
Under review as a conference paper at ICLR 2017

BIT-PRAGMATIC DEEP NEURAL NETWORK COMPUT-
ING

Jorge Albericio , Patric Judd, Alberto Delmas Lascorz, Sayeh Sharify & Andreas Moshovos
Electrical and Computer Engineering
University of Toronto
Toronto, ON, M5S 3G4, Canada
{jorge, juddpatr, delmasl1,sayeh,moshovos}@ece.utoronto.ca

ABSTRACT

We quantify a source of ineffectual computations when processing the multiplica-
tions of the convolutional layers in Deep Neural Networks (DNNs) and propose
Pragmatic (PRA), an architecture that exploits it improving performance and en-
ergy efficiency. The source of these ineffectual computations is best understood in
the context of conventional multipliers which generate internally multiple terms,
that is, products of the multiplicand and powers of two, which added together pro-
duce the final product Wallace (1964). At runtime, many of these terms are zero
as they are generated when the multiplicand is combined with the zero-bits of
the multiplicator. While conventional bit-parallel multipliers calculate all terms
in parallel to reduce individual product latency, PRA calculates only the non-
zero terms resulting in a design whose execution time for convolutional layers
is ideally proportional to the number of activation bits that are 1. Measurements
demonstrate that for the convolutional layers on Convolutional Neural Networks
and during inference, PRA improves performance by 4.3x over the DaDiaNao
(DaDN) accelerator Chen et al. (2014) and by 4.5x when DaDN uses an 8-bit
quantized representation Warden (2016). DaDN was reported to be 300x faster
than commodity graphics processors.

1 INTRODUCTION

Deep Neural Network (DNN) hardware typically uses either 16-bit fixed-point Chen et al. (2014)
or quantized 8-bit numbers Warden (2016) and bit-parallel compute units. For convolutional layers,
that account for most of the execution time in Convolutional Neural Networks (CNNs) during image
classification, these bit-parallel engines perform many ineffectual computations. Specifically, these
layers perform several several inner products, where multiple pairs of weights and activations are
multiplied and then reduced into an output activation. Any time a zero bit of an activation or a weight
is multiplied it adds nothing to the final output activations. These ineffectual bits are introduced by
the conventional positional number representation and if avoided it would take even less time to
calculate each product improving energy and performance. As a first step, this work targets the
ineffectual bits of activations only. Section 2 shows that in recent image classification networks
93% and 69% of activation bit and weight products are ineffectual when using respectively 16-bit
fixed-point and 8-bit quantized representations.

This work presents Pragmatic (PRA) a DNN accelerator whose goal is to process only the essential
(non-zero) bits of the input activations PRA employs the following four key techniques: 1) on-the-
fly conversion of activations from a storage representation (e.g., conventional positional number
or quantized) into an explicit representation of the essential bits only, 2) bit-serial activation/bit-
parallel weight processing, an idea borrowed from STR Judd et al. (2016b;a) but adapted for the
aforementioned representation, 3) judicious SIMD (single instruction multiple data) lane grouping
to maintain wide memory accesses and to avoid fragmenting and enlarging the multi-MB on-chip
weight memories (Sections 5 and 5.1), and 4) computation re-arrangement (Section 5.1) to reduce
datapath area. All evaluated PRA variants maintain wide memory accesses and use highly-parallel
SIMD-style (single-instruction multiple-data) computational units. PRA introduces an additional
dimension upon which software can improve performance and energy efficiency by controlling ac-

1

Under review as a conference paper at ICLR 2017

0101 00

Bit-Parallel Hardware Precision

prefix

Essential bits
(1,-1,-3)

Required
precision

0 1
suffix

Figure 1: Sources of ineffectual computation with conventional positional representation and fixed-
length hardware precision.

tivation values judiciously in order to reduce their essential bit content while maintaining accuracy.
This work explores such an alternative, where the software explicitly communicates how many pre-
fix and suffix bits to discard after each layer.

Experimental measurements with recent CNNs for image classification demonstrate that most
straightforward PRA variant, boosts average performance for the convolutional layers to 2.59x over
the state-of-the-art DaDN accelerator. Pragmatic’s average energy efficiency is 1.48x over DaDN
and its area overhead is 1.35x. Another variant further boosts performance to 3.1x over DaDN at
the expense of an additional 0.7% area.

2 MOTIVATION

Let us assume a p-bit bit-parallel multiplier using a straightforward implementation of the “Shift
and Add” algorithm where n× s is calculated as

∑p
i=0 ni · (s� i), where ni the i-th bit of n. The

multiplier computes p terms, each a product of s and of a bit of n, and adds them to produce the final
result. The terms and their sum can be calculated concurrently to reduce latency Wallace (1964).

With such a hardware arrangement there are two sources of ineffectual computations that result
from: 1) an Excess of Precision (EoP), and 2) Lack of Explicitness (LoE). Figure 1 shows an example
illustrating these sources with a bit-parallel multiplier using an 8-bit unsigned fixed-point number
with 4 fractional and 4 integer bits. While 10.101(2) requires just five bits, our 8-bit bit-parallel
multiplier will zero-extend it with two prefix and one suffix bits. This is an example of EoP and is
due to the fixed-precision hardware. Two additional ineffectual bits appear at positions 1 and -2 as a
result of LoE in the positional number representation. In total, five ineffectual bits will be processed
generating five ineffectual terms.

Our number could be represented with an explicit list of its three constituent powers of 2: (1,-1,-
3). While such a representation may require more bits and thus be undesirable for storage, coupled
with the abundant parallelism that is present in DNNs layers, it provides an opportunity to revisit
hardware design improving performance and energy efficiency.

Table 5 reports the essential bit content of the activation stream of recent CNNs for two commonly
used fixed length representations: 1) 16-bit fixed-point of DaDianNao Chen et al. (2014), 2) 8-bit
quantized of Tensorflow Warden (2016). The essential bit content is the average number of non-zero
bits that are 1. Two measurements are presented per representation: over all neuron values (“All”),
and over the non-zero neurons (“NZ”) as accelerators that can skip zero activations for fixed-point
representations have been recently proposed Han et al. (2016); Albericio et al. (2016).

When considering all activations, the essential bit-content is at most 12.7% and 38.4% for the fixed-
point and the quantized representations respectively. Even when considering the non-zero activa-
tions the essential bit content remains well below 50% suggesting that the potential exists to improve
performance and energy efficiency over approaches that target zero valued activations only.

3 Pragmatic: A SIMPLIFIED EXAMPLE

This section illustrates the idea behind Pragmatic via a simplified example.

2

Under review as a conference paper at ICLR 2017

Alexnet NiN Google VGGM VGGS VGG19
16-bit Fixed-Point

All 7.8% 10.4% 6.4% 5.1% 5.7% 12.7%
NZ 18.1% 22.1% 19.0% 16.5% 16.7% 24.2%

8-bit Quantized
All 31.4% 27.1% 26.8% 38.4% 34.3% 16.5%
NZ 44.3% 37.4% 42.6% 47.4% 46.0% 29.1%

Table 1: Average fraction of non-zero bits per activation for two fixed-length representations: 16-bit
fixed-point, and 8-bit quantized. All: over all activations. NZ: over non-zero activation only.

0
0
1

x +
0
0
1

0
1
0

x1
1
1

LSB

MSB
n0

n1

s0

s1

(a) (b)

10

+

0
0
1

<<

01

1
1
1

+

n0n1

s0s1

+
<<

+

00
01

n’0n’1

LSBMSB

Sy
na

ps
es

N
eu

ro
ns

+
<<

+

01
00

n”0n”1

0

+

0
0
1

1

1
1
1

+

on0on1

s0
s1

+ +

1
on’0on’1

+ +

2on”0on”1

<<

<<

<<

<<

<<

<<
<<

<<

<<

(c)(a) Bit-Parallel Unit

0
0
1

x +
0
0
1

0
1
0

x1
1
1

LSB

MSB
n0

n1

s0

s1

(a) (b)

10

+

0
0
1

<<

01

1
1
1

+

n0n1

s0s1

+
<<

+

00
01

n’0n’1

LSBMSB

Sy
na

ps
es

N
eu

ro
ns

+
<<

+

01
00

n”0n”1

0

+

0
0
1

1

1
1
1

+

on0on1

s0
s1

+ +

1
on’0on’1

+ +

2on”0on”1

<<

<<

<<

<<

<<

<<
<<

<<

<<

(c)(b) Pragmatic Unit

Figure 2: An Example Illustrating How Pragmatic Skips Ineffectual Activation Bits Yet Exceeding
the Performance of a Bit-Parallel Engine

The bit-parallel unit of Figure 2a multiplies two activations with their respective weights and via
an adder reduces the two products. The unit reads all activation and weight, (n0 = 001(2), n1 =
010(2)) and (s0 = 001(2), s1 = 111(2)) respectively in a single cycle. As a result, the two sources
of inefficiency EoP and LoE manifest here: n0 and n1 are represented using 3 bits instead of 2
respectively due to EoP. Even in 2 bits, they each contain a zero bit due to LoE. As a result, four
ineffectual terms are processed when using standard multipliers such as those derived from the Shift
and Add algorithm. In general, given N activation and weight pairs, this unit will take dN/2e cycles
to process them regardless of their precision and the essential bit content of the activations.

Figure 2b shows a simplified PRA engine. In this example, activations are no longer represented as
vectors of bits but as vectors of offsets of the essential bits. For example, activation n0 = 001(2) is
represented as on0 = (0), and a activation value of 111(2) would be represented as (2, 1, 0). An out-
of-band bit (wire) not shown indicates the activation’s end. A shifter per activation uses the offsets to
effectively multiply the corresponding weight with the respective power of 2 before passing it to the
adder tree. As a result, PRA processes only the non-zero terms avoiding all ineffectual computations
that were due to EoP or LoE. To match the throughput of the bit-parallel engine of Figure 2a, we take
advantage of weight reuse and processes multiple activations groups in parallel. In this example, six
activations (n0 = 001(2), n1 = 010(2), n

′
0 = 000(2), n

′
1 = 010(2), n

′′
0 = 010(2), n

′′
1 = 000(2)) are

combined with the two weights as shown. For this example, PRA would process the six activation
and weight pairs in a single cycle, a speedup of 3× over the bit-parallel engine.

4 BASELINE SYSTEM: DADIANNAO

Pragmatic is demonstrated as a modification of the DaDianNao accelerator (DaDN) proposed by
Chen et al. Chen et al. (2014). Figure 3a shows a DaDN tile which processes 16 filters concurrently
calculating 16 activation and weight products per filter for a total of 256 products per cycle. To do,
each cycle the tile accepts 16 weights per filter for total of 256 weight, and 16 input activations. The
tile multiplies each weight with only one activation whereas each activation is multiplied with 16
weight, one per filter. The tile reduces the 16 products into a single partial output activation per filter,
for a total of 16 partial output activations for the tile. Each DaDN chip comprises 16 such tiles, each

3

Under review as a conference paper at ICLR 2017

Synapse
Lane 0

Synapse
Lane 15

SB (eDRAM)

NBin

x

x
f

NBout
+

Filter
Lane 0

Filter
Lane 15

x

x
+ f

from central
eDRAM

to central
eDRAM

Synapse
Lane 0

Synapse
Lane 15

Neuron
Lane 0

Neuron
Lane 15

16

IP0

IP15

(a)

PIP(0,0)

Synapse
Lane 0

Synapse
Lane 15

SB (eDRAM)

NBin

NBout

Filter
Lane 0

Filter
Lane 15

from central
eDRAM

to central
eDRAM

Synapse
Lane 0

Synapse
Lane 15

Offset
Lane 0

Offset
Lane 15

n0

n15

n0

n15

Offset
Lane 240

Offset
Lane 255

Window
Lane 0

Window
Lane 15

+
<<

<<

+
<<

<<

1-4

1-4

16

16

+
<<

<<
SR

+
<<

<<

16

16

1-4

1-4

PIP(15,0)

PIP(15,15)PIP(0,15)

f

(b)

Figure 3: a) DaDianNao Tile. b) Pragmatic Tile.

processing a different set of 16 filters per cycle. Accordingly, each cycle, the whole chip processes
16 activations and 256× 16 = 4K weights producing 16× 16 = 256 partial output activations.

Internally, each tile has: 1) a synapse buffer (SB) that provides 256 weights per cycle one per synapse
lane, 2) an input neuron buffer1 (NBin) which provides 16 activations per cycle through 16 neuron
lanes, and 3) a neuron output buffer (NBout) which accepts 16 partial output activations per cycle. In
the tile’s datapath, or the Neural Functional Unit (NFU) each neuron lane is paired with 16 synapse
lanes one from each filter. Each synapse and neuron lane pair feed a multiplier and an adder tree per
filter lane reduces the 16 per filter products into a partial sum. In all, the filter lanes produce each
a partial sum per cycle, for a total of 16 partial output activations per NFU. Once a full window is
processed, the 16 resulting sums, are fed through a non-linear activation function, f , to produce the
16 final output activations. The multiplications and reductions needed per cycle are implemented
via 256 multipliers one per synapse lane and sixteen 17-input (16 products plus the partial sum from
NBout) adder trees one per filter lane.

DaDN’s main goal was minimizing off-chip bandwidth while maximizing on-chip compute utiliza-
tion. To avoid fetching weights from off-chip, DaDN uses a 2MB eDRAM SB per tile for a total
of 32MB eDRAM. All inter-layer activations except for the initial input and the final output are
stored in a 4MB shared central eDRAM Neuron Memory (NM) which is connected via a broadcast
interconnect to the 16 NBin buffers. Off-chip accesses are needed only for reading the input image,
the filter weights once per layer, and for writing the final output.

Terminology: For clarity, in what follows n(x, y, i) and o(x, y, i) refer to an input and an output
activation at coordinates (x, y, i) respectively. The weight of filter f at coordinates (x, y, i) is de-
noted as sf (x, y, i). The term brick refers to a set of 16 elements of a 3D activation or weight
array which are contiguous along the i dimension, e.g., n(x, y, i)...n(x, y, i + 15). Bricks will be
denoted by their origin element with a B subscript, e.g., nB(x, y, i). The term pallet refers to a set
of 16 bricks corresponding to adjacent, using a stride S, windows along the x or y dimensions, e.g.,
nB(x, y, i)...nB(x, y+15×S, i) and will be denoted as nP (x, y, i). The number of activations per
brick, and bricks per pallet are design parameters.

Processing Approach: Processing starts by reading from external memory the first layer’s weights
synapses, and the input image. The weights are distributed over the SBs and the input is stored
into NM. Each cycle an input activation brick is broadcast to all units. Each units reads 16 weight
bricks from its SB and produces a partial output activation brick which it stores in its NBout. Once
computed, the output activations are stored through NBout to NM and then fed back through the
NBins when processing the next layer. Loading the next set of activations from external memory
can be overlapped with the processing of the current layer as necessary.

1Chen et al. (2014) used the terms neuron and synapse to refer to activations and weights respectively and
named the various components accordingly. We maintain this terminology for the design’s components.

4

Under review as a conference paper at ICLR 2017

5 Pragmatic

PRA’s goal is to process only the essential bits of the activations. To do so PRA a) converts, on-the-
fly, the input activation representation into one containing only the essential bits, and b) processes
one essential bit per activation and a full 16-bit weight per cycle. Since PRA processes activation
bits serially, it may take up to 16 cycles to produce a product of a activation and a weight. To always
match or exceed the performance of the bit-parallel units of DaDN, PRA processes more activations
concurrently exploiting the abundant parallelism of the convolutional layers. The remaining of this
section describes in turn: 1) an appropriate activation representation, 2) the way PRA calculates
terms, 3) how multiple terms are processed concurrently to maintain performance on par with DaDN
in the worst case, and 4) how PRA’s units are supplied with the necessary activations from NM.

Input Activation Representation: PRA starts with an input activation representation where it
is straightforward to identify the next essential bit each cycle. One such representation is an
explicit list of oneffsets, that is of the constituent powers of two. For example, an activation
n = 5.5(10) = 0101.1(2) would be represented as n = (2, 0,−1). In the implementation de-
scribed herein, activations are stored in 16-bit fixed-point in NM, and converted on-the-fly in the
PRA representation as they are broadcast to the tiles. A single oneffset is processed per activation
per cycle. Each oneffset is represented as (pow, eon) where pow is a 4-bit value and eon a sin-
gle bit which if set indicates the end of a activation. For example, n = 101(2) is represented as
nPRA = ((0010, 0)(0000, 1)).

Calculating a (weight, activation) product: PRA calculates the product of weight s and activation
n as:

s× n =
∑

∀f∈nPRA

s× 2f =
∑

∀f∈nPRA

(n� f)

That is, each cycle, the weight s multiplied by f , the next constituent power two of n, and the result
is accumulated. This multiplication can be implemented as a shift and an AND.

Boosting Compute Bandwidth over DaDN: To match DaDN’s performance PRA needs to pro-
cess the same number of effectual terms per cycle. Each DaDN tile calculates 256 activation and
weight products per cycle, or 256 × 16 = 4K terms. While most of these terms will be in practice
ineffectual, to guarantee that PRA always performs as well as DaDN it should process 4K terms per
cycle. For the time being let us assume that all activations contain the same number of essential bits,
so that when processing multiple activations in parallel, all units complete at the same time and thus
can proceed with the next set of activations in sync. The next section will relax this constraint.

Since PRA processes activations bits serially, it produces one term per activation bit and weight pair
and thus needs to process 4K such pairs concurrently. The choice of which 4K activation bit and
weight pairs to process concurrently can adversely affect complexity and performance. For example,
it could force an increase in SB capacity and width, or an increase in NM width, or be ineffective
due to unit underutilization given the commonly used layer sizes.

Fortunately, it is possible to avoid increasing the capacity and the width of the SB and the NM
while keeping the units utilized as in DaDN. Specifically, a PRA tile can read 16 weight bricks
and the equivalent of 256 activation bits as DaDN’s tiles do (DaDN processes 16 16-bit activations
or 256 activation bits per cycle). Specifically, as in DaDN, each PRA tile processes 16 weight
bricks concurrently, one per filter. However, differently than DaDN where the 16 weight bricks are
combined with just one activation brick which is processed bit-parallel, PRA combines each weight
brick with 16 activation bricks, one from each of 16 windows, which are processed bit-serially.
The same 16 activation bricks are combined with all weight bricks. These activation bricks form
a pallet enabling the same weight brick to be combined with all. For example, in a single cycle a
PRA title processing filters 0 through 15 could combine combine s0B(x, y, 0), ..., s

1
B5(x, y, 0) with

nPRA
B (x, y, 0), nPRA

B (x+2, y, 0), ...nPRA
B (x+31, y, 0) assuming a layer with a stride of 2. In this case,

s4(x, y, 2) would be paired with nPRA(x, y, 2), nPRA(x + 2, y, 2), ..., nPRA(x + 31, y, 2) to produce
the output weights on(x, y, 4) through on(x+ 15, y, 4).

As the example illustrates, this approach allows each weight to be combined with one activation per
window whereas in DaDN each weight is combined with one activation only. In total, 256 essential
activation bits are processed per cycle and given that there are 256 weights and 16 windows, PRA

5

Under review as a conference paper at ICLR 2017

processes 256 × 16 = 4K activation bit and weight pairs, or terms per cycle producing 256 partial
output activations, 16 per filter, or 16 partial output activation bricks per cycle.

Supplying the Inputs: Thus far it was assumed that all input activations have the same number
of essential bits. Under this assumption, all neuron lanes complete processing their terms at the
same time, allowing PRA to move on to the next activation pallet and the next set of weight bricks
in one step. This allows PRA to reuse STR’s approach for fetching the next pallet from the single-
ported NM Judd et al. (2016b;a). Briefly, with unit stride the 256 weights would be typically all
stored in the same NM row or at most over two adjacent NM rows and thus can be fetched in at
most two cycles. When the stride is more than one, the weights will be spread over multiple rows
and thus multiple cycles will be needed to fetch them all. Fortunately, fetching the next pallet can
be overlapped with processing the current one. Accordingly, if it takes NMC to access the next
pallet from NM, while the current pallet requires PC cycles to process, the next pallet will begin
processing after max(NMC , PC) cycles. When NMC > PC performance is lost waiting for NM.

In practice it highly unlikely that all activations will have the same number of essential bits. In
general, each neuron lane if left unrestricted will advance at a different rate. In the worst case, each
neuron lane may end up needing activations from a different activation brick, thus breaking PRA’s
ability to reuse the same weight brick. This is undesirable if not impractical as it would require
partitioning and replicating the SB so that 4K unrelated weight could be read per cycle, and it would
also increase NM complexity and bandwidth.

Fortunately, these complexities can be avoided with pallet-level neuron lane synchronization where
all neuron lanes “wait” (a neuron lane that has detected the end of its activation forces zero terms
while waiting) for the one with the most essential bits to finish before proceeding with the next
pallet. Under this approach it does not matter which bits are essential per activation, only how many
exist. Since, it is unlikely that most pallets will contain an activation with 16 essential terms, PRA
will improve performance over DaDN. Section 5.1 will discuss finer-grain synchronization schemes
that lead to even better performance. Before doing so, however, we detail PRA’s design.

+
+

max
<<

i_nbout

o_nbout

1 0
1st

cycle

16

x16

Done

1

Synapse
1

16

16

Synapse <<

<<

64
4

4

shift_B

n
e
g

n
e
g

<<

prec

Figure 4: Pragmatic Inner Product Unit.

5.1 STRUCTURE AND PERFORMANCE AND AREA OPTIMIZATIONS

Figure 3b shows the Pragmatic tile architecture which comprises an array of 16 × 16 = 256 prag-
matic inner product units (PIPs). PIP(i,j) processes an activation oneffset from the i-th window and
its corresponding weight from the j-th filter. Specifically, all the PIPs along the i-th row receive the
same weight brick belonging to the i-th filter and all PIPs along the j-th column receive an oneffset
from each activation from one activation brick belonging to the j-th window. The necessary activa-

+<<

<<
1

0

4

5

7

6

8

7
<<

1

0 0
+<<

<<

<<
5
7

6

8

7
<<

1

3

0
4 +<<

<<

<<8

7
<<

2

0
6

<<

+<<

<<

<<
0

7
<<01

10

00

00

00

00

01

00

10

00

01

11

1

0

0

Neuron values Oneffsets PIP

cycle 1 cycle 2 cycle 3 cycle 4

4 6 7

+
+

16

x16

Done

1

Synapse
1

16

16

Synapse <<

<<

16xN
N

N

ne
g

ne
g

<<

4

1st stage
2nd stage

1st

(a) (b)

2nd

Figure 5: 2-stage shifting. a) Modified PIP. b) Example: Processing three 9-bit weight and activation
pairs with L = 2.

6

Under review as a conference paper at ICLR 2017

PIP PIP01 0SB
Extra Synapse

Registers

24Max # oneffsets:

52

4

2

Brick Indexes: 012

0’1’2’

01 1SB

4

52

4

2

12

0’1’2’

cycle 1 cycle 3

Synapses
corresponding

to brick #
12 1SB

4

2

4

2

12

1’2’

cycle 6

12 2SB

2

4

2

2

1’2’

cycle 7

23 2SB

4

2

2

2’

cycle 8

SR

Bricks:

SR

Figure 6: Per-column synchronization example: one extra synapse register and 1x2 PIP array capa-
ble of processing two windows in parallel. The two numbers per brick show: the first from the top is
the brick’s index, (0, 1, 2) and (0′, 1′, 2′) for the bricks of the first and second window. The second
is the maximum count of oneffsets in its activations, (2, 4, 4) and (5, 2, 2) respectively. The numbers
in the registers indicate the index of the corresponding bricks, i.e., a synapse register containing a
K stores the weights corresponding to activation bricks with indexes K and K ′. In cycles 3 to 8,
thicker lines indicate registers being loaded or wires being used.

tion oneffsets are read from NBin where they have been placed by the Dispatcher and the Oneffset
generators units as Section 5.1 explains. Every cycle NBin sends 256 oneffsets 16 per window lane.
All the PIPs in a column receive the same 16 oneffsets, corresponding to the activations of a sin-
gle window. When the tile starts to process a new activation pallet, 256 weights are read from SB
through its 256 synapse lanes as in DaDN and are stored in the synapse registers (SR) of each PIP.
The weights and oneffsets are then processed by the PIPs.

Pragmatic Inner-Product Unit: Figure 4 shows the PIP internals. Every cycle, 16 weights are
combined with their corresponding oneffsets. Each oneffsets controls a shifter effectively multiply-
ing the weight with a power of two. The shifted weights are reduced via the adder tree. An AND
gate per weight supports the injection of a null terms when necessary. In the most straightforward
design, the oneffsets use 4-bits, each shifter accepts a 16-bit weight and can shift it by up to 15
bit positions producing a 31-bit output. Finally, the adder tree accepts 31-bit inputs. Section 5.1
presents an enhanced design that requires narrower components improving area and energy.

Dispatcher and Oneffset Generators The Dispatcher reads 16 activation bricks from NM, as ex-
pected by the PRA tiles. The oneffset generator converts their activations on-the-fly to the oneffset
representation, and broadcasts one oneffset per activation per cycle for a total of 256 oneffsets to
all titles. Fetching and assembling the 16 activation bricks from NM is akin to fetching words
with a stride of S from a cache structure. Once the 16 activation bricks have been collected, 256
oneffset generators operate in parallel to locate and communicate the next oneffset per activation.
A straightforward 16-bit leading one detector is sufficient. The latency of the oneffset generators
and the dispatcher can be readily hidden as they can be pipelined as desired overlapping them with
processing in the PRA tiles.

Reducing Title Area with 2-Stage Shifting: Any shift can be performed in two stages as two
smaller shifts: a � K = a � (K ′ + C) = ((a � K ′) � C). Thus, to shift and add T weights
by different offsets K0, ...,KT , we can decompose the offsets into sums with a common term C,
e.g., Ki = K ′

i + C. Accordingly, PIP processing can be rearranged using a two stage processing
where the first stage uses a per weight specific offset K ′

i, and the second stage, the common across
all weights offset C. This arrangement can be used to reduce the width of the weight shifters and
of the adder tree by sharing one common shifter after the adder tree as Figure 5a shows. A design
parameter, L, defines the number of bits controlling the weight shifters so that the design can process
oneffsets which differ by less than 2L in a single cycle. This reduces the size of the weight shifters
and reduces the size of the adder tree to support terms of 16 + 2L − 1 bits only.

Increasing Performance with Per-Column Neuron Lane Synchronization: The pallet neuron
lane synchronization scheme of Section 5 is one of many possible synchronization schemes. Finer-
grain neuron lane synchronization schemes are possible leading to higher performance albeit at a
cost. Among them, per column neuron lane synchronization is an appealing scheme offering a good
balance of cost vs. performance. Here each PIP column operates independently but all the PIPs
along the same column synchronize before moving to the next activation brick. Since the PIPs along
the same column operate in sync, they all process one set of 16 weight bricks which can be read
using the existing SB interface. However, given that different PIP columns operate now out-of-

7

Under review as a conference paper at ICLR 2017

sync, the SB would be accessed more frequently and could become a bottleneck. There are two
concerns: 1) different PIP columns may need to perform two independent SB reads while there are
only one SB port and one common bus connecting the PIP array to the SB, and 2) there will be
repeat accesses to SB that will increase SB energy, while the SB is already a major consumer of
energy. These concerns are addressed as follows: 1) only one SB access can proceed per cycle thus
a PIP column may need to wait when collisions occur. 2) A set of registers, or synapse set registers
(SSRs) are introduced in front of the SB each holding a recently read set of 16 weight bricks. Since
all PIP columns will eventually need the same set of weight bricks, temporarily buffering them
avoids fetching them repeatedly from the SB. Once a weight set has been read into an SSR, it stays
there until all PIP columns have copied it (a 4-bit down counter is sufficient for tracking how many
PIP columns have yet to read the weight set). This policy guarantees that the SB is accessed the
same number of times as in DaDN. However, stalls may incur as a PIP column has to be able to
store a new set of weights into an SSR when it reads it from the SB. Figure 6 shows an example.
Since each neuron lane advances independently, in the worst case, the dispatcher may need to fetch
16 independent activation bricks each from a different pallet. The Dispatcher can buffer those pallets
to avoid rereading NM, which would, at worst, require a 256 pallet buffer. However, given that the
number SSRs restricts how far apart the PIP columns can be, and since Section 6.2 shows that only
one SSR is sufficient, a two pallet buffer in the dispatcher is all that is needed.

Further Increasing Performance with Improved Oneffset Encoding: Since PIPs in Pragmatic
can negate any input term, it is possible to enhance the oneffset generator to generate fewer oneffsets
for neuron values containing runs of ones by allowing signed oneffsets Booth (1951).

This improved generator reduces runs of adjacent oneffsets a...b into pairs of the form a + 1,−b.
Single oneffsets or gaps inside runs are represented by a positive or negative oneffset, respectively.
For example a neuron value of 11011 that would normally be encoded with oneffsets (4, 3, 1, 0) can
instead be represented with (5,−3,+2,−0) or even more economically with (5,−2,−0). This is
equivalent to a Radix-4 Booth encoding and will never emit more than

⌊
x
2 + 1

⌋
oneffsets, where x

is the neuron precision.

This encoding will never produce more oneffsets compared to the baseline encoding. However,
because of the 2-stage shifting, it is possible that this encoding will increase the number of cycles
needed. This will happen when the oneffset distribution among the bit groups being processed
together during 2-stage shifting changes.

Finally, booth encoding is conventionally used to reduce the number of cycles needed to perform
multiplication in single shift-and-add multipliers typically reserved for low cost low performance de-
signs, or to reduce the depth of bit-parallel multipliers. Pragmatic with its 2-stage shifting and judi-
cious lane synchronization enables its practical use in a massively data-parallel accelerator boosting
performance beyond what is possible with bit-parallel units.

The Role of Software: PRA enables an additional dimension upon which hardware and software
can attempt to further boost performance and energy efficiency, that of controlling the essential
activation value content. This work investigates a software guided approach where the precision
requirements of each layer are used to zero out a number of prefix and suffix bits at the output of
each layer. Using the profiling method of Judd et al., Judd et al. (2015), software communicates
the precisions needed by each layer as meta-data. The hardware trims the output activations before
writing them to NM using AND gates and precision derived bit masks.

6 EVALUATION

The performance, area and energy efficiency of Pragmatic is compared against DaDN Chen et al.
(2014) and Stripes Judd et al. (2016b), two state-of-the-art DNN accelerators. DaDN is the fastest
bit-parallel accelerator proposed to date that processes all activations regardless of theirs values, and
STR improves upon DaDN by exploiting the per layer precision requirements of DNNs. Cnvlutin
improves upon DaDN by skipping most zero- or near-zero-valued activations Albericio et al. (2016),
however, Stripes has been shown to outperform it.

After reviewing the experimental methodology the rest of this section is organized as follows: Sec-
tions 6.1 and 6.2 explore the PRA design space considering respectively single- and 2-stage shift-
ing configurations, and column synchronization. Section 6.2 reports energy efficiency for the best

8

Under review as a conference paper at ICLR 2017

Per Layer
Network Activation Precision in Bits
AlexNet 9-8-5-5-7
NiN 8-8-8-9-7-8-8-9-9-8-8-8
GoogLeNet 10-8-10-9-8-10-9-8-9-10-7
VGG M 7-7-7-8-7
VGG S 7-8-9-7-9
VGG 19 12-12-12-11-12-10-11-11-13-12-

13-13-13-13-13-13

Table 2: Per convolutional layer activation precision profiles.

configuration. Section 6.4 analyzes the contribution of the software provided precisions. Finally,
Section 6.5 reports performance for designs using an 8-bit quantized representation.

Methodology: The same methodology is used for all systems for consistency. A custom cycle-
accurate simulator models execution time. For all systems, computation was scheduled to minimize
energy, which led to the same schedule for all. To estimate power and area, the designs were synthe-
sized with the Synopsis Design Compiler Synopsys for a TSMC 65nm library. The NBin and NBout
SRAM buffers were modeled using CACTI Muralimanohar & Balasubramonian. The eDRAM area
and energy were modeled with Destiny Poremba et al. (2015). To compare against STR, the per
layer numerical representation requirements reported in Table 2 were found using the methodology
of Judd et al. Judd et al. (2016b). All PRA configurations studied exploit software provided preci-
sions as per Section 5.1. Section 6.4 analyzes the impact of this information on overall performance.
All performance measurements are for the convolutional layers only which account for more than
92% of the overall execution time in DaDN Chen et al. (2014). PRA does not affect the execution
time of the remaining layers.

6.1 SINGLE- AND 2-STAGE SHIFTING

This section evaluates the single-stage shifting PRA configuration of Sections 5– 5.1, and the 2-stage
shifting variants of Section 5.1. Section 6.1 reports performance while Section 6.1 reports area and
power. In this section, All PRA systems use pallet synchronization.

Performance: Figure 7 shows the performance of STR (leftmost bars) and of PRA variants relative
to DaDN. The PRA systems are labelled with the number of bits used to operate the first-stage,
weight shifters, e.g., the weight shifters of “2-bit” , or PRA2b, are able to shift to four bit positions
(0–3). “4-bit” or PRA4b, is the single-stage Pragmatic, or PRAsingle of Sections 5– 5.1 whose
weight shifters can shift to 16 bit positions (0–15). It has no second stage shifter.

PRAsingle improves performance by 2.59× on average over DaDN compared to the 1.85× average
improvement with STR. Performance improvements over DaDN vary from 2.11× for VGG19 to
2.97× for VGGM. As expected the 2-stage PRA variants offer slightly lower performance than
PRAsingle, however, performance with PRA2b and PRA3b is always within 0.2% of PRAsingle. Even
PRA0b which does not include any weight shifters outperforms STR by 20% on average. Given a set
of oneffsets, PRA0b will accommodate the minimum non-zero oneffset per cycle via its second level
shifter.

Area and Power: Table 3 shows the absolute and relative to DaDN area and power. Two area
measurements are reported: 1) for the unit excluding the SB, NBin and NBout memory blocks, and
2) for the whole chip comprising 16 units and all memory blocks. Since SB and NM dominate
chip area, the per area area overheads Given the performance advantage of PRA, the area and power
overheads are justified. PRA2b is particularly appealing as its overall area cost over BASE is only
1.35× and its power 2.03× while its performance is 2.59× on average. Accordingly, we restrict
attention to this configuration in the rest of this evaluation.

6.2 PER-COLUMN SYNCHRONIZATION

Performance: Figure 8 reports the relative performance for PRA2b with column synchronization
and as a function of the number of SSRs as per Section 5.1. Configuration PRAxR

2b refers to a

9

Under review as a conference paper at ICLR 2017

Alexnet NiN Google VGGM VGGS VGG19 geo
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Stripes 0-bit 1-bit 2-bit 3-bit 4-bit

Figure 7: Pragmatic’s performance relative
to DaDianNao using 2-stage shifting and per-
pallet synchronization.

Alexnet NiN Google VGGM VGGS VGG19 geo
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Stripes 1-reg 4-regs 16-regs perCol-ideal

Figure 8: Relative performance of PRA2b

with column synchronization and as a func-
tion of the SB registers used.

DDN STR 0-bit 1-bit 2-bit 3-bit 4-bit
Area U. 1.55 3.05 3.11 3.16 3.54 4.41 5.75

∆ Area U. 1.00 1.97 2.01 2.04 2.29 2.85 3.71
Area T. 90 114 115 116 122 136 157

∆ Area T. 1.00 1.27 1.28 1.29 1.35 1.51 1.75
Power T. 18.8 30.2 31.4 34.5 38.2 43.8 51.6

∆ Power T. 1.00 1.60 1.67 1.83 2.03 2.33 2.74

Table 3: Area [mm2] and power [W] for the unit and the whole chip. Pallet synchronization.

configuration using x SSRs. Even PRA1R
2b boosts performance to 3.1× on average close to the

3.45× that is ideally possible with PRA∞R
2b .

Area and Power: Table 4 reports the area per unit, and the area and power per chip. The best
performing PRA1R

2b increases chip area by only 1.35× and power by only 2.19× over DaDN.

Energy Efficiency: Figure 10 shows the energy efficiency of various configurations of Pragmatic.
Energy Efficiency, or simply efficiency for a system NEW relative to BASE is defined as the ratio
EBASE/ENEW of the energy required by BASE to compute all of the convolution layers over that of
NEW. For the selected networks, STR is 16% more efficient than DaDN. The power overhead of
PRAsingle (PRA4b) is more than the speedup resulting in a circuit that is 5% less efficient than
DaDN. PRA2b reduces that power overhead while maintaining performance yielding an efficiency
of 28%. PRA1R

2b yields the best efficiency at 48% over DaDN.

Alexnet NiN Google VGGM VGGS VGG19 geo
0

1

2

3

4

5

Stripes PRA-0b-Pallet PRA-1b-Pallet PRA-2b-Pallet PRA-2b-1R

Figure 9: Relative performance of Pragmatic
using Improved Oneffset Encoding for different
configurations. Marked: performance not using
IOE

Alexnet NiN Google VGGM VGGS VGG19 geo
0.0

0.5

1.0

1.5

Stripes PRA-4b PRA-2b PRA-2b-1R

Figure 10: Relative energy efficiency

10

Under review as a conference paper at ICLR 2017

DDN STR 1-reg 4-reg 16-reg
Area U. 1.55 3.05 3.58 3.73 4.33

∆ Area U. 1.00 1.97 2.31 2.41 2.79
Area T. 90 114 122 125 134

∆ Area T. 1.00 1.27 1.36 1.39 1.49
Power T. 18.8 30.2 38.8 40.8 49.1

∆ Power T. 1.00 1.60 2.06 2.17 2.61

Table 4: Area [mm2] and power [W] for the unit and the whole chip for column synchronization
and PRA2b.

Alexnet NiN Google VGGM VGGS VGG19 AVG
23% 10% 18% 22% 21% 19% 19%

Table 5: Performance benefit due to software guidance

6.3 IMPROVED ONEFFSET ENCODING

Figure 9 reports performance for Pragmatic when using the enhanced oneffset generator described
in Section 5.1. The considered configurations include PRA0b, PRA1b and PRA2b (with pallet syn-
chronization), and PRA1R

2b . PRA0b degrades by 7%, but the other configurations show improvements
of 26%, 48%, and 41% respectively. A cause of degradation for PRA0b is the increased spread of
oneffset values (for example, the pair of neurons 011101, 010101 takes 4 cycles with conventional
encoding and 5 with enhanced encoding even though the total count of oneffsets is reduced from 7
to 6).

6.4 THE IMPACT OF SOFTWARE

All PRA configurations studied thus far, used software provided per layer activation precisions to
reduce essential bit content. PRA does not require these precisions to operate. Table 5 shows what
fraction of the performance benefits is due to the software guidance for PRA1R

2b , the best configura-
tion studied. The results demonstrate that: 1) PRA would outperform the other architectures even
without software guidance, and 2) on average, software guidance improves performance by 19%.

6.5 QUANTIZATION

Figure 11 reports performance for DaDN and PRA configurations using the 8-bit quantized repre-
sentation used in Tensorflow Warden (2016); Google (2016). This quantization uses 8 bits to specify
arbitrary minimum and maximum limits per layer for the activations and the weights separately, and
maps the 256 available 8-bit values linearly into the resulting interval. This representation has higher

Alexnet NiN Google VGGM VGGS VGG19 geo
0

1

2

3

4

5

6

Stripes perPall perPall-2bit perCol-1reg-2bit perCol-ideal

Figure 11: Performance: 8-bit quantized repre-
sentation (marked: without IOE)

11

Under review as a conference paper at ICLR 2017

flexibility and better utilization than the reduced precision approach of Stripes since the range doesnt
have to be symmetrical and the limits dont have to be powers of two, while still allowing straight-
forward multiplication of the values. The limit values are set to the maximum and the minimum
activation values for each layer and the quantization uses the recommended rounding mode.

Figure 11 reports performance relative to DaDN for PRAsingle, PRA2b, PRA1R
2b , and PRA∞R

2b . PRA
performance benefits persist and are over 4.5× for PRA1R

2b . Measuring the area and energy of these
designs is left for future work, however, the absolute area and energy needed by all will be lower
due to the narrower representation. Moreover, given that the tile logic will occupy relatively less
area for the whole chip and given that the SB and NM account for significant area and energy, the
overall overheads of the PRA designs over DaDN will be lower than that measured for the 16-bit
fixed-point configurations.

7 RELATED WORK

The acceleration of Deep Learning is an active area of research and has yielded numerous proposals
for hardware acceleration. DaDianNao (DaDN) is the de facto standard for high-performance DNN
acceleration Chen et al. (2014). In the interest of space, this section restricts attention to methods that
are either directly related to DaDN, or that follow a value-based approach to DNN acceleration, as
Pragmatic falls under this category of accelerators. Value-based accelerators exploit the properties
of the values being processed to further improve performance or energy beyond what is possible
by exploiting computation structure alone. Cnvlutin Albericio et al. (2016) and Stripes Judd et al.
(2016b)Judd et al. (2016a) are such accelerators and they have been already discussed and compared
against in this work.

PuDianNao is a hardware accelerator that supports seven machine learning algorithms including
DNNs Liu et al. (2015). ShiDianNao is a camera-integrated low power accelerator that exploits
integration to reduce communication overheads and to further improve energy efficiency Du et al.
(2015). Cambricon is the first instruction set architecture for Deep Learning Liu et al. (2016). Min-
erva is a highly automated software and hardware co-design approach targeting ultra low-voltage,
highly-efficient DNN accelerators Reagen et al. (2016). Eyeriss is a low power, real-time DNN ac-
celerator that exploits zero valued activations for memory compression and energy reduction Chen,
Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne (2016). The Efficient Inference
Engine (EIE) exploits efficient activation and weight representations and pruning to greatly reduce
communication costs, to improve energy efficiency and to boost performance by avoiding certain
ineffectual computations Han et al. (2016)Han et al. (2015). EIE targets fully-connected (FC) lay-
ers and was shown to be 12× more efficient than DaDN on FC layers, and 2× less efficient for
convolutional layers. All aforementioned accelerators use bit-parallel units. While this work has
demonstrated Pragmatic as a modification of DaDN, its computation units and potentially, its gen-
eral approach could be compatible with all aforementioned accelerator designs. This investigation
is interesting future work.

Profiling has been used to determine the precision requirements of a neural network for a hardwired
implementation Kim et al. (2014). EoP has been exploited in general purpose hardware and other
application domains. For example, Brooks et al. Brooks & Martonosi (1999) exploit the prefix bits
due to EoP to turn off parts of the datapath improving energy. Park et al. Park et al. (2010), use a
similar approach to trade off image quality for improved energy efficiency. Neither approach directly
improves performance.

8 CONCLUSION

To the best of our knowledge Pragmatic is the first DNN accelerator that exploits not only the per
layer precision requirements of CNNs but also the essential bit information content of the activation
values. While this work targeted high-performance implementations, Pragmatic’s core approach
should be applicable to other hardware accelerators. We have investigated Pragmatic only for in-
ference and with image classification convolutional neural networks. While desirable, applying the
same concept to other network types, layers other than the convolutional one, is left for future work.
It would also be interesting to study how the Pragmatic concepts can be applied to more general
purpose accelerators or even graphics processors.

12

Under review as a conference paper at ICLR 2017

REFERENCES

Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and An-
dreas Moshovos. Cnvlutin: Ineffectual-neuron-free deep neural network computing. In 2016
IEEE/ACM International Conference on Computer Architecture (ISCA), 2016.

A. D Booth. A signed binary multiplication technique. The Quarterly Journal of Mechanics and
Applied Mathematics, 4(2):236–240, 1951.

David Brooks and Margaret Martonosi. Dynamically exploiting narrow width operands to improve
processor power and performance. In Proceedings of the 5th International Symposium on High
Performance Computer Architecture, HPCA ’99, pp. 13–, Washington, DC, USA, 1999. IEEE
Computer Society. ISBN 0-7695-0004-8. URL http://dl.acm.org/citation.cfm?
id=520549.822763.

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen,
Zhiwei Xu, Ninghui Sun, and O. Temam. Dadiannao: A machine-learning supercomputer. In
Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM International Symposium on, pp. 609–
622, Dec 2014. doi: 10.1109/MICRO.2014.58.

Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne. Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks. In IEEE International
Solid-State Circuits Conference, ISSCC 2016, Digest of Technical Papers, pp. 262–263, 2016.

Zidong Du, R. Fasthuber, Tianshi Chen, P. Ienne, Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen,
and O. Temam. ShiDianNao: Shifting vision processing closer to the sensor. In 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA), pp. 92–104, June 2015.
doi: 10.1145/2749469.2750389. ShiDianNao.

Google. Low-precision matrix multiplication. https://github.com/google/gemmlowp,
2016.

Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural Net-
works with Pruning, Trained Quantization and Huffman Coding. arXiv:1510.00149 [cs], October
2015. URL http://arxiv.org/abs/1510.00149. arXiv: 1510.00149.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.
Dally. EIE: Efficient Inference Engine on Compressed Deep Neural Network. arXiv:1602.01528
[cs], February 2016. URL http://arxiv.org/abs/1602.01528. arXiv: 1602.01528.

Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, Raquel
Urtasun, and Andreas Moshovos. Reduced-Precision Strategies for Bounded Memory in Deep
Neural Nets, arXiv:1511.05236v4 [cs.LG] . arXiv.org, 2015.

Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, and Andreas Moshovos. Stripes:
Bit-serial Deep Neural Network Computing . In Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-49, 2016a.

Patrick Judd, Jorge Albericio, and Andreas Moshovos. Stripes: Bit-serial Deep Neural Network
Computing . Computer Architecture Letters, 2016b.

Jonghong Kim, Kyuyeon Hwang, and Wonyong Sung. X1000 real-time phoneme recognition VLSI
using feed-forward deep neural networks. In 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 7510–7514, May 2014. doi: 10.1109/ICASSP.2014.
6855060.

Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier Teman, Xiaobing
Feng, Xuehai Zhou, and Yunji Chen. PuDianNao: A Polyvalent Machine Learning Accelerator. In
Proceedings of the Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pp. 369–381, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-2835-7. doi: 10.1145/2694344.2694358. URL http://doi.acm.
org/10.1145/2694344.2694358. PuDianNao.

13

http://dl.acm.org/citation.cfm?id=520549.822763
http://dl.acm.org/citation.cfm?id=520549.822763
https://github.com/google/gemmlowp
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1602.01528
http://doi.acm.org/10.1145/2694344.2694358
http://doi.acm.org/10.1145/2694344.2694358

Under review as a conference paper at ICLR 2017

Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji Chen, and Tianshi Chen.
Cambricon: An instruction set architecture for neural networks. In 2016 IEEE/ACM International
Conference on Computer Architecture (ISCA), 2016.

Naveen Muralimanohar and Rajeev Balasubramonian. Cacti 6.0: A tool to understand large caches.

Jongsun Park, Jung Hwan Choi, and K. Roy. Dynamic Bit-Width Adaptation in DCT: An Approach
to Trade Off Image Quality and Computation Energy. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 18(5):787–793, May 2010. ISSN 1063-8210. doi: 10.1109/TVLSI.
2009.2016839.

M. Poremba, S. Mittal, Dong Li, J.S. Vetter, and Yuan Xie. Destiny: A tool for modeling emerging
3d nvm and edram caches. In Design, Automation Test in Europe Conference Exhibition (DATE),
2015, pp. 1543–1546, March 2015.

Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu Lee,
Jos Miguel Hernndez-Lobato, Gu-Yeon Wei, and David Brooks. Minerva: Enabling low-power,
highly-accurate deep neural network accelerators. In International Symposium on Computer Ar-
chitecture, 2016.

Synopsys. Design Compiler. http://www.synopsys.com/Tools/
Implementation/RTLSynthesis/DesignCompiler/Pages.

Christopher S. Wallace. A suggestion for a fast multiplier. IEEE Trans. Electronic Computers, 13
(1):14–17, 1964. doi: 10.1109/PGEC.1964.263830. URL http://dx.doi.org/10.1109/
PGEC.1964.263830.

Peter Warden. Low-precision matrix multiplication. https://petewarden.com, 2016.

9 APPENDIX

9.1 Pragmatic’S POTENTIAL

This appendix complements the analysis of Section 2 by estimating the potential of an idealized
Pragmatic accelerator that can skip any term (product of a full precision weight and one input
activation bit) while also improving execution time proportionally. Note the number of terms is
considered before the Improved Oneffset Encoding described in Section 5.1 is applied.

To estimate PRA’s potential, this section compares the number of terms that would be processed by
various computing engines for the convolutional layers of recent CNNs (see Section 6) for the two
aforementioned baseline activation representations.

16-bit Fixed-Point Representation: The following computing engines are considered: 1) baseline
representative of DaDN using 16-bit fixed-point bit-parallel units Chen et al. (2014), 2) a hypothet-
ical enhanced baseline ZN, that can skip all zero valued activations, 3) Cnvlutin (CVN) a practical
design that can skip zero value activations for all but the first layer Albericio et al. (2016), 4) STR
that avoids EoP (see Table 2, Section 6) Judd et al. (2016b), 5) an ideal, software-transparent PRA,
PRA-fp16 that processes only the essential activation bits, and 6) an ideal PRA, PRA-red, where
software communicates in advance how many prefix and suffix bits can be zeroed out after each
layer (see Section 5.1).

Figure 12a reports the number of terms normalized over DaDN where each multiplication is ac-
counted for using an equivalent number of terms or equivalently additions: 16 for DaDN, ZN, and
CVN, p for a layer using a precision of p bits for STR, and the number of essential activation bits
for PRA-fp16, and for PRA-red. For example, for n = 10.001(2), the number of additions counted
would be 16 for DaDN and CVN+, 5 for STR as it could use a 5-bit fixed-point representation, and
2 for PRA-fp16 and PRA-red.

On average, STR reduces the number of terms to 53% compared to DaDN while skipping just the
zero valued activations could reduce them to 39% if ZN was practical and to 63% in practice with
CVN. PRA-fp16 can ideally reduce the number of additions to just 10% on average, while with
software provided precisions per layer, PRA-red reduces the number of additions further to 8% on

14

http://dx.doi.org/10.1109/PGEC.1964.263830
http://dx.doi.org/10.1109/PGEC.1964.263830
https://petewarden.com

Under review as a conference paper at ICLR 2017

(a) 16-bit fixed-point (b) 8-Bit Quantized

Figure 12: Convolutional layer computational demands

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

conv1 conv2 conv3 conv4 conv5

(a) 16-bit: Full-Precision

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6 7 8 9

conv1 conv2 conv3 conv4 conv5

(b) 16-bit: Per Layer Precision

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 1 2 3 4 5 6 7 8

conv1 conv2 conv3 conv4 conv5

(c) Quantized

Figure 13: AlexNet: Per Layer ’1’-bit Count Distributions.

average. The potential savings are robust across all CNNs remaining above 87% for all DNNs with
PRA-red.

8-bit Quantized Representation: Figure 12b shows the relative number of terms processed for:
1) a bit-parallel baseline, 2) an ideal, yet impractical bit-parallel engine that skips all zero activa-
tions, and 3) PRA. In the interest of space and since PRA subsumes STR and CVN they are not
considered. Pragmatic’s benefits are significant even with an 8-bit quantized representation. On
average, skipping all the zero valued activations would eliminate only 30% of the terms whereas
Pragmatic would remove up to 71% of the terms.

9.2 ESSENTIAL BIT CONTENT DISTRIBUTIONS

This section reports the distributions of the essential bit count for the activations processed per
convolutional layers for the networks studied. Three distributions are shown per network for the
activations for three different representations: 1) 16-bit fixed-point, 2) per layer fixed-point, and 3)
8-bit Quantized. A peak appears for values having four bits that are 1 for the quantized representation
since the value zero is mapped to a non-zero index having four bits that are one (114). Note that, as
in Section 9.1, the distributions are taken before Improved Oneffset Encoding.

15

Under review as a conference paper at ICLR 2017

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

conv1 conv2 conv3 conv4-1024 cccp1 cccp2

cccp3 cccp4 cccp5 cccp6 cccp7-1024 cccp8-1024

(a) 16-bit: Full-Precision

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7 8 9

conv1 conv2 conv3 conv4-1024 cccp1 cccp2

cccp3 cccp4 cccp5 cccp6 cccp7-1024 cccp8-1024

(b) 16-bit: Per Layer Precision

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 1 2 3 4 5 6 7 8

conv1 conv2 conv3 conv4-1024 cccp1 cccp2

cccp3 cccp4 cccp5 cccp6 cccp7-1024 cccp8-1024

(c) Quantized: Activations

Figure 14: NiN: Per Layer ’1’-bit Count Distributions.

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

conv1 conv2 incept_3a incept_3b incept_4a incept_4b

incept_4c incept_4d incept_4e incept_5a incept_5b

(a) 16-bit: Full-Precision

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6 7 8 9 10

conv1 conv2 incept_3a incept_3b incept_4a incept_4b

incept_4c incept_4d incept_4e incept_5a incept_5b

(b) 16-bit: Per Layer Precision

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 1 2 3 4 5 6 7 8

conv1 conv2 incept_3a incept_3b incept_4a incept_4b

incept_4c incept_4d incept_4e incept_5a incept_5b

(c) Quantized: Activations

Figure 15: GoogLeNet: Per Layer ’1’-bit Count Distributions.

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

conv1 conv2 conv3 conv4 conv5

(a) 16-bit: Full-Precision

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8

conv1 conv2 conv3 conv4 conv5

(b) 16-bit: Per Layer Precision

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7 8

conv1 conv2 conv3 conv4 conv5

(c) Quantized: Activations

Figure 16: VGG M: Per Layer ’1’-bit Count Distributions.

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

conv1 conv2 conv3 conv4 conv5

(a) 16-bit: Full-Precision

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9

conv1 conv2 conv3 conv4 conv5

(b) 16-bit: Per Layer Precision

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 1 2 3 4 5 6 7 8

conv1 conv2 conv3 conv4 conv5

(c) Quantized: Activations

Figure 17: VGG S: Per Layer ’1’-bit Count Distributions.

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

conv1_1 conv1_2 conv2_1 conv2_2 conv3_1 conv3_2 conv3_3 conv3_4

conv4_1 conv4_2 conv4_3 conv4_4 conv5_1 conv5_2 conv5_3 conv5_4

(a) 16-bit: Full-Precision

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7 8 9 10 11 12 13

conv1_1 conv1_2 conv2_1 conv2_2 conv3_1 conv3_2 conv3_3 conv3_4

conv4_1 conv4_2 conv4_3 conv4_4 conv5_1 conv5_2 conv5_3 conv5_4

(b) 16-bit: Per Layer Precision

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 1 2 3 4 5 6 7 8

conv1_1 conv1_2 conv2_1 conv2_2 conv3_1 conv3_2 conv3_3 conv3_4

conv4_1 conv4_2 conv4_3 conv4_4 conv5_1 conv5_2 conv5_3 conv5_4

(c) Quantized: Activations

Figure 18: VGG 19: Per Layer ’1’-bit Count Distributions.

16

	Introduction
	Motivation
	Pragmatic: A Simplified Example
	Baseline System: DaDianNao
	Pragmatic
	Structure and Performance and Area Optimizations

	Evaluation
	Single- and 2-stage Shifting
	Per-column synchronization
	Improved Oneffset Encoding
	The Impact of Software
	Quantization

	Related Work
	Conclusion
	Appendix
	Pragmatic's Potential
	Essential Bit Content Distributions

