS), Chunking and
Named Entity Recognition (NER) . CoNLL 2000 shared task 7 is used as benchmark for POS and
Chunking. CoNLL 2003 shared task 8 is used as benchmark for NER.

Recent advances on sequence labeling task are based on neural networks like Recurrent Neural
Network, Convolutional Neural Network, and their combinations with Conditional Random Fields
(Collobert et al., 2011; Huang et al., 2015; Ma & Hovy, 2016). These models all require word

7http://www.cnts.ua.ac.be/conll2000/chunking
8http://www.cnts.ua.ac.be/conll2003/ner
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embeddings as input. Inspired by the evaluation protocol used in Kiros et al. (2015), we restrict the
prediction to simple linear classifier. More precisely, the classifier’s input for predicting the label of
word wi is simply the concatenation of vector ~wi−2, ~wi−1, ~wi, ~wi+1, ~wi+2. This ensures the quality
of embedding models is directly evaluated, and their strengths and weaknesses are easily observed.

As shown in Figure 4, the overall trend of GSG, GBOW and GloVe is identical except on NER task.
Linear context type (red line) works better than dependency-based (blue line) context type when
unbound context representation is used. The results are reversed when bound context representation
is used. Bound context representation (dotted linear) outperforms unbound context representation
(solid linear) on all datasets. These results suggest that linear context type with unbound context
representations (as in traditional CSG and CBOW) may not be the best choice of input word vectors
for sequence labeling. Dependency-based context with bound context representations should be used
instead. Again, similar to that on word analogy task, GloVe is more sensitive to different context
representations than Skip-Gram and CBOW on sequence labeling task.

3.5 TEXT CLASSIFICATION TASK

Finally, we evaluate the effectiveness of different word embedding models with different contexts
on text classification task. Text classification is one of the most popular and well-studied task in
natural language processing. Recently, deep neural networks are dominant on this task (Socher
et al., 2013; Kim, 2014; Dai & Le, 2015). They often need pre-trained word embeddings as inputs
to improve their performances. Similar to our evaluation of sequence labeling, instead of building
complex deep neural networks, we use a simpler classification method called Neural Bag-of-Words
to directly evaluate the word embeddings: texts are first represented by the sum of their belonging
words’ vectors, then a Logistic Regression Classifier is built upon them for classification.

Different word embedding models are evaluated on 5 text classification datasets. The first 3 datasets
are sentence-level: short movie review sentiment (MR) (Pang & Lee, 2005), customer product re-
views (CR) (Nakagawa et al., 2010), and subjectivity/objectivity classification (SUBJ) (Pang & Lee,
2004). The other 2 datasets are document-level with multiple sentences: full-length movie review
(RT-2k) (Pang & Lee, 2004), and IMDB movie review (IMDB) (Maas et al., 2011).

As shown in Table 6, pre-trained word embeddings outperform random word embeddings by a large
margin. This further strengthen previous researches that pre-trained word embeddings are crucial for
text classification. Unlike that on previous tasks, different models’ results are actually very similar
on text classification task. Overall, models which use bound context representation perform worse
than those which use unbound context representation on all datasets except CR. The performances
of models that use dependency-based context type and linear context type is comparable. These
observations suggest that simple linear context type with unbound context representations (as in
traditional CSG and CBOW) is still the best choice of pre-training word embeddings, which is
already used in most researches.

Table 6: Results on 5 text classification datasets.

model context context sentence-level document-level
type rep MR CR Subj RT-2k IMDB

GSG
linear word 76.1 78.3 90.9 83.5 85.2

bound 75.3 79.0 90.4 82.2 85.2

dep word 76.0 77.7 90.7 84.8 85.1
bound 75.0 77.5 90.0 84.7 84.5

GBOW
linear word 74.9 77.9 90.4 82.0 85.0

bound 74.1 77.8 90.3 80.7 84.1

dep word 75.0 77.6 90.1 82.4 84.9
bound 73.5 78.2 89.9 80.7 83.4

GloVe
linear word 73.4 76.7 89.6 79.2 83.5

bound 73.2 77.5 90.0 79.8 83.4

dep word 74.0 77.7 89.5 81.3 83.5
bound 72.5 76.7 88.8 79.2 83.5

random word embeddings 63.9 72.8 79.9 72.2 77.2
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4 RELATED WORK

Previously, there are researches which directly compare different word embedding models. ? com-
pares 6 word embedding models using different corpora and hyper-parameters. Levy & Goldberg
(2014b) shows the theoretical equivalence of CSG and PPMI matrix factorization. Levy et al. (2015)
further discusses the connections between 4 word embedding models (PPMI, PPMI+SVD, CSG,
GloVe) and re-evaluates them with the same hyper-parameters. Suzuki & Nagata (2015) investi-
gates different configurations of CSG and Glove, then merges them into a unified form. Yin &
Schutze (2016) proposes 4 ensemble methods and shows their effectiveness over individual word
embeddings.

There are also researches which focus on evaluating different context types in learning word em-
beddings. Vulic & Korhonen (2016) compares CSG and dependency-based models on various lan-
guages. The results suggest that dependency-based models are able to detect functional similarity
on English. However, the advantages of dependency-based context over linear context on other lan-
guages is not as promising as that on English. Bansal et al. (2014) investigates different embedding
models for parsing task and shows that dependency-based context is more suitable than linear con-
text. Melamud et al. (2016) investigate the performance of CSG, Deps and a substitute-based word
embedding models (Yatbaz et al., 2012) 9, which shows that different types of intrinsic task have
clear preference to particular types of contexts. On the other hand, for extrinsic task, the optimal
context types need to be carefully tuned on specific dataset. However, context representations (word
and bound) are not evaluated in these models. Moreover, they focus only on CSG model since it’s
more general and intuitive for dependency-based context.

5 CONCLUSION

To the best of our knowledge, this paper provides the first systematical investigation of different
context types and representations for learning word embeddings. We evaluate different models on 4
tasks with totally 21 datasets. Experimental results show that:

• Dependency-based context type does not get all the credit for capturing functional similar-
ity. Bound context representation also plays an important role, especially for GBOW.

• Syntactic word analogy benefits less from bound context representation. Bound context
representation already contains syntactic information, which makes it difficult to capture
this information based on the input word-context pairs.

• Bound context representation is suitable for sequence labeling task, especially when it is
used along with dependency-based context.

• On text classification task, different contexts do not affect the final performance much.
Nonetheless, the use of pre-trained word embeddings is crucial and linear context type
with unbound representation (Skip-Gram) is still the best choice.

• The overall tendency of models with different contexts is similar, especially for Skip-Gram
and GloVe. GloVe is more sensitive to different contexts than Skip-Gram and CBOW.
CBOW benefits most from linear context type.

In the spirit of transparent and reproducible experiments, the source code is published at https:
//github.com/libofang/word2vecPM. We hope researchers will take advantage of our
code for further improvements and applications to other tasks.
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Figure 5: Full results on word similarity task.
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Figure 6: Full results on word analogy task.
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Figure 7: Full results on sequence labeling task.

16



Under review as a conference paper at ICLR 2017

0 100 200 300 400 500
dimension

50

55

60

65

70

75

80

a
cc

u
ra

cy
 (

%
)

GSG on MR

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

50

55

60

65

70

75

80

a
cc

u
ra

cy
 (

%
)

GBOW on MR

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

50

55

60

65

70

75

80

a
cc

u
ra

cy
 (

%
)

GloVe on MR

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

62

64

66

68

70

72

74

76

78

80

a
cc

u
ra

cy
 (

%
)

GSG on CR

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

62

64

66

68

70

72

74

76

78

80

a
cc

u
ra

cy
 (

%
)

GBOW on CR

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

62

64

66

68

70

72

74

76

78

a
cc

u
ra

cy
 (

%
)

GloVe on CR

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

60

65

70

75

80

85

90

95

a
cc

u
ra

cy
 (

%
)

GSG on Subj

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

60

65

70

75

80

85

90

95

a
cc

u
ra

cy
 (

%
)

GBOW on Subj

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

60

65

70

75

80

85

90

a
cc

u
ra

cy
 (

%
)

GloVe on Subj

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

55

60

65

70

75

80

85

a
cc

u
ra

cy
 (

%
)

GSG on RT-2k

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

55

60

65

70

75

80

85

a
cc

u
ra

cy
 (

%
)

GBOW on RT-2k

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

55

60

65

70

75

80

85

a
cc

u
ra

cy
 (

%
)

GloVe on RT-2k

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

55

60

65

70

75

80

85

90

a
cc

u
ra

cy
 (

%
)

GSG on IMDB

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

55

60

65

70

75

80

85

a
cc

u
ra

cy
 (

%
)

GBOW on IMDB

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

0 100 200 300 400 500
dimension

55

60

65

70

75

80

85

a
cc

u
ra

cy
 (

%
)

GloVe on IMDB

linear ctx w/ unbound rep
linear ctx w/ bound rep
dep ctx w/ unbound rep
dep ctx w/ bound rep
random word embeddings

Figure 8: Full results on text classification task.
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