
Under review as a conference paper at ICLR 2017

L-SR1: A SECOND ORDER OPTIMIZATION METHOD
FOR DEEP LEARNING

Vivek Ramamurthy
Sentient Technologies
1 California Street Suite 2300
San Francisco, CA 94111
vivek.ramamurthy@sentient.ai

Nigel Duffy
Sentient Technologies
1 California Street Suite 2300
San Francisco, CA 94111
nigel.duffy@sentient.ai

ABSTRACT

We describe L-SR1, a new second order method to train deep neural networks.
Second order methods hold great promise for distributed training of deep net-
works. Unfortunately, they have not proven practical. Two significant barriers to
their success are inappropriate handling of saddle points, and poor conditioning
of the Hessian. L-SR1 is a practical second order method that addresses these
concerns. We provide experimental results showing that L-SR1 performs at least
as well as Nesterov’s Accelerated Gradient Descent, on the MNIST and CIFAR10
datasets. For the CIFAR10 dataset, we see competitive performance on shallow
networks like LeNet5, as well as on deeper networks like residual networks. Fur-
thermore, we perform an experimental analysis of L-SR1 with respect to its hyper-
parameters to gain greater intuition. Finally, we outline the potential usefulness of
L-SR1 in distributed training of deep neural networks.

1 MOTIVATION

Second order methods hold great potential for distributing the training of deep neural networks.
Due to their use of curvature information, they can often find good minima in far fewer steps than
first order methods such as stochastic gradient descent (SGD). Moreover, stochastic second order
methods can benefit from larger mini-batches (Le et al., 2011). This is because they estimate second
derivatives via differences between estimated gradients. The gradient estimates need to have less
variance, so that when we take their differences, the result has low variance. As a result they provide
a different trade-off between number of steps and mini-batch size than do SGD-like methods. This
trade-off is interesting, because while steps must be evaluated sequentially, a mini-batch may be
evaluated in parallel. Thus, second order methods present an opportunity to extract more parallelism
in neural network training. In particular, when mini-batches are sufficiently large, their evaluation
may be distributed. Furthermore, there are relatively fewer hyperparameters to tune in second order
methods, compared to variants of stochastic gradient descent.

L-BFGS (Nocedal, 1980; Liu & Nocedal, 1989) is perhaps the most commonly used second order
method in machine learning. BFGS is a quasi-Newton method that maintains an approximation to
the inverse Hessian of the function being optimized. L-BFGS is a limited memory version of BFGS
that stores the most recent updates to the inverse Hessian approximation and can therefore be used
practically for large scale problems. L-BFGS is typically combined with a line search technique to
choose an appropriate step size at each iteration. L-BFGS has been used to good effect in convex
optimization problems in machine learning, but has not found effective use in large scale non-convex
problems such as deep learning.

Three critical weaknesses have been identified. First, we know that training deep neural networks
involves minimizing non-convex error functions over continuous, high dimensional spaces. It has
been argued that the proliferation of saddle points in these problems presents a deep and profound
difficulty for quasi-Newton optimization methods (Dauphin et al., 2014). Furthermore, it has been
argued that curvature matrices generated in second order methods are often ill-conditioned, and
these need to be carefully repaired. A variety of approaches to this have been suggested, including
the use of an empirical Fisher diagonal matrix (Martens, 2016). Finally, popular quasi-Newton

1

Under review as a conference paper at ICLR 2017

approaches, such as L-BFGS (in their default form), require line search to make parameter updates,
which requires many more gradient and/or function evaluations.

We propose L-SR1, a second order method that addresses each of these concerns. SR1 (Symmetric
Rank One) is a quasi-Newton method that uses a rank one update for updating the Hessian approx-
imation of the function being optimized (Nocedal & Wright, 2006). Unlike BFGS, the SR1 update
does not guarantee positive definiteness of the updated matrix. This was considered a major problem
in the early days of nonlinear optimization when only line search iterations were used, and possibly
led to the obscurity of SR1 outside the optimization community. However, with the development of
trust-region methods, the SR1 updating formula is potentially very useful, and its ability to generate
indefinite Hessian approximations can actually prove to be advantageous.

We believe that it is possible to overcome saddle points using rank-one update based second order
methods. The more common rank-two methods, e.g. L-BFGS, maintain a positive definite approx-
imation to the inverse of the Hessian, by design (Nocedal & Wright, 2006). At saddle-points, the
true Hessian cannot be well approximated by a positive definite matrix, causing commonly used
second order methods to go uphill (Dauphin et al., 2014). On the other hand, rank-one approaches
such as SR1 don’t maintain this invariant, so they can go downhill at saddle points. Numerical ex-
periments (Conn et al., 1991) suggest that the approximate Hessian matrices generated by the SR1
method show faster progress towards the true Hessian than those generated by BFGS. This suggests
that a limited memory SR1 method (L-SR1, if you like) could potentially outperform L-BFGS in
the task of high dimensional optimization in neural network training. The building blocks needed to
construct an L-SR1 method have been suggested in the literature (Byrd et al., 1994; Khalfan et al.,
1993). To the best of our knowledge, however, there is no complete L-SR1 method previously de-
scribed in the literature 1. This prompted us to develop and test the approach, specifically in the
large scale non-convex problems that arise in deep learning.

Two other insights make L-SR1 practical by removing the requirement for a line search and ad-
dressing the conditioning problem. First, we replace the line search using a trust region approach.
While L-BFGS using line search is well studied, recently, an L-BFGS method that uses a trust-
region framework has also been proposed (Burke et al., 2008). Second, we combine L-SR1 with
batch normalization. Batch normalization is a technique of normalizing inputs to layers of a neural
network, used to address a phenomenon known as internal covariate shift during training (Ioffe &
Szegedy, 2015). Our hypothesis is that batch normalization may cause parameters of a neural net-
work to be suitably scaled so that the Hessian becomes better conditioned. We tested this hypothesis
empirically and outline the results below.

2 RELATED WORK

We now briefly summarize some other second order approaches that have been suggested in the
literature, in order to place our approach in context. Pearlmutter (1994) derived a technique that
directly calculated the product of the Hessian with an arbitrary vector, and applied this technique to
a few variants of backpropagation, thereby showing a way to use the full Hessian without needing to
compute and store it. Martens (2010) used a generalization of this technique, introduced by Schrau-
dolph (2002), to develop a second order optimization method based on the “Hessian-free” approach,
using it to train deep auto-encoders (Martens, 2010), as well as recurrent neural networks (Martens
& Sutskever, 2011). The “Hessian-free” approach is essentially a line search Newton-CG (Conju-
gate Gradient) method, also known as the truncated Newton method (Nocedal & Wright, 2006), in
which the search direction is computed by applying CG to the Newton method, and terminating it
once it has made sufficient progress. This approach differs from ours in its use of line search instead
of a trust region method. Moreover, it computes Hessian-vector products using finite differencing,
as opposed to the limited-memory symmetric rank one update with trust region method, used in our
approach. The cost of skipping the Hessian calculation in a truncated Newton method is one ad-
ditional gradient evaluation per CG iteration (Nocedal & Wright, 2006). As mentioned previously,
Dauphin et al. (2014) argue, that in high dimensional problems of practical interest, the proliferation
of saddle points poses greater difficulty than local minima. In a bid to escape these saddle points,
they propose second order optimization method called the saddle-free Newton method. Key to this

1 The reference Brust et al. (2016) describes an approach to solve the trust region sub-problem encountered
in an L-SR1 method, but does not describe the L-SR1 method itself.

2

Under review as a conference paper at ICLR 2017

approach is the definition of a class of generalized trust region methods. This class extends classical
trust region methods in a couple of ways. A first order Taylor expansion of the function is mini-
mized, instead of the second order Taylor expansion. Moreover, the constraint on the step norm is
replaced by generalized constraint on the distance between consecutive iterates. Our approach, by
contrast, uses a a classical trust-region method. Rather than compute the Hessian exactly, Dauphin
et al. (2014) use an approach similar Krylov subspace descent (Vinyals & Povey, 2012). The func-
tion is optimized in a lower-dimensional Krylov subspace, which is determined through Lanczos
iteration of the Hessian (Vinyals & Povey, 2012). The Lanczos method may be considered a gen-
eralization of the CG method that can be applied to indefinite systems, and may be used to aid the
CG method by gathering negative curvature information (Nocedal & Wright, 2006). The Lanczos
method also involves finding an approximate solution to a trust-region subproblem in the range of a
Krylov basis that it generates. This trust region problem differs from the one we solve, in that the
Krylov basis generated has a special structure due to its mapping to a tridiagonal matrix (Nocedal &
Wright, 2006).

It is worth noting that several approaches have been proposed to overcome the weaknesses of L-
BFGS. First, it has been proposed to initialize L-BFGS with a number of SGD steps. However, this
diminishes the potential for parallelism (Dean et al., 2012; Le et al., 2011). Second, it has been
proposed to use “forgetting”, where every few (say, for example, 5) steps, the history for L-BFGS is
discarded. However, this greatly reduces the ability to use second order curvature information. There
has also been a recent spurt of work on stochastic quasi-Newton methods for optimization. Byrd
et al. (2016) propose a stochastic quasi-Newton method which uses the classical L-BFGS formula,
but collects curvature information pointwise, at regular intervals, through sub-sampled Hessian vec-
tor products, rather than at every iteration. Mokhtari & Ribeiro (2014) propose RES, a regularized
stochastic version of BFGS to solve convex optimization problems with stochastic objectives, and
prove its convergence for bounded Hessian eigenvalues. Mokhtari & Ribeiro (2015) propose an on-
line L-BFGS method for solving optimization problems with strongly convex stochastic objectives,
and establish global almost sure convergence of their approach for bounded Hessian eigenvalues of
sample functions. In the case of nonconvex stochastic optimization, Wang et al. (2014) propose,
based on a general framework, two concrete stochastic quasi-Newton update strategies, namely
stochastic damped-BFGS update and stochastic cyclic Barzilai-Borwein-like update, to adaptively
generate positive definite Hessian approximations. They also analyze the almost sure convergence
of these updates to stationary points. Keskar & Berahas (2015) propose ADAQN, a stochastic quasi-
Newton algorithm for training RNNs. This approach retains a low per-iteration cost while allowing
for non-diagonal scaling through a stochastic L-BFGS updating scheme. The method also uses a
novel L-BFGS scaling initialization scheme and is judicious in storing and retaining L-BFGS cur-
vature pairs. Finally, Curtis (2016) proposes a variable-metric algorithm for stochastic nonconvex
optimization which exploits fundamental self-correcting properties of BFGS-type updating, and uses
it to solve a few machine learning problems. As one may notice, all of these approaches adapt the
BFGS-style rank two updates in different ways to solve convex and non-convex problems. In con-
trast, our approach uses SR1-type updates, which we think can help better navigate the pathological
saddle points present in the non-convex loss functions found in deep learning, by not constraining
the Hessian approximation to be positive definite, as in the case of BFGS-style updates. Comparison
of our approach with one of these recent stochastic second order methods is an interesting next step.
In the Appendix, we provide a brief primer on line search and trust region methods, as well as on
quasi-Newton methods and their limited memory variants.

3 ALGORITHM

Our algorithm is synthesized as follows. We take the basic SR1 algorithm described in Nocedal &
Wright (2006) (Algorithm 6.2), and represent the relevant input matrices using the limited-memory
representations described in Byrd et al. (1994). The particular limited-memory representations used
in the algorithm vary, depending on whether we use trust region or line search methods as sub-
routines to make parameter updates, as does some of the internal logic. For instance, if k updates
are made to the symmetric matrix B0 using the vector pairs {si, yi}k−1

i=0 and the SR1 formula, the
resulting matrix Bk can be expressed as (Nocedal & Wright, 2006)

Bk = B0 + (Yk −B0Sk)(Dk + Lk + LTk − STk B0Sk)−1(Yk −B0Sk)T

3

Under review as a conference paper at ICLR 2017

where Sk, Yk, Dk, and Lk are defined as follows:

Sk = [so, · · · , sk−1], andYk = [y0, · · · , yk−1]

,

(Lk)i,j =

{
sTi−1yj−1 if i > j
0 otherwise

Dk = diag[sT0 y0, · · · , sTk−1yk−1]

The self-duality of the SR1 method (Nocedal & Wright, 2006) allows the inverse formula Hk to
be obtained simply by replacing B, s, and y by H , y, and s, respectively, using standard matrix
identities. Limited-memory SR1 methods can be derived exactly like in the case of the BFGS
method. Additional details are present in the pseudocode provided in the Appendix. The algorithm
we develop is general enough to work with any line search or trust region method. While we tested
the algorithm with line search approaches described in Dennis Jr. & Schnabel (1983), and with
the trust region approach described in Brust et al. (2016), in this paper, we focus our experimental
investigations on using the trust region approach, and the advantage that provides over using other
first and second order optimization methods.

We also make a note here about the space and time complexity of our algorithm. We respectively
denote by m and n, the memory size, and parameter dimensions. We assume m << n. As dis-
cussed in Section 7.2 of Nocedal & Wright (2006), the limited-memory updating procedure of Bk
requires approximately 2mn+O(m3) operations, and matrix vector products of the form Bkv can
be performed at a cost of (4m+ 1)n+O(m2) multiplications. Moreover, the Cholesky and eigen-
value decompositions we perform within our trust-region method form×mmatrices requireO(m3)
operations. It follows quite easily2 from this that the space complexity of our algorithm is O(mn),
and the per iteration time complexity of our algorithm is O(mn).

4 EXPERIMENTS

In the following, we summarize the results of training standard neural networks on the MNIST and
CIFAR10 datasets using our approach, and benchmarking the performance with respect to other
first and second order methods. First, we compared our L-SR1 (with trust region) approach, with
Nesterov’s Accelerated Gradient Descent (NAG), L-BFGS with forgetting every 5 steps, default
SGD, AdaDelta, and SGD with momentum, by training small standard networks on the MNIST and
CIFAR10 datasets. On these problems, we also studied the effect of varying the minibatch size, for
L-SR1, Adam (Kingma & Ba, 2014), and NAG. Next, we compared our L-SR1 with trust region
approach with default hyperparameters, with a benchmark SGD with momentum, and Adam, by
training a 20-layer deep residual network on the CIFAR10 dataset. Following that, we varied each
hyperparameter of the L-SR1 with trust region approach to observe its effect on training the residual
network on CIFAR10.

4.1 LENET-LIKE NETWORKS

For each approach, and for each dataset, we considered the case where our networks had batch
normalization layers within them, and the case where they did not. The parameters of the networks
were randomly initialized. All experiments were repeated 10 times to generate error bars.

4.1.1 MNIST

We considered the LeNet5 architecture in this case, which comprised 2 convolutional layers, fol-
lowed by a fully connected layer and an outer output layer. Each convolutional layer was followed
by a max-pooling layer. In the case where we used batch-normalization, each convolutional and
fully connected layer was followed by a spatial batch normalization layer. We used a mini-batch
size of 20 for the first order methods like NAG, SGD, AdaDelta and SGD with momentum, and a
mini-batch size of 400 for the second order methods like L-SR1 and L-BFGS. The memory size was
set to 5 for both L-SR1 and L-BFGS. The networks were trained for 20 epochs. Further details on
the network architecture and other parameter settings are provided in the Appendix.

2Deep neural networks typically have paramater dimensions in the tens of millions, while the memory size
typically does not exceed 10. So n is indeed several orders of magnitude larger than m.

4

Under review as a conference paper at ICLR 2017

Figure 1: Variation of test loss with number of epochs, on the MNIST dataset, with and without
batch normalization. Note that the scales on the y-axes are different.

4.1.2 CIFAR10

We considered a slight modification to the ‘LeNet5’ architecture described above. We used a mini-
batch size of 96 for NAG, SGD, AdaDelta and SGD with momentum. The other mini-batch sizes
and memory sizes for L-SR1 and L-BFGS were as above. As above, the networks were trained for
20 epochs. Further details on the network architecture and other parameter settings are provided in
the Appendix.

Figure 2: Variation of test loss with number of epochs, on the CIFAR10 dataset, with and without
batch normalization. Note that the scales on the y-axes are different.

4.1.3 VARIATION OF MINIBATCH SIZE

We also compared the variation of test loss between L-SR1, Adam and NAG, as we varied the
mini-batch size from 500 to 1000 to 10000, in the presence of batch normalization. The network
architectures were as above. For minibatch sizes 500 and 1000, we trained the networks for 50
epochs, while for the minibatch size of 10000, the networks were trained for 200 epochs.

5

Under review as a conference paper at ICLR 2017

Figure 3: Variation of test loss with number of epochs, on the MNIST dataset, with batch normal-
ization, for varying minibatch sizes. Note that the scales on the x and y-axes across figures are
different.

Figure 4: Variation of test loss with number of epochs, on the CIFAR10 dataset, with batch nor-
malization, for varying minibatch sizes. Note that the scales on the x and y-axes across figures are
different.

4.1.4 DISCUSSION

Our first set of experiments (Figures 1, 2) suggest that L-SR1 performs as well as, or slightly better
than all the first order methods on both the MNIST and CIFAR10 datasets, with or without batch
normalization. L-SR1 is substantially better than L-BFGS in all settings, with or without forgetting.
Forgetting appears to be necessary in order to get L-BFGS to work. Without forgetting, the approach
appears to be stuck where it is initialized. For this reason, the plots for L-BFGS without forgetting
have not been included. Batch normalization appears to improve the performance of all approaches,
particularly the early performance of second order approaches like L-SR1 and L-BFGS.

The experiments with variation of minibatch sizes (Figures 3, 4), seem to provide compelling evi-
dence of the potential for distributed training of deep networks, as may be seen from Table 1. First,
we note that first order methods like NAG are not as sensitive to size of the minibatch, as commonly
understood. For example, a 20 fold increase in minibatch size did not decrease the speed of conver-
gence by the same or higher order of magnitude. Furthermore, approaches like L-SR1 and Adam
appear to be much less sensitive to increasing minibatch size than NAG. This strengthens the case
for their application to distributed training of deep neural networks. Finally, while Adam makes
much faster initial progress than the other approaches, its final test loss by the end of training is
worse than in the case of L-SR1.

One of the limitations of SR1 updating is that the denominator in the update can vanish. The liter-
ature however suggests that this happens rarely enough that the updates can be skipped when this
phenomenon occurs, without affecting performance. In this regard, we had some interesting obser-
vations from our experiments. While in most cases, updates were either never skipped, or skipped
less than 2.5% of the time, the cases of MNIST training with batch normalization, yielded abnor-

6

Under review as a conference paper at ICLR 2017

Number of epochs needed to surpass target test loss
MNIST with batch normalization CIFAR10 with batch normalization

Target test loss (%) 1.1 1.2 1.5 30 31 34
Minibatch size 500 1000 10000 500 1000 10000

NAG 35 37 194 9 17 125
L-SR1 5 6 8 16 14 41
Adam 4 3 10 6 6 15

Table 1: Speed of convergence of NAG, L-SR1, and Adam, with varying minibatch sizes.

mally high levels of skipped updates, ranging all the way from 7% to higher than 60% (for minibatch
size 10000). While this did not seem to affect performance adversely, it certainly warrants future
investigation. Moreover, a better understanding of the interplay between batch normalization and
optimization could help inform potential improvements in optimization approaches.

4.2 RESIDUAL NETWORKS

We next considered a deeper residual network architecture described in section 4.2 of He et al.
(2015b), with n = 3. This led to a 20-layer residual network including 9 shortcut connections. As in
He et al. (2015b), we used batch normalization (Ioffe & Szegedy, 2015) and the same initialization
method (He et al., 2015a).

4.2.1 COMPARISON WITH SGD WITH MOMENTUM, AND ADAM

We trained the residual network using the benchmark SGD with momentum, and other parameter
settings as described in He et al. (2015b). We also trained the network using L-SR1 with default
settings. These included, a memory size of 5, a trust-region radius decrease factor of 0.5, and
a trust-region radius increase factor of 2.0. Finally, we also compared with Adam, with default
settings (Kingma & Ba, 2014). We used the same mini-batch size of 128 for all algorithms. Based
on the learning rate schedule used, the learning rate was equal to 0.1 through the first 80 epochs,
0.01 up to 120 epochs, and 0.001 thereafter, for SGD with momentum. Figure 5 shows variation
of test loss, over epochs, and by time. It needs to be noted that default L-SR1, with no parameter
tuning at all, has a superior final test loss to Adam, and is competitive with SGD with momentum,
which used custom parameters that were tuned carefully. L-SR1 does make slower progress over
time, which can be further optimized. Finally, we note that the test loss for L-SR1 bounces around
a lot more than the test loss for the other algorithms. This bears further exploration.

4.2.2 VARIATION OF L-SR1 HYPERPARAMETERS

We varied the hyperparameters of L-SR1 in turn, keeping the remaining fixed. In each case, we
trained the network for 200 epochs. We first considered varying the increase and decrease factors
together. We considered a trust-region radius decrease factor of 0.2, 0.5 and 0.8, and a trust-region
radius increase factor 1.2 and 2.0. The respective default values of these factors are 0.5 and 2.0
respectively. This led to six different combinations of decrease and increase factors. We kept the
memory size and mini-batch size fixed at 5 and 128 respectively. Next, we considered memory sizes
of 2 and 10 (in addition to 5, which we tried earlier), keeping the mini-batch size, decrease factor,
and increase factor fixed at 128, 0.5, and 2.0 respectively. Finally, we considered mini-batch sizes of
512, 2048 and 8192 (in addition to 128, which we tried earlier), keeping the memory size, decrease
factor, and increase factor fixed at 5, 0.5, and 2.0 respectively. Figure 6 shows the results.

The following may be noted, based on the experiments with L-SR1 for training a residual network
on CIFAR10. While there is potential value in increasing and decreasing the trust region radius at
different rates, our experiments suggest that it may not be necessary to tune these hyperparameters.
There is no noticeable performance gain from using a higher memory size in L-SR1. Furthermore,
using a smaller memory size performs at least as well as in the default case. This is good news, due
to the consequent savings in storage and computational resources. L-SR1 is relatively insensitive
to a 4-fold increase in mini-batch size from 128 to 512, and a further 4-fold increase to 2048. The
minibatch sensitivity of L-SR1 seems to be higher in the case of the residual network, compared

7

Under review as a conference paper at ICLR 2017

Figure 5: LSR1 vs SGD vs Adam, on the CIFAR10 dataset, using a residual network. The x-axis on
the left shows number of epochs, while the x-axis on the right shows time in seconds.

Figure 6: Variation of trust region radius increase and decrease factors, mini-batch size and memory
size with number of epochs, on the CIFAR10 dataset, using a residual network. Note that the scales
on the y-axes are different.

with the Le-Net like networks seen earlier. Finally, we found the proportion of skipped updates in
the case of residual networks to be less than 0.5% in all cases.

5 CONCLUSIONS

In this paper, we have described L-SR1, a new second order method to train deep neural networks.
Our experiments suggest that this approach is at the very least, competitive, with other first order
methods, and substantially better than L-BFGS, a well-known second order method. Our experi-
ments also appear to validate our intuition about the ability of L-SR1 to overcome key challenges
associated with second order methods, such as inappropriate handling of saddle points, and poor
conditioning of the Hessian. Our experimentation with the hyperparameters of L-SR1 suggested
that it is relatively robust with respect to them, and requires minimal tuning. Furthermore, we have
evidence to suggest that L-SR1 is much more insensitive to larger minibatch sizes than a first order
method like NAG. This suggests that L-SR1 holds promise for distributed training of deep networks,
and we see our work as an important step toward that goal.

8

Under review as a conference paper at ICLR 2017

REFERENCES

Johannes Brust, Jennifer B. Erway, and Roummel F. Marcia. On solving l-sr1 trust-region subprob-
lems. arXiv.org, 8 2016. arXiv:1506.07222v3.

J. V. Burke, A. Wiegman, and L. Xu. Limited memory bfgs updating in a trust-region framework,
2008. Working paper.

Richard H. Byrd, Jorge Nocedal, and Robert B. Schnabel. Representations of quasi-newton matrices
and their use in limited-memory methods. Mathematical Programming, 63(1):129–156, 1 1994.

Richard H. Byrd, S. L. Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-newton method
for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031, 2016. doi: 10.
1137/140954362. URL http://dx.doi.org/10.1137/140954362.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Convergence of quasi-newton matrices generated by
the symmetric rank one update. Mathematical Programming, 50(1):177–195, 3 1991.

Frank Curtis. A self-correcting variable-metric algorithm for stochastic optimization. In Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, pp. 632–641, 2016. URL http://jmlr.org/proceedings/papers/
v48/curtis16.html.

Yann Dauphin, Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. CoRR, abs/1406.2572, 2014. URL http://arxiv.org/abs/1406.2572.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc Au-
relio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and Andrew Y. Ng.
Large scale distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 25, pp.
1223–1231. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4687-large-scale-distributed-deep-networks.pdf.

John E. Dennis Jr. and Robert B. Schnabel. Numerical methods for unconstrained optimization and
nonlinear equations. Prentice Hall, 1 edition, 1983.

William W. Hager. Updating the inverse of a matrix. SIAM Review, 31(2):221–239, 1989. ISSN
00361445. URL http://www.jstor.org/stable/2030425.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. CoRR, abs/1502.01852, 2015a. URL
http://arxiv.org/abs/1502.01852.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015b. URL http://arxiv.org/abs/1512.03385.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

Nitish Shirish Keskar and Albert S. Berahas. adaqn: An adaptive quasi-newton algorithm for training
rnns. CoRR, abs/1511.01169, 2015. URL http://arxiv.org/abs/1511.01169.

Humaid Khalfan, Richard H. Byrd, and Robert B. Schnabel. A theoretical and experimental study
of the symmetric rank one update. SIAM Journal on Optimization, 3(1):1–24, 1993.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Quoc V. Le, Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, and Andrew Y. Ng.
On optimization methods for deep learning. In Lise Getoor and Tobias Scheffer (eds.), ICML,
pp. 265–272. Omnipress, 2011. URL http://dblp.uni-trier.de/db/conf/icml/
icml2011.html#LeNCLPN11.

9

http://dx.doi.org/10.1137/140954362
http://jmlr.org/proceedings/papers/v48/curtis16.html
http://jmlr.org/proceedings/papers/v48/curtis16.html
http://arxiv.org/abs/1406.2572
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://www.jstor.org/stable/2030425
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1511.01169
http://arxiv.org/abs/1412.6980
http://dblp.uni-trier.de/db/conf/icml/icml2011.html#LeNCLPN11
http://dblp.uni-trier.de/db/conf/icml/icml2011.html#LeNCLPN11

Under review as a conference paper at ICLR 2017

Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical Programming, 45(1):503–528, 1989.

James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pp. 735–
742, 2010. URL http://www.icml2010.org/papers/458.pdf.

James Martens. Second-Order Optimization for Neural Networks. PhD thesis, Graduate Department
of Computer Science, University of Toronto, 2016.

James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-free optimiza-
tion. In Proceedings of the 28th International Conference on Machine Learning, ICML 2011,
Bellevue, Washington, USA, June 28 - July 2, 2011, pp. 1033–1040, 2011.

Aryan Mokhtari and Alejandro Ribeiro. RES: regularized stochastic BFGS algorithm. IEEE Trans.
Signal Processing, 62(23):6089–6104, 2014. doi: 10.1109/TSP.2014.2357775. URL http:
//dx.doi.org/10.1109/TSP.2014.2357775.

Aryan Mokhtari and Alejandro Ribeiro. Global convergence of online limited memory bfgs. J.
Mach. Learn. Res., 16(1):3151–3181, January 2015. ISSN 1532-4435. URL http://dl.
acm.org/citation.cfm?id=2789272.2912100.

Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of Computation,
35(151):773–782, 7 1980.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer-Verlag, New York, 2
edition, 2006.

Barak A. Pearlmutter. Fast exact multiplication by the hessian. Neural Computation, 6:147–160,
1994.

Nicol N. Schraudolph. Fast Curvature Matrix-Vector Products for Second-Order Gradient Descent.
Neural Computation, 14(7):1723–1738, 2002.

Oriol Vinyals and Daniel Povey. Krylov subspace descent for deep learning. In Proceedings of
the Fifteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2012,
La Palma, Canary Islands, April 21-23, 2012, pp. 1261–1268, 2012. URL http://jmlr.
csail.mit.edu/proceedings/papers/v22/vinyals12.html.

X. Wang, S. Ma, and W. Liu. Stochastic Quasi-Newton Methods for Nonconvex Stochastic Opti-
mization. ArXiv e-prints, December 2014.

APPENDIX

BACKGROUND

In the following, we provide a brief primer on line search and trust region methods, as well as on
quasi-Newton methods and their limited memory variants. Further details may be found in Nocedal
& Wright (2006).

LINE SEARCH AND TRUST REGION METHODS

In any optimization algorithm, there are two main ways of moving from the current point xk to
a new iterate xk+1. One of them is line search. In it, the algorithm picks a descent direction pk
and searches along this direction from the current iterate xk for a new iterate with a lower function
value. The distance α to move along pk can be found by solving the following one-dimensional
minimization problem:

min
α>0

f(xk + αpk)

Instead of an exact minimization which may be expensive, the line search algorithm generates a
limited number of trial step lengths until it finds one that generates a sufficient decrease in function

10

http://www.icml2010.org/papers/458.pdf
http://dx.doi.org/10.1109/TSP.2014.2357775
http://dx.doi.org/10.1109/TSP.2014.2357775
http://dl.acm.org/citation.cfm?id=2789272.2912100
http://dl.acm.org/citation.cfm?id=2789272.2912100
http://nic.schraudolph.org/pubs/Schraudolph02.pdf
http://neco.mitpress.org/
http://jmlr.csail.mit.edu/proceedings/papers/v22/vinyals12.html
http://jmlr.csail.mit.edu/proceedings/papers/v22/vinyals12.html

Under review as a conference paper at ICLR 2017

value. At the new point, the process of computing the descent direction and step length is repeated.
The other way is to use a trust region method. In a trust region method, the information about f
is used to construct a model function mk, which is supposed to approximate f near the current
point xk. Since the model mk may not approximate f well when x is far from xk, the search for
a minimizer of mk is restricted to some trust region within a radius ∆k around xk. To wit, the
candidate step p approximately solves the following sub-problem:

min
p:‖p‖≤∆k

mk(xk + p),

If the candidate solution does not produce a sufficient decrease in f , the trust region is considered
too large for the model function to approximate f well. So we shrink the trust region and re-solve.
Essentially, the line search and trust region approaches differ in the order in which they choose the
direction and magnitude of the move to the next iterate. In line search, the descent direction pk is
fixed first, and then the step length αk to be taken along that direction is computed. In trust region, a
maximum distance equal to the trust-region radius ∆k is first set, and then a direction is determined
within this radius, that achieves the best improvement in the objective value. If such a direction
does not yield sufficient improvement, the model function is determined to be a poor approximation
to the function, and the trust-region radius ∆k is reduced until the approximation is deemed good
enough. Conversely, as long as the model function appears to approximate the objective function
well, the trust region radius is increased until the approximation is not good enough.

LIMITED MEMORY QUASI-NEWTON METHODS

Quasi-Newton methods are a useful alternative to Newton’s method in that they do not require com-
putation of the exact Hessian, and yet still attain good convergence. In place of the true Hessian
∇2fk, they use an approximation Bk, which is updated after each step based on information gained
during the step. At each step, the new Hessian approximation Bk+1 is required to satisfy the follow-
ing condition, known as the secant equation:

Bk+1sk = yk

where
sk = xk+1 − xk, yk = ∇fk+1 −∇fk

Typically, Bk+1, is also required to be symmetric (like the exact Hessian), and the difference be-
tween successive approximations Bk and Bk+1 is constrained to have low rank. One of the most
popular formulae for updating the Hessian approximation Bk is the BFGS formula, named after its
inventors, Broyden, Fletcher, Goldfarb, and Shanno, which is defined by

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk

A less well known formula, particularly in the machine learning community, is the symmetric-rank-
one (SR1) formula, defined by

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk

The former update is a rank-two update, while the latter is a rank-one update. Both updates satisfy
the secant equation and maintain symmetry. The BFGS update always generates positive definite
approximations whenever the initial approximation B0 is positive definite and sTk yk > 0. Often,
in practical implementations of quasi-Newton methods, the inverse Hessian approximation Hk is
used instead of the Bk,and the corresponding update formulae can be generated using the Sherman-
Morrison-Woodbury matrix identity (Hager, 1989).

Limited-memory quasi-Newton methods are useful for solving large problems where computation
of Hessian matrices is costly or when these matrices are dense. Instead of storing fully dense n× n
approximations, these methods save only a few vectors of length n that capture the approximations.
Despite these modest storage requirements, they often converge well. The most popular limited
memory quasi-Newton method is L-BFGS, which uses curvature information from only the most
recent iterations to construct the inverse Hessian approximation. Curvature information from earlier

11

Under review as a conference paper at ICLR 2017

iterations, which is less likely to be useful to modeling the actual behavior of the Hessian at the
current iteration, is discarded in order to save memory.

Limited-memory quasi-Newton approximations can be used with line search or trust region methods.
As described in Byrd et al. (1994), we can derive efficient limited memory implementations of
several quasi-Newton update formulae, and their inverses.

NETWORK ARCHITECTURES AND HYPERPARAMETER SETTINGS

MNIST

The layers of the LeNet5 architecture used, are described below. All the batch normalization layers
were removed, in the ‘without batch normalization’ case.

• Convolutional Layer - filter size 5 × 5, 20 feature maps, stride 1, padding 0, and a ReLU
activation function with bias 0 and Gaussian noise with mean 0 and standard deviation 0.1

• Spatial Batch Normalization Layer
• Max Pooling Layer - filter size 2

• Convolutional Layer - filter size 5 × 5, 50 feature maps, stride 1, padding 0, and a ReLU
activation function with bias 0 and Gaussian noise with mean 0 and standard deviation 0.1

• Spatial Batch Normalization Layer
• Max Pooling Layer - filter size 2

• Fully Connected Layer - 500 hidden units, and a tangent hyperbolic activation function
• Spatial Batch Normalization Layer
• Outer Output Layer - 10 outputs and output standard deviation of 0.1

Additionally, the network was trained with L2 regularization with parameter 0.0001. Training loss
was measured as softmax cross entropy, while test loss was measured as multi-class error count.
In the case of the first order methods, the learning rate was set to 0.003 where needed, and the
momentum was set to 0.9, where needed. AdaDelta did not take any parameters.

CIFAR10

The layers of the architecture used, are described below. All the batch normalization layers were
removed, in the ‘without batch normalization’ case.

• Convolutional Layer - filter size 5 × 5, 32 feature maps, stride 1, padding 2, and a ReLU
activation function with bias 0 and Gaussian noise with mean 0 and standard deviation 0.01

• Spatial Batch Normalization Layer
• Max Pooling Layer - filter size 2

• Activation Layer - ReLU activation function with bias 0 and Gaussian noise with mean 0
and standard deviation 0.1

• Convolutional Layer - filter size 5 × 5, 32 feature maps, stride 1, padding 2, and a ReLU
activation function with bias 0 and Gaussian noise with mean 0 and standard deviation 0.01

• Spatial Batch Normalization Layer
• Max Pooling Layer - filter size 2

• Convolutional Layer - filter size 5 × 5, 64 feature maps, stride 1, padding 2, and a ReLU
activation function with bias 0 and Gaussian noise with mean 0 and standard deviation 0.01

• Spatial Batch Normalization Layer
• Max Pooling Layer - filter size 2

• Fully Connected Layer - 64 hidden units, and a ReLU activation function with bias 0 and
Gaussian noise with mean 0 and standard deviation 0.1

• Spatial Batch Normalization Layer

12

Under review as a conference paper at ICLR 2017

• Outer Output Layer - 10 outputs and output standard deviation of 0.1

Additionally, the network was trained with L2 regularization with parameter 0.001. Training loss
was measured as softmax cross entropy, while test loss was measured as multi-class error count. In
the case of the first order methods, the learning rate was set to 0.01 where needed, and the momentum
was set to 0.9, where needed. AdaDelta did not take any parameters.

PSEUDOCODE

Algorithm 1 provides the pseudocode for L-SR1 with trust region method, while Algorithm 2 pro-
vides the pseudocode for L-SR1 with line search.

13

Under review as a conference paper at ICLR 2017

Algorithm 1 L-SR1 with Trust Region Method
Require: Sk = [s0, · · · , sk−1], Yk = [y0, · · · , yk−1], starting point x0 ∈ Rn, limited memory size

m << n, initial Hessian approximation B0 (a diagonal matrix, typically γIn, γ 6= 0), initial
trust-region radius ∆0 = ‖∇f(x0)‖2, convergence tolerance t > 0, maximum iterations K,
parameters η ∈ (0, 10−3), r ∈ (0, 1), and column dimension colDim;

1: k ← 0
2: while k < K and ‖∇f(xk)‖2 > t and ‖sk‖2 > t do
3: if k = 0 or Sk.colDim = 0 then
4: sk ← −∇f(xk)
5: Bk ← B0

6: else
7: sk ← TrustRegionMethod(Ψk,M

−1
k ,∇f(xk),∆k, γ, B0) (Solve the trust-region sub-

problem)
8: Bksk ← B0sk + ΨkMk(ΨT

k sk)
9: end if

10: pred← −
(
∇f(xk)T sk + 1

2s
T
kBksk

)
(predicted reduction)

11: ared← f(xk)− f(xk + sk) (actual reduction)
12: yk ← ∇f(xk + sk)−∇f(xk)
13: if ared/pred > η then
14: xk+1 ← xk + sk
15: else
16: xk+1 ← xk
17: end if
18: ∆k+1 ← ∆k

19: if ared/pred > u then (u = 0.75 by default)
20: if ‖sk‖ > ρ∆k then (ρ = 0.8 by default)
21: ∆k+1 ← 2∆k

22: end if
23: else if ared/pred < l then (l = 0.1 by default)
24: ∆k+1 ← 0.5∆k

25: end if
26: if |sTk (yk −Bksk)| ≥ r‖sk‖‖yk −Bksk‖ then
27: Sk+1 ← [Sk, sk], Yk+1 ← [Yk, yk]
28: if Sk+1.colDim > m then
29: Sk+1 ← Sk+1[, 2 : m+ 1], Yk+1 ← Yk+1[, 2 : m+ 1]
30: end if
31: while Sk+1.colDim > 0 do
32: Ψk+1 ← Yk+1 −B0Sk+1

33: M−1
k+1 ← STk+1Yk+1 − STk+1B0Sk+1

34: if (ΨT
k+1Ψk+1 � 0 and |M−1

k+1| 6= 0) then
35: break
36: else
37: Remove the first columns of Sk+1 and Yk+1

38: end if
39: end while
40: end if
41: k ← k + 1
42: end while

14

Under review as a conference paper at ICLR 2017

Algorithm 2 L-SR1 with Line Search
Require: Sk = [s0, · · · , sk−1], Yk = [y0, · · · , yk−1], starting point x0 ∈ Rn, limited memory size

m << n, initial inverse Hessian approximationH0 (a diagonal matrix, typically In), initial step
length λ0 = 1, convergence tolerance t > 0, maximum iterations K, r ∈ (0, 1), and column
dimension colDim;

1: k ← 0
2: while k < K and (‖∇f(xk)‖2 > t or ‖sk‖2 > t) do
3: if k = 0 or Sk.colDim = 0 then
4: dk ← −∇f(xk)
5: Hk ← H0

6: else
7: dk ← −H0∇f(xk)−ΨkMk(ΨT

k∇f(xk))
8: end if
9: if k > 0 then

10: λ0 = min{1, 2λk−1}
11: end if
12: λk ←computeStepLength(f, xk, dk, λ0) (perform line search)
13: sk ← λkdk
14: xk+1 ← xk + sk
15: yk ← ∇f(xk+1)−∇f(xk)
16: if k > 0 and Sk.colDim > 0 then
17: Hkyk ← H0yk + ΨkMk(ΨT

k yk)
18: end if
19: if |yTk (sk −Hkyk)| ≥ r‖yk‖‖sk −Hkyk‖ then
20: Sk+1 ← [Sk, sk], Yk+1 ← [Yk, yk]
21: if Sk+1.colDim > m then
22: Sk+1 ← Sk+1[, 2 : m+ 1], Yk+1 ← Yk+1[, 2 : m+ 1]
23: end if
24: while Sk+1.colDim > 0 do
25: Ψk+1 ← Sk+1 −H0Yk+1

26: M−1
k+1 ← Y Tk+1Sk+1 − Y Tk+1H0Yk+1

27: if (|M−1
k+1| 6= 0) then

28: break
29: else
30: Remove the first columns of Sk+1 and Yk+1

31: end if
32: end while
33: end if
34: k ← k + 1
35: end while

15

	Motivation
	Related Work
	Algorithm
	Experiments
	Lenet-like Networks
	MNIST
	CIFAR10
	Variation of minibatch size
	Discussion

	Residual Networks
	Comparison with SGD with momentum, and Adam
	Variation of L-SR1 hyperparameters

	Conclusions

