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ABSTRACT

Our understanding of the world depends highly on how we represent it. Using
background knowledge about its complex underlying physical rules, our brain can
produce intuitive and simplified representations which it can easily use to solve
problems. The approach of this paper aims to reproduce this simplification process
using a neural network to produce a simple low dimensional state representation
of the world from images acquired by a robot. As proposed in (Jonschkowski
& Brock, 2015), we train the neural network in an unsupervised way, using the a
priori knowledge we have about the world as loss functions called ”robotic priors”
that we implemented through a siamese network. This approach has been used to
learn a one dimension representation of a Baxter head position from raw images.
The experiment resulted in a 97,7% correlation between the learned representation
and the ground truth, and show that relevant visual features form the environment
are learned.

1 INTRODUCTION

The environment we live in is ruled by complex physical laws. However humans are likely to interact
with it without any detailed knowledge of these laws. The human brain constructs simple models of
the world in order to come up with an easy, though approximate, understanding of it.

This paper aims to reproduce this behavior for robots. We want to build a simple representation of
the world that retains enough information to make a machine able to use it to interact afterwards i.e.
to perform an assigned task. Finding such a minimal representation (e.g., the position of an object
extracted from an image) is the standard way to implement behaviors in robots. However, this is
most of the time done in a task specific and supervised way. In this paper, we want to learn such
representation without supervision, based on generic learning objectives.

This representation is learned using deep learning. The deep neural network is trained by using
images of robot experiences in a given environment and has to estimates for each image a state
which is the representation we want to learn. Instead of using a ground truth for supervised training,
we make use of an approach that ensures consistency between the states representation. For this
purpose, the states are constrained by “robotics priors” (Jonschkowski & Brock, 2015) which are an
expression of the knowledge we have about physics.

The main contribution of this paper is the use of the robotics prior approach in a siamese network
to train a deep convolutional neural network. The network is trained with images of the robot
environment, information on the actions performed by the robot and rewards defining a task. The
neural network learns a state representation usable for the robot to perform this task. The resulting
neural network also displays useful feature detectors for environment analysis that could be a basis
for transfer learning to similar tasks.
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2 RELATED WORK

• Robotic Priors
The term of prior in Bayesian statistics refers to the prior probability distribution but like in
the article from (Bengio et al., 2013), (Jonschkowski & Brock, 2014) and (Jonschkowski
& Brock, 2015) we use this word as a reference to an a priori knowledge we have and not
to a probability distribution. This knowledge comes from various domains which define
several kind of priors : Task-Specific, Generic, and Robotic Priors.
(Bengio et al., 2013) state that the key to successful state representation learning is the use
of “many general priors about world around us” (cited by (Jonschkowski & Brock, 2015)).
As noticed by (Jonschkowski & Brock, 2015), (Bengio et al., 2013) “proposed a list of
generic priors for artificial intelligence and argue that refining this list and incorporating it
into a method for representation learning will bring us closer to artificial intelligence ” For
these authors however those generic priors are too weak to be used in the robotics fields and
stronger ones have to be defined to achieve an efficient learning : the robotics priors used
in this paper. Those priors, in a way similar to the approach of (Scholz et al., 2014), are
physically grounded, which means that they aim at building a representation of the world
consistent with physics.

• state representation
The goal of state representation learning is to find a mapping from a set of observations to
a set of states that makes it possible to describe an environment at a given time with enough
information to fulfill a given task. In our approach we impose a dimension of the state
and use the priors to guide the neural network in learning task specific states representation
in this given dimension. This is an alternative approach to selecting a state representation
from a set (Seijen et al., 2014) and (Konidaris & Barto, 2009) or creating a auto-encoder to
compress the information into a low dimension state (Lange et al.) ,(Watter et al., 2015),
(Finn et al., 2016) and (van Hoof et al., 2016).

• Unsupervised learning
Using priors with neural networks is an unsupervised way for training a neural network.
This approach is a different, but similar from energy based methods (Lecun et al., 2006),
auto-encoder or denoising auto-encoder (Vincent et al., 2010) to train a deep neural net-
work. The training process does not use directly energy functions but more specific func-
tions in order to have targeted representation of task relevant parameters. Using unsu-
pervised learning for training deep neural network may, according to (Bengio, 2009), be
efficient because when the neural network does not have information about what to learn
precisely and what future learning tasks are “it would appear very rational to collect and
integrate as much information as possible about this world so as to learn what makes it
tick”. On the other hand this way of training reduces overfitting risks.

• Model Architecture
The method used for this paper involves a convolutional network whose architecture
is inspired by (Krizhevsky et al., 2012). It makes it possible to create easy to train
deep networks. Furthermore convnets are easier to use for training state visualization
than GoogleNet (Szegedy et al., 2014) or ResNet (He et al., 2015) architecture. This
architecture is coupled with Siamese networks like in (Chopra et al., 2005) or (Xing
et al., 2003). Siamese network are used in this paper to impose constraints on learned
representation in the implementation of robotic priors.

3 STATE REPRESENTATION LEARNING

The first challenge of state representation is to define which parameters are sufficient to characterize
the state of the entire environment. For example, in a visually rich environment where only one
object moves through time, the environment description depends only on the object position, which
happens to be the only relevant parameter. The challenge is thus to learn what are the various relevant
parameters. A second challenge is to find which of those parameters are truly interesting. For this
we exploit a reward function. This function will give rewards for given states of the environment
according to a defined task. This function gives the learning process a way to know which parameters
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are relevant to the assigned task and which are not. The neural network has finally to map the relevant
parameters into a state representation of a given dimension.
To evaluate this representation there are two main possibilities:

• evaluating if the representation is compatible with a ground truth

• determining if a reinforcement learning algorithm can use this learned representation to
learn to perform the assigned task (Jonschkowski & Brock, 2015)

While the second approach is more objective, the first one is simpler and we use it in this paper as a
proof of concept using the correlation (Eq : 1) between learned representation and a ground truth.

Corr(s, ŝ) =
E[(s−E[s])(ŝ−E[ŝ])]

σsσŝ
, (1)

4 METHOD

4.1 ROBOTIC PRIORS

Robotic priors are used to provide the model to train with basic knowledge about the environment
physical features. They add constraints to make the learned representation altogether consistent
with simple physical and task specific rules. Each prior is formalized by a cost function implemented
through a siamese network. By minimizing them, the model is trained according to the prior and can
learn task-specific representation. The four priors we used are the one presented in (Jonschkowski
& Brock, 2015). We will use the following notations:

• I(t) is the image perceived at time t

• s(t) is the state at time t and ŝ(t) is its estimation.

• φ is a function which to an image I(t) returns a state s(t). φ̂ is its estimation

• r(t) is the reward at time t

• a(t) is the action done a time t

• D is the input data (images, actions, rewards)

• ∆s(t) = s(t+ 1)− s(t)

The definitions of loss functions associated to priors and the attached assumption are as follows:

Temporal coherence Prior: Two states close to each other in time are also close to each other in
the state representation space.

LTemp(D, φ̂) = E[‖ ∆ŝt ‖2] , (2)

Proportionality Prior: Two identical actions should give two proportional state variations.

LProp(D, φ̂) = E[(‖ ∆ŝt2 ‖ − ‖ ∆ŝt1 ‖)2|at1 = at2 ] , (3)

Repeatability Prior: Two identical actions should give similar state variations.

LRep(D, φ̂) = E[e−‖ŝt2−ŝt1‖
2

‖ ∆ŝt2 −∆ŝt1 ‖2| at1 = at2 ] , (4)

Causality Prior: Two states on which the same action gives two different rewards should not be
close to each other in the state representation space.

LCaus(D, φ̂) = E[e−‖ŝt2−ŝt1‖
2

| at1 = at2 , rt1+1 6= rt2+1] , (5)

This last prior is the only one giving information about the task and helps discovering the underlying
factors which give a reward.
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4.2 SIAMESE NETWORKS

The training using the priors needs the simultaneous estimation of several states to perform the
optimization process. At this end our approach uses siamese networks. They are neural networks
which share all their parameters. With this method the cost functions can be applied on several states
computed at the same time. Those cost functions requires to choose the right images as input for
siamese networks. For example for applying temporal prior, two input images are chosen following
each other in time. Two siamese networks are used to compute the state estimation for each image
and applying the temporal cost function. The backward propagation can then be done by computing
gradient based on the loss function. Another example would be to use proportionality prior in which
two state variations are estimated with the state of two images. Therefore four images and four
siamese networks are needed to compute the proportionality cost function. The figure 1 shows the
global network architecture. An image is input on each network and the application of the cost
function is used on all the outputs. The layers are shared among all the siamese networks.

Figure 1: Illustration of the architecture with four Siamese networks

4.3 MODEL ARCHITECTURE

The architecture of the network uses four stacked convolution layers with 3*3 filters (inspired by
(Simonyan & Zisserman, 2014)) with for each convolution layer, batch normalization, ReLu activa-
tion and 2*2 maxpooling (in that order). The convolution layers have 32-64-128-256 filters/Layer
respectively. On the top of the network, there are two stacked fully connected layer (500 neurons
and then one neurons for one dimension output). Between the last convolution layer with 3*3 filters
and the fully connected layers, We insert a convolution layer with one 1*1 filters. This architecture
helps the network to choose which feature map it wants to use to build its representation. This leads
to a reduction of parameters in the fully connected layer by a factor of 256.

We use batch Normalization (Ioffe & Szegedy, 2015) for training, which helps to keep reasonable
internal values and to make the training possible. In the experiment we make without batch nor-
malization, the network is unable to learn the representation. Relu is used for fast learning and
increasing the sparsity of neuron activation.

4.4 DATA

The data we used for training is a set of RGB images 200 pixels * 200 pixels which come from
simulation. Those images are taken by the head camera of a Baxter robot. Images thus represent the
front view of the robot and what it is able to see with its camera. The inputs images are normalized
with 0 mean and 1 standard deviation before use, but for training we also add data augmentation to
the images in order to improve robustness to noise and luminosity variations. To make the training
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resistant to those perturbation, we add a random color filter to training sample like in (Krizhevsky
et al., 2012) weighted with a Gaussian with random parameters. This transformation aims to make
the representation invariant to the luminosity variation. We also add noise with the same mean
and standard deviation than images. Those two data augmentation are added online during the
training process. This method force the neural network to learn a lot of feature detector to make its
representation robust.

4.5 TRAINING

The training has been done with Adagrad Duchi et al. (2011) with the following hyper-parameters:
- Batch Size : 12 - Learning rate : 0.001 - weight Decay : 0 - Epoch :200 - iterations/Epoch : 10
The training is very fast in comparison with imageNet (Deng et al., 2009) classification training for
example. Our understanding of this behavior is that the network does not need as many high level
feature detectors as in classification because it is specialized in only one environment. A training
without data augmentation is done for bootstrapping the neural network before the training with data
augmentation.

5 EXPERIMENT

5.1 TASK AND ENVIRONMENT DESCRIPTION

This environment is produced by a simulation of a Baxter robot developed with the gazebo software.
The robot is in front of a table (figure 2). The objective is to produce a representation that will make
it possible to control the head joint position. The images are taken when the robot moves its head
from right to left or left to right, a unit reward is obtained when the head is at maximum left or
maximum right. In this context actions are defined by movement of the head between t and t + 1.
The representation constructed by the neural network is in one dimension and should be consistent
with the actual head position which is used as ground truth. The dataset based on the image generated
is a set of 27 chronological series of images. Each series is composed of approximately 75 images.
For each series the robot arms has a different position but only the state of the head joint change
trough time. We know for each image at what time it has been taken and if the actual state gives
a reward. We also know which action has been made between image at time t and image at time
t+1. The actions are “move left” and “move right” with a certain angle. With these actions we
can find pairs of images with same angle variation therefore compatible with proportionality and
repeatability priors. Furthermore, with reward information we can find which images generate a
reward with which action. Those images are then gathered to constitute an image set compatible
with the causality cost function.

Figure 2: Illustration of the Baxter simulation used to generate data

During the training process, the sets of images compatible with a certain prior are randomly sampled
for training inside 26 of the 27 series. The last series is used for validation.
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5.2 LEARNING PROCESS

The training process is done by minimizing each of the cost functions but those functions are in
conflict to impose their constraint. The result of the training is an equilibrium between cost functions
minimization. The result of the sum of the priors costs is presented on 3 which shows the decreasing
of the global cost. The value of each cost functions separately is on figure 4. It is not surprising that
all the cost functions are not minimized the same way. For example, the temporal function aims at
minimizing the distance between representations when causality aims at maximizing it.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  20  40  60  80  100  120  140  160  180  200

train

test

Figure 3: Sum of the cost functions at each epoch
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Figure 4: cost functions at each epoch

5.3 RESULT

The resulting state representation of the head position for the validation data, after training with the
deep model presented above and the results after training with 1 fully connected layer model similar
to the one used in (Jonschkowski & Brock, 2015) are on figure 5. The correlation computed between
state representation learned for both models and ground truth are in table 1. Those results show that
both models are able to learn a good state representation of the Baxter head position in the case
where no noise is present. However, table 1 shows that the deep neural network is much more robust
to noise and luminosity perturbation than the one-layer-network. The evolution at each epoch of the
correlation during bootstrapping and training are in figure 6.
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Figure 5: Comparison of the ground truth of the head position for each image of the validation set
(Ground truth), the estimation of the state base on the original images (State) and the state based on
the images with noise and random luminosity perturbations (State with DA). The left hand figure
shows the result after training a deep neural network the right hand figure show the result after
training a one layer fully connected neural network

one Layer Network Deep Network
without Data Augmentation 97.0 % 97.7 %
with Data Augmentation 61.7 % 96.4 %

Table 1: Influence of the neural network deepness on Correlation between learned representation
and ground-truth on the validation set.
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Figure 6: Those figures show the evolution of the correlation between ground-truth and learned state
representation on the validation set. The left hand figure shows the correlation at each Epoch of the
bootstrapping training. The right hand figure shows the correlation at each Epoch of the training
with data augmentation. The final results in table 1 and 2 are the absolute values of the correlation

Beside the performance gain, our deep model makes it possible to learn relevant visual features that
could be interesting for other tasks in a transfer learning scenario. For example, the left image of
figure 7 shows that a button of the environment has been learned to be a good feature for the current
task, but could obviously be used in other scenarios.

Regarding these features, using data augmentation makes it possible to train the neural network to
use a larger part of the image. To illustrate this assumption we train the network with and without
data augmentation to compare the activation on the last convolution layer. Those activation are
shown on figure 7. We can see that the training without data augmentation makes the neural network
use only the position of the blue button of the image when with data augmentation the neural network
use much more pieces of information such as the table top border. Furthermore, Table 2 shows that
training with data augmentation slightly increases the performance of the deep neural network.

Figure 7: The figures show a representation of the activation produced by the neural network on
its last convolution layer (10 pixels*10pixels). For each figure, on the left is presented a feature
map for a given image , on the right the original image (200 pixels*200pixels) and in the middle
the superposition of both images to show which part of the image produces activation. The left
hand side image shows activation produce by the image after training without data-augmentation.
The right hand side image furthermore compares activation between cases with and without data
augmentation after training with data-augmentation.

train \ test with Data Augmentation without Data Augmentation
with Data Augmentation 96.4 % 97.7 %
without Data Augmentation 94.0 % 97.2 %

Table 2: Correlation results between learned representation and ground-truth on the validation set
after training deep neural network with and without data augmentation.
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6 DISCUSSION

This approach makes it possible to train a deep neural network to learn specialized feature detectors
used to build state representation in an unsupervised way. Those trained feature detectors could be
used or transferred for learning another state representation in this environment.

In the reported preliminary experiments, the simulation environment is not as rich as the real world,
therefore the variability of input image is low. However, this approach should work with real images
in order to make the neural network learn more specialized feature detectors. It will be tested in
further experiments.

A limitation of our approach is the assessment of the the training quality. In the case presented in
this paper, correlation between state representation and ground truth is a possible measurement of
the training quality. On the other hand, had we tried to learn a representation in higher dimension,
the correlation could have been irrelevant. Furthermore if the process is applied to a situation where
ground truth is unavailable, the correlation cannot be measured. A possible method would be to use
a reinforcement learning algorithm to measure if the learned representation is suitable to the task
like in (Jonschkowski & Brock, 2015).

7 CONCLUSION

This approach provides us with evidences that a deep network trained by the method of robotics
priors can learn state representations. This technique makes it possible to learn a one dimension
representation and furthermore to train a network to be robust to both noise and luminosity
perturbations. The next step to be done will be to learn more complex representations like objects
positions in three dimensions, and to use those representations within a reinforcement learning
process to check if a robot can use the learned representations to perform various tasks. The use of
real image for training is also one of our goals.
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