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ABSTRACT

Although both our brain and deep neural networks (DNNs) can perform high-level
sensory-perception tasks such as image or speech recognition, the inner mecha-
nism of these hierarchical information-processing systems is poorly understood in
both neuroscience and machine learning. Recently, Morcos et al. (2018) examined
the effect of class-selective units in DNNs, i.e., units with high-level selectivity,
on network generalization, concluding that hidden units that are selectively ac-
tivated by specific input patterns may harm the network’s performance. In this
study, we revisit their hypothesis, considering units with selectivity for lower-
level features, and argue that selective units are not always harmful to the net-
work performance. Specifically, by using DNNs trained for image classification
(7-layer CNNs and VGG16 trained on CIFAR-10 and ImageNet, respectively),
we analyzed the orientation selectivity of individual units. Orientation selectivity
is a low-level selectivity widely studied in visual neuroscience, in which, when
images of bars with several orientations are presented to the eye, many neurons
in the visual cortex respond selectively to a specific orientation. We found that
orientation-selective units exist in both lower and higher layers of these DNNs,
as in our brain. In particular, units in the lower layers become more orientation-
selective as the generalization performance improves during the course of training
of the DNNs. Consistently, networks that generalize better are more orientation-
selective in the lower layers. We finally reveal that ablating these selective units
in the lower layers substantially degrades the generalization performance, at least
by disrupting the shift-invariance of the higher layers. These results suggest to
the machine-learning community that, contrary to the triviality of units with high-
level selectivity, lower-layer units with selectivity for low-level features can be
indispensable for generalization, and for neuroscientists, orientation selectivity
can play a causally important role in object recognition.

1 INTRODUCTION

Recognizing the natural world is a fundamental competency for animals and artificial intelligence.
Although our cerebral cortex and recent deep neural networks (DNNs) both achieve high accuracy
in sensory perception (Krizhevsky et al., 2012; Hinton et al., 2012), especially object recognition
through natural vision, the rationale for this performance is not well understood, either in visual
neuroscience or machine learning.

In machine learning, numerous studies have been conducted on why DNNs have good generalization
ability (summarized in section 4.2). One recent interesting hypothesis proposed in Morcos et al.
(2018) is that networks that rely on single directions1 may generalize poorly. The authors performed
ablation experiments to argue that networks that generalize poorly are sensitive to unit ablations and
that selectively activated units are not important for generalization. However, the authors examined
only high-level single directions; they performed ablation experiments on higher layers and analyzed
the class selectivity of individual units. Their hypothesis must be evaluated for other directions,
especially low-level directions (or “features”), in order to conclude that it is correct.

1“The activation of a single unit or feature map or some linear combination of units in response to some
input” (Morcos et al., 2018).
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In visual neuroscience, the most popular experimental setting is to present bar or grating images
(Fig. A1) at several orientations to animals (e.g., cats, mice, or humans) while simultaneously
recording the visually evoked neuronal responses. This paradigm is used to analyze the orientation-
selective feature of many neurons in the visual cortex. This feature causes the responses evoked by
a bar or grating image presented to an animal to be tuned to the orientation of the image (Hubel &
Wiesel, 1959) (examples of this “orientation tuning curve” are shown in Fig. 1). Numerous neuro-
science researchers have thus far analyzed orientation selectivity to investigate the functions of the
visual cortex, especially primary visual cortex (V1), such as how neurons with similar properties are
interconnected (Ko et al., 2011; Wertz et al., 2015), how visual discrimination tasks modulate neu-
ral coding (Schoups et al., 2001; Dragoi et al., 2002; Jehee et al., 2012), and how neural selectivity
emerges and matures during development (Chapman & Stryker, 1993; White et al., 2001). However,
there is a large gap between object recognition in a natural environment and orientation selectivity.
Specifically, no researchers have thus far investigated whether orientation selectivity does have an
important role in object recognition, or is merely a superficial byproduct of object recognition.

In this study, we address these two issues simultaneously by performing neuroscience-inspired ex-
periments on DNNs trained for image classification. The use of DNNs to model the visual cortex
is supported by several studies that suggested the hierarchical similarity of feature representations
between DNN and the visual cortex (Yamins et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014;
Cadieu et al., 2014; Güçlü & van Gerven, 2015; Horikawa & Kamitani, 2017). Just as in neuro-
science experiments, we inputted grating images to the trained networks and analyzed the orienta-
tion selectivity of the units in the hidden layers to explore whether orientation selectivity contributes
to the generalization performance in object recognition. The main findings in this paper can be
summarized into four aspects.

• Orientation-selective units exist in all the layers of a DNN trained for image classification.

• During training, units in the lower layers become more orientation-selective in sync with
the generalization performance.

• Networks that generalize better are more orientation-selective in the lower layers.

• Ablation experiments revealed that orientation-selective units in the lower layers play a
causal role2 in generalization, at least by introducing shift-invariance of the higher layers.

The major implications derived from these empirical analyses are:

• From the neuroscience perspective, orientation selectivity in the lower layers of hierarchical
visual systems may be a causally crucial component and not be a trivial byproduct.

• From the machine-learning perspective, our results, in conjunction with very recent studies
that argued the importance of class selectivity from different viewpoints (Liu et al., 2018;
Zhou et al., 2018), suggest that the uselessness of single directions proposed in Morcos
et al. (2018) is overstated. In addition, the significance of the orientation-selective units
in the lower layers directly supports the assertion that Gabor feature representations in the
lower layers are indispensable for the generalization of the DNNs.

2 METHODS

All analyses were performed on Keras (2.0.8) and Tensorflow (1.3.0). We primarily analyzed a
7-layer CNN (six convolutional (Conv) layers plus one fully connected (FC) layer) trained on the
CIFAR-10 dataset (Krizhevsky & Hinton, 2009) (see section A.1 for hyperparameters and training
details). To check the reproducibility of our results, we also analyzed i) another 7-layer CNN trained
on CIFAR-10 with different initializations and ii) a VGG16 network (Simonyan & Zisserman, 2015),
which is a 20-layer CNN trained on the ImageNet dataset (Russakovsky et al., 2015). We fed grating

2Determining causality between phenomena has been a central goal in natural science, including neuro-
science: “Scientific work will always be the search for causal interdependence of phenomena” (Born, 1949),
“Cracking the neural code–in other words, determining which spatiotemporal patterns of activity [...] causally
drive behavior”(Packer et al., 2013).
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images to these trained networks and analyzed the orientation selectivity of the hidden units3 in
exactly the same way as in visual neuroscience studies.

2.1 GRATING IMAGES

A grating image is a two-dimensional gray-scaled sinusoidal wave G(x, y), formulated as follows.

G(x, y) = cos(k0y
′ + τ) y′ = −(x− x0) sin θ + (y − y0) cos θ, (1)

where k0 is the spatial frequency (SPF), τ is the phase, θ is the orientation, and (x0, y0) is the center
coordinate of the image. For the 7-layer CNNs, we prepared a total of 432 grating images using nine
SPFs, 12 orientations (15◦ apart), and four phases (90◦ apart). For the 20-layer CNN, we prepared
2,736 grating images with 57 SPFs using the same 12 orientations and four phases.

2.2 ORIENTATION SELECTIVITY

Similar to the neuroscience studies that present grating images to animals while recording their
neuronal responses, the unit activations with respect to each grating image were collected. The
activation matrix of each unit has a shape of Nori ×NSPF ×Nphase, where its (k, l,m)th element
represents the activation with respect to the grating of the kth orientation, lth SPF, and mth phase.
After taking the maximum along the phase dimension, we extracted the activations on the SPF
that yielded the highest activation, generating a vector of length Nori. Using this vector, orientation
selectivity was quantified by using the global orientation selectivity index (gOSI), which is a popular
metric in visual neuroscience (Wörgötter & Eysel, 1987). The gOSI of the ith unit is formulated as

gOSIi =

√√√√(Nori∑
k=1

Ri
k sin 2θk

)2

+

(
Nori∑
k=1

Ri
k cos 2θk

)2/Nori∑
k=1

Ri
k, (2)

where Ri
k is the activation of the ith unit with respect to the grating image of the kth orientation and

θk is the degree of orientation (0–180◦). This metric is between 0 and 1, and a higher value indicates
higher orientation selectivity. Note that this metric is equivalent to 1 − “circular variance.”

3 RESULTS

3.1 ORIENTATION SELECTIVITY IN DNNS

To investigated whether the units in the DNNs are tuned to the orientations, as is the case in the
visual cortex, we fed grating images to the trained networks and analyzed the evoked activations.
Activations of 10 example units of a 7-layer CNN along each orientation are shown in Fig. 1. Most
units, both in the lower layer and the higher layer, were selectively activated by specific orientations.
We then quantified the degree of orientation selectivity by using the gOSI metric for all units in all
layers. Interestingly, units with high gOSI (orientation-selective units4) existed in all layers (Fig. 2).
Furthermore, this orientation selectivity was almost independent of the SPFs of the grating images
(section A.2 and Fig. A2). Similar results were obtained with another 7-layer CNN with different
initializations and a 20-layer CNN trained on ImageNet (Figs. A4 and A3), indicating the robust
existence of orientation selectivity in all layers of the networks.

One can consider that the high orientation selectivity results from the sparsity of the hidden units.
For example, a sparsely active unit, with its activation to the 0◦ grating being 1 and otherwise 0,
has gOSI = 1.0. To investigate this possibility, we also computed gOSI after the activation matrix
of each unit was randomly shuffled. The gOSI calculated in this way was much smaller than the

3The feature maps of convolutional layers and units of fully connected layers are both referred to as “unit”
in this paper.

4In visual neuroscience, neurons with gOSI > 0.33 are often considered to be orientation-selective (Piscopo
et al., 2013; Kondo & Ohki, 2015).
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Figure 1: Orientation-tuning curve of example units. The gOSI value is shown in each panel.

Figure 2: Orientation-selective units exist in all hidden layers. Histograms of gOSI for each layer
are shown in red. Histograms of gOSI, after the activation matrix was shuffled, are shown in blue as
a control.

original gOSI for most layers (Fig. 2), except for the high layers of the 20-layer CNN (Fig. A4),
indicating that sparsity cannot fully explain the observed high gOSI.

3.2 MATURATION OF ORIENTATION SELECTIVITY DURING THE COURSE OF TRAINING

A big challenge in visual neuroscience is to elucidate when and how orientation selectivity emerges
and matures during development. To tackle this question, we analyzed the orientation selectivity
during the course of training. Fig. 3a shows the average gOSI for each layer. The average gOSI
of Conv 2–Conv 5 saturated at around 15 epochs, when validation loss also saturated, while that
of Conv 6 and FC 1 saturated much earlier. To understand the relationship between the orientation
selectivity and generalization, we then plotted the validation loss versus the average gOSI for each
epoch (Fig. 3b), finding that the higher the average gOSI was, the less the validation loss was for the
lower layers (Conv 1–Conv 5) (Fig. 3c). Similar results were obtained for a network with different
initializations (Fig. A5). This strong correlation between gOSI and generalization suggests that,
from the neuroscience perspective, orientation selectivity in the lower layers matures as the ability
of object recognition matures, and from the machine-learning perspective, gOSI is a strong indicator
for the generalization performance and is possibly a substitute signal for early stopping.
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Figure 3: Units in the lower layers become more orientation-selective in sync with generaliza-
tion performance during the course of training. (a) Evolution of loss (top) and average gOSI
(bottom). (b) Relationship between the validation loss and average gOSI during the first 50 epochs.
Each point indicates one epoch. (c) Spearman correlation coefficient between the validation loss and
average gOSI during the first 50 epochs.

3.3 RELATIONSHIP BETWEEN ORIENTATION TUNING AND GENERALIZATION PERFORMANCE

Section 3.2 triggers an intriguing question, viz., is orientation selectivity a correlate of generalization
performance? We studied this question by comparing many networks trained in a different manner.
We prepared four different settings of data augmentation (no augmentation; horizontal and vertical
shift of the images; horizontal flip of the images; and horizontal shift, vertical shift, and horizontal
flip were all incorporated). For each setting, we trained 50 models with independent initializations,
resulting in generation of 200 networks with different generalization performances. All the networks
had seven layers and were trained on CIFAR-10. When the generalization performance and gOSI
of the 200 models were compared (Fig. 4a), we found a strong correlation between gOSI and
generalization performance in the lower layers (Fig. 4b), except for Conv 1. Similar results were
obtained for a set of 200 CNNs with different initializations (Fig. A6a and b).

A scenario of concern is that since the training loss and the test loss are correlated, orientation
selectivity might be important only for the training loss, not for the test loss, and we are observing a
side effect. To examine this possibility, we additionally trained six networks on CIFAR-10, whose
labels were corrupted at different rates (p) from 0.0 (no labels were corrupted) to 1.0 (all labels
were random) (Zhang et al., 2017). In this experiment, data augmentation was not incorporated
so that networks were able to memorize the dataset. The training accuracy was nearly 100% for
all models, whereas the test accuracy decreased as the corruption rate increased; test accuracy was
approximately 70% for p = 0.0 and 10% for p = 1.0. We then compared the gOSI of the six
networks (Fig. 4c), revealing that networks with lower test accuracy (higher label corruption rates)
had lower gOSI in the low layers (especially in Conv 2–Conv 4; note that the y-axis range is different
among the layers). Similar results were obtained for a set of CNNs with different initializations (Fig.
A6c). These results indicate that orientation selectivity in the lower layers does correlate with the
generalization performance.

3.4 CAUSAL ROLE OF ORIENTATION TUNING FOR GENERALIZATION

Thus far, we have shown that networks that generalize better are more orientation-selective in the
lower layers. We further investigated the causal relationship between orientation selectivity and
generalization performance through ablation experiments (Morcos et al., 2018). The use of ablation
experiments was inspired by several neuroscience studies in which the causal role in some behavior
of a set of neurons is investigated by lesioning or inactivating them (e.g., using optogenetics).
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Figure 4: Networks that generalize better are more orientation-selective in the lower layers. (a)
Relationship between the test loss and average gOSI. Each dot indicates one of the 200 trained mod-
els. (b) Spearman correlation coefficient between the loss and gOSI for each layer. (c) Relationship
between the label corruption rate and gOSI. The higher the label corruption rate, the worse is the
generalization accuracy (Zhang et al., 2017).

Similar to Morcos et al. (2018), after ablating a set of units by clamping their activations to zero,
we computed the difference between the test losses before and after ablation. As shown in Fig. 5,
for the lower layers (Conv 2 and Conv 3; indicated as asterisks), ablating the units with the top 50%
gOSI values caused a more than twofold impact on test loss than ablating the units with the bottom
50% gOSI values. This difference in ablation impact cannot be explained by the possibility that the
units with the bottom 50% gOSI values are more silent because the average activity of the units with
the top 50% gOSI values in response to the grating images was lower than that of the units with the
bottom 50% gOSI values, both for Conv 2 and Conv 3. Similar results were obtained for a network
with different initializations and a 20-layer CNN trained on ImageNet5 (Fig. A7; Conv 2 and Conv
3 in the 7-layer CNN; and block1 conv2, block1 pool, and block2 conv1 in the 20-layer CNN).
These results suggest that orientation-selective units in the lower layers are causally important for
the generalization of the networks.

3.5 A POSSIBLE MECHANISM OF ORIENTATION-SELECTIVE UNITS FOR GENERALIZATION

Finally, we examined how the orientation-selective units in the lower layers contribute to the over-
all generalization observed thus far. Because in neuroscience, orientation-selective filters (“simple
cells” in V1) have been hypothesized to be combined to create a shift-invariant filter (“complex
cells”) (Movshon et al., 1978), we hypothesized that orientation-selective units in the lower layers
of DNNs contribute to the invariance of the higher layers with respect to parallel shifts of the in-

5Impact on loss was evaluated on the 50,000 validation images of ImageNet Large Scale Visual Recognition
Challenge 2014 (ILSVRC2014). http://image-net.org/challenges/LSVRC/2014/download-images-5jj5.php
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Figure 5: Importance of orientation-selective units in the lower layers for generalization re-
vealed through ablation experiments. The difference between test losses before and after ablation
is shown for each layer. Red: units with the top 50% gOSI values were ablated. Blue: units with
the bottom 50% gOSI values were ablated. Asterisks indicate layers for which ablating units with
the top 50% gOSI values yielded more than twofold impact than ablating units with the bottom 50%
gOSI values.

put images. Here, we examined the degree of shift-invariance of each unit6 in all layers using the
following approach, which was inspired by Goodfellow et al. (2009) but slightly modified. After
collecting activations of the target unit with respect to test images that activate the unit near maxi-
mally (> 90%) and their shifted images7, we computed how much the unit activations are influenced
by the shift by using the coefficient of variation (CV) metric, which was afterward averaged along
with the test images. We first confirmed that this metric decreases as the layer becomes deeper,
indicating that unit activations of higher layers are more shift-invariant as suggested in (Goodfellow
et al., 2009). When CVs computed in this way were compared between the vanilla network and the
network where orientation-selective units of Conv 2 or Conv 3 were ablated, as we did in section 3.4,
we found that units in the fully connected layer of the ablated network had significantly higher vari-
ances than those of the vanilla network (Fig. 6a), indicating that ablating orientation-selective units
in the lower layers significantly disrupts the shift-invariance of the fully connected layer. Similar
results were obtained with another 7-layer CNN with different initializations (Fig. 6b). These ob-
servations imply that orientation-selective units in the lower layers produce a part of shift-invariance
of the fully connected layer, thereby contributing to the generalization performance.

Figure 6: Orientation-selective units are important for the shift-invariance of the fully con-
nected layer. Coefficients of variation of the unit activations with respect to the parallel shift of the
test images are shown for each layer (mean ± standard error).

4 RELATED WORK AND DISCUSSION

Our results suggest that, for the several network architectures we explored, the orientation selectiv-
ity in the lower layers of DNNs is causally indispensable for object recognition, not a superficial
byproduct of object recognition. In addition, these representations are not necessary for memoriza-

6In this part, “unit” refers to each component of the feature maps of convolutional layers and unit of fully
connected layers.

7we shifted the images in three ways; 10% vertical shift, 10% horizontal shift, or 10% horizontal and vertical
shifts.
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tion (Fig. 4c) but are important for generalization, at least by introducing shift-invariance of the
fully connected layer.

4.1 DISCUSSION FROM THE NEUROSCIENCE PERSPECTIVE

In neuroscience, orientation selectivity has been extensively analyzed in numerous papers since
Hubel & Wiesel (1959) introduced the concept that neurons in V1 selectively respond to a specific
orientation of bars. Nevertheless, whether the orientation-selective property does contribute to object
recognition in natural scenes has not been examined thus far, possibly due to experimental limita-
tions. Comparing the performance of object recognition with the degree of orientation selectivity
among numerous well-trained animals (as we did in section 3.3) or inactivating orientation-selective
neurons alone in the visual cortex (as we did in section 3.4) is experimentally very difficult or im-
possible with the current biotechnology. In this study, we tackle this issue by using DNN to model
the brain. With this approach, we can obtain comprehensive data on neural activity, neural con-
nectivity, and developmental process with infinite signal-to-noise ratio, at single-cell resolution, and
chronically.

We also found that orientation-selective units exist in all layers of the DNNs. This is consistent
with neuroscience studies where orientation-selective neurons exist not only in V1 but also in higher
layers of the visual hierarchy, such as V4 (Desimone & Schein, 1987) and middle temporal (MT)
area (Albright, 1984). However, as with the DNNs shown in this study, these orientation-selective
neurons in the higher visual cortex might not encode the orientation per se.

We also analyzed orientation selectivity during the course of training and revealed that orientation
selectivity in the lower layers matures as the ability of object recognition saturates. Again, this
finding has not been proven in neuroscience, primarily due to experimental difficulty. Corresponding
neuroscience experiments might involve the chronic recording of neurons during development and
longitudinal comparison between the performance of object recognition and orientation selectivity,
which is very difficult with current biotechnology.

4.2 DISCUSSION FROM THE MACHINE-LEARNING PERSPECTIVE

Generalization of DNN itself is intriguing and has been investigated in many papers, especially after
Zhang’s work (Zhang et al., 2017). Several researches have attributed the high generalization ability
of DNNs to the convergence into flat minima (Keskar et al., 2017; Neyshabur et al., 2017). Wilson
et al. (2017) proposed that stochastic gradient descent has an advantageous effect, and Ulyanov et al.
(2018) proposed that the network structure itself is important. Although the relationship between
these theories and orientation selectivity would be part of a future study, in this study we provide
empirical evidence on the contribution of orientation-selective units in the lower layers to the overall
generalization, partly via producing shift-invariance of the fully connected layer.

The role of orientation-selective units in the lower and higher layers might be different. In the lower
layers (e.g. Conv 2), a Gabor filter is the optimal stimulus that activates the unit most strongly (Erhan
et al., 2009; Krizhevsky et al., 2012; Zeiler & Fergus, 2014). This is also verified in neuroscience;
Ukita et al. (2018) recently performed unbiased analyses to reveal that Gabor-like images indeed
activate V1 neurons most strongly. On the other hand, Gabor filters might be suboptimal stimuli for
units in the higher layers considering more elaborated features coded in the higher layers (Le et al.,
2012; Simonyan et al., 2014). This might explain why orientation-selective units in the higher layers
do not contribute to generalization as shown in the sections from 3.2 to 3.4. Examining the detailed
role of orientation-selective units in the higher layers would be part of a future study.

When orientation selectivity is regarded as one of the low-level single directions, the results are
opposite to those of a recent study (Morcos et al., 2018). Therefore, low-level single directions
(e.g., orientation selectivity) and high-level single directions (e.g., class selectivity) might contribute
differently to generalization. While selectivity to high-level directions might discourage distributed
coding, selectivity to low-level directions might be important for embedding natural images. Further
studies should investigate this discrepancy in more detail.
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A APPENDIX

A.1 ARCHITECTURE AND TRAINING DETAIL OF THE 7-LAYER CNN

We analyzed a 7-layer CNN trained using the CIFAR-10 dataset. The network consisted of the input
layer, six convolutional layers (Conv 1–Conv 6), one fully-connected layer (FC 1), and the output
layer. For the convolutional layers, 32, 32, 64, 64, 128, 128 filters were used, in this order. The sizes
of the filters were (3, 3). The stride was (1, 1), (2, 2), (1, 1), (2, 2), (1, 1), (2, 2), in this order. The
fully connected layer had 512 units. ReLU activation and batch normalization (Ioffe & Szegedy,
2015) were used in both convolutional and fully connected layers.

The network was trained with the following setup: parameters were updated using the Adam opti-
mizer (Kingma & Ba, 2014), the batch size was 32, and the total number of epochs was 200. The
CIFAR-10 dataset was divided into 80% for training, 10% for validation, and the remaining 10% for
the test; the validation accuracy was monitored for every epoch and the parameters with the highest
accuracy for the validation set were used in the subsequent quantitative analyses. Data augmenta-
tion (horizontal shift, vertical shift, and horizontal flip of the images) was used, unless otherwise
stated. In section 3.2, the network was trained with a small learning rate (0.0001) so that epochwise
evolutions could be visualized clearly.

A.2 MINIMAL DEPENDENCE OF ORIENTATION SELECTIVITY ON SPATIAL FREQUENCIES

We investigated whether the orientation selectivity is influenced by SPFs. For an ideally orientation-
selective neuron, the preferred orientation should be identical for all SPFs. In neuroscience, however,
preferred orientations of V1 neurons depend partially on the SPFs, although the extent of dependence
varies among the reports (Webster & De Valois, 1985; Ayzenshtat et al., 2016).

For each orientation-selective unit (gOSI> 0.33), we first took the maximum of the activation matrix
along the phase dimension, which resulted in a new activation matrix with a shape of Nori×NSPF .
We then collected preferred orientations on some SPFs whose maximum activations were more
than 50% of the overall maximum activations. We finally computed the range of these preferred
orientations by the circular difference between the maximum degree and the minimum degree. We
used this range as the metric of dependence of preferred orientations on SPFs. Note that this range
is zero for an ideally orientation-selective unit. Interestingly, this range is zero for most orientation-
selective units (Fig. A2). Although this range is large for some units, especially in higher layers, it
is small considering the data of real V1 neurons (Fig. 2 of Ayzenshtat et al. (2016)). Collectively,
these results indicate that orientation selectivity has minimal dependence on SPFs.

A.3 ORIENTATION-SELECTIVITY OF A RANDOM NETWORK

An interesting finding in visual neuroscience is that the initial formation of orientation selectivity
does not require visual experiences (Chapman & Stryker, 1993; White et al., 2001). On the basis
of these evidences, we also quantified the orientation selectivities on a randomly weighted network
that was not trained using CIFAR-10. Surprisingly, but consistent with the neuroscience findings,
we observed that a small number of units were orientation-selective in this random network (Fig.
A8), although the selectivity was much weaker than that of well-trained networks.
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Figure A1: All grating images presented to the 7-layer CNNs trained on CIFAR-10.

Figure A2: Minimal dependence of orientation selectivity on spatial frequencies. The range
of preferred orientations among various spatial frequencies was computed for each orientation-
selective unit (gOSI > 0.33) and their distribution is plotted.
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Figure A3: Reproduction of Fig. A2 using (a) a 7-layer CNN with different initializations and
(b) a 20-layer CNN trained on ImageNet. The range of preferred orientations among various spa-
tial frequencies was computed for each orientation-selective unit (gOSI> 0.33) and their distribution
is plotted.
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Figure A4: Reproduction of Fig. 2 using (a) a 7-layer CNN with different initializations and
(b) a 20-layer CNN trained on ImageNet. Histograms of gOSI for each layer are shown in red.
Histograms of gOSI, after the activation matrix was shuffled, are shown in blue as a control.
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Figure A5: Reproduction of Fig. 3 using a 7-layer CNN with different initializations. (a) Re-
lationship between the validation loss and average gOSI during the first 50 epochs. Each point
indicates one epoch. (b) Spearman correlation coefficient between the validation loss and average
gOSI during the first 50 epochs.

Figure A6: Reproduction of Fig. 4 using 7-layer CNNs with different initializations. (a) Rela-
tionship between the test loss and average gOSI. Each dot indicates one of the 200 trained models.
(b) Spearman correlation coefficient between the loss and gOSI for each layer. (c) Relationship
between the label corruption rate and gOSI. The higher the label corruption rate, the worse is the
generalization accuracy (Zhang et al., 2017).
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Figure A7: Reproduction of Fig. 5 using (a) a 7-layer CNN with different initializations and (b)
a 20-layer CNN trained on ImageNet. The difference between test losses before and after ablation
is shown for each layer. Red: units with the top 50% gOSI values were ablated. Blue: units with
the bottom 50% gOSI values were ablated. Asterisks indicate layers for which ablating units with
the top 50% gOSI values yielded more than twofold impact than ablating units with the bottom 50%
gOSI values.

Figure A8: A small number of units is already orientation-selective before training. Orientation
selectivity was analyzed on a network with random weights.
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