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ABSTRACT

Due to deep cascades of nonlinear units, deep neural networks (DNNs) can auto-
matically learn non-local generalization priors from data and have achieved high
performance in various applications. However, such properties have also opened a
door for adversaries to generate the so-called adversarial examples to fool DNNs.
Specifically, adversaries can inject small perturbations to the input data and there-
fore decrease the performance of deep neural networks significantly. Even worse,
these adversarial examples have the transferability to attack a black-box model
based on finite queries without knowledge of the target model. Therefore, we aim
to empirically compare different defensive strategies against various adversary
models and analyze the cross-model efficiency for these robust learners. We con-
clude that the adversarial retraining framework also has the transferability, which
can defend adversarial examples without requiring prior knowledge of the ad-
versary models. We compare the general adversarial retraining framework with
the state-of-the-art robust deep neural networks, such as distillation, autoencoder
stacked with classifier (AEC), and our improved version, IAEC, to evaluate their
robustness as well as the vulnerability in terms of the distortion required to mis-
lead the learner. Our experimental results show that the adversarial retraining
framework can defend most of the adversarial examples notably and consistently
without adding additional vulnerabilities or performance penalty to the original
model.

1 INTRODUCTION

Despite the success of deep neural networks (DNNs) in diverse areas, ranging from image recog-
nition and machine translation to autonomous driving, its vulnerabilities have been exploited in the
adversarial environments. Evasion attacks against such deep learning systems have recently received
considerable attention. It has been shown that with small magnitude of noise added, the original
instance can easily be misclassified by the otherwise accurate deep neural networks (Goodfellow
et al., 2014; Papernot et al., 2016c; Nguyen et al., 2015; Szegedy et al., 2013). Such instances are
also called adversarial examples.

Given the strong evasion properties of these adversarial examples, some works have been proposed
to test and investigate the robustness of the deep neural networks against the adversarial exam-
ples (Goodfellow et al., 2014; Kurakin et al., 2016; Huang et al., 2015; Gu & Rigazio, 2014; Jin
et al., 2015). However, most of the existing works only evaluate the robustness of the proposed de-
fense strategies over adversarial examples generated using a single attack method, or several similar
methods. Meanwhile, since the evaluated adversary models, i.e., adversarial example generation
methods, vary among different works that study the effectiveness of defense strategies, it remains a
question how to make a comparison among different defense strategies.

In this paper, we focus on providing thorough analysis for different algorithmic strategic defensive
learners against various adversary models considering their robustness against adversarial examples,
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efficiency for cross-model learning process, resilience against additional attacks, and the vulnera-
bilities of these learners. Here by “cross-model test”, we mean to apply one adversarial model
to generate adversarial examples, while test them on the learner trained with instances generated
from different adversarial models. High “cross-model test” accuracy indicates higher robustness
for learner. In addition, we propose to test the “additional attacks” in a repeated game setting to
estimate learner based on against further attacks. A nice symmetry analysis for both the adversary
and learner is provided through these analyses. We show that the general adversarial retraining
framework performs significantly robust compared with the state-of-the-art defensive algorithms.
For example, even for the black box attack, which is considered hard to defend, as long as there is
a way to generate these adversarial evasion examples, the robust adversarial retraining framework
can always improve the learning ability without knowing the actual adversary model. To our best
knowledge, this work is the first to provide comprehensive analysis for different adversarial models
and possible defensive solutions.

In summary, we made the following contributions:

1. Evaluate the robustness of the general robust adversarial retraining framework (RAD) with
the state-of-the-art AEC, Distillation, and the improved AEC, against different adversary
models;

2. Propose an improved AutoEncoder stacked with Classifier (IAEC);

3. Compare the cross-model learning efficiency of different defensive methods and demon-
strate the ability to defend against black-box attacks;

4. Demonstrate the robustness of the retraining framework RAD, AEC, IAEC, and Distillation,
against new attacks by attacking these robust learners repeatedly;

5. Analyze the vulnerabilities induced by different defensive strategies/models based on their
tolerance of the malicious distortions required to mislead the classifier.

We illustrate the applicability and efficiency of different defensive strategies against various state-
of-the-art adversary models based on both MNIST and CIFAR-10 datasets.

2 RELATED WORK

Efforts have been made to understand adversarial examples. Goodfellow et al. (2014) pointed out
that the adversarial examples actually make use of the linear nature of the DNNs based on the obser-
vation of their generalization across architectures and training sets. Tabacof & Valle (2015) analyzed
the adversarial image space and showed that adversarial images appear in large regions in the pixel
space. Papernot et al. (2016c) studied the limitation of adversarial evasion examples and showed
that some instances are more difficult to manipulate than the others. Sabour et al. (2015) demon-
strated that the attacker can change classification to an arbitrary class by malicious manipulations.
The reverse engineering problem has been proposed in Vorobeychik & Li (2014), and it theoret-
ically proved that the black-box attack is possible and also showed one could learn a sufficiently
similar classifier from queries both theoretically and empirically. Similarly, even without knowing
exactly the learning algorithm, several black-box attacks have been proposed targeting DNNs, which
demonstrates the transferability of such adversarial examples (Papernot et al., 2016a;b).

Some training methods have been proposed to improve the robustness of deep neural networks. Jan
et al. (2002) has proposed to explore the perturbed regions and apply ensemble method to enhance
the robustness of classification. Zheng et al. have proposed to stabilize the state-of-the-art Inception
architecture against different distortions, and it focuses on general random noise or distortions, such
as compression, rescaling and cropping on images Zheng et al. (2016). Miyato et al. (2015) have
proposed to apply the local distribution smoothness for statistical model to promote the smoothness
of the model distribution and conduct the virtual adversarial training to enhance the performance of
deep neural networks. However, all these works did not test on the adversarial examples and still
had a long way to perform robustly against these real adversarial instances.

While the existence of adversarial examples is attracting more and more attention, some defense
strategies have been proposed to defend against such adversarial examples. In Goodfellow et al.
(2014), Goodfellow et al. proposed to train the network with an adversarial objective function based
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on fast gradient sign method: J̃(θ, x, y) = αJ(θ, x, y) + (1 − α)J(θ, x + ∇xJ(θ, x, y), y). In
a concurrent and independent work, Kurakin et al. provided an adversarial training method for a
large scale dataset, i.e., ImageNet dataset Kurakin et al. (2016). However, they only used fast gra-
dient sign-based methods to generate adversarial examples for both training and evaluation, which
fails to consider the generality of defensive strategy. Huang et al. Huang et al. (2015) proposed
an alternative method for adversarial training by considering an empirically stronger adversary. In
their work, suppose r? is the optimal adversarial perturbation for an instance (x, y), instead of
adding (x + r?, y) into the training dataset, they used “pseudo-samples” for training controlled by
a hyperparameter c, which represents the magnitude of perturbation, i.e., (x + c r?

||r?|| , y). Several
autoencoder structures Vincent et al. (2008) have been proposed against the adversarial examples by
reconstructing the original images ahead of classification Gu & Rigazio (2014). Jin et al. have pro-
posed a feedforward CNN structure to improve the robustness in the presence of adversarial noise,
which is restricted to the specific type of models in Jin et al. (2015). However, the focus of these
researches perform too aggressively on designing robust learning algorithms against arbitrary small
perturbations (e.g., noise) neglecting the properties of actual adversarial evasion models. Therefore,
studying various adversarial models and building resilient learners accordingly is important. Here
we will provide comparisons for defensive algorithms facing different adversarial models to provide
insights and encourage devising more efficient learner.

3 PROBLEM

To understand the phenomenon of adversarial examples in deep neural networks, we aim to analyze
potential defending methods against different adversary models from various perspectives, such
as the robustness of the learner itself, the cross-model generalization ability, the resilience against
additional attacks, and the vulnerabilities in terms of the required distortion to attack the robust
learner again. Let X ⊆ Rn represent the feature space, with n the number of features. For every
instance xi ∈ X , which is drawn from certain distribution xi ∼ D, there is a corresponding label
yi ∈ Y to comprise the data pair (xi, yi), where xij denotes the jth feature of xi.

In the adversarial environments, adversary would like to accomplish the goal of evading the clas-
sifier. To formalize, suppose that M ⊆ Y is a set of labels which an adversary wishes to attack,
and let z(m) be the target label for each m ∈ M . For example, for autonomous driving, potential
adversaries may aim to manipulate a stop sign or a dead-end warning sign, to a lamppost, a tree, or
an advertisement sign, to cause accidents. Since such perturbations on images towards deep neural
networks are often imperceptible to human eyes, it can cause serious vulnerabilities when deploying
the DNNs in real adversarial environments. The defender’s goal is to learn a classifier with param-
eters w, gw : xi → Y , using a training data set of labeled instance T = {(x1, y1), ..., (xm, ym)}.
Here, we focus on deep neural networks representing the function gw(·). Therefore, the learner’s
objective is to minimize the following general loss function:

min
w
L(w;A) =

∑
i:yi∈Y\M

l(gw(xi), yi) +
∑

i:yi∈M
l(gw(A(w, xi), yi) + α‖w‖pp, (1)

where l(·) can be arbitrary loss function and A represents the adversary model.

The adversarial risk function in Equation 1 is general: it can be any adversary model oracle, A,
which is used to generate the adversarial evasion instances. Traditionally, this adversarial oracle
may capture evasion attack models based on minimizing evasion cost (Lowd & Meek, 2005; Li &
Vorobeychik, 2014; Biggio et al., 2014), or based on actual attacker evasion behavior obtained from
experimental data (Ke et al., 2016). More formally, we will discuss the potential adversary models
for deep neural networks and the possible defensive models for the learner in detail below.

3.1 ADVERSARY MODEL

To mislead deep neural networks, various methods have been proposed to generate the adversarial
examples. We mainly discuss three state-of-the-art adversary models A here for further evaluation.

Fast Gradient Sign. Based on the linear view of adversarial examples, a fast way of generating these
adversarial examples were proposed in Goodfellow et al. (2014). Suppose xi is the original feature
vector, based on adversary modelA(fgs), we have xi′ = xi+η, where η represents the perturbation
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added for the original instance. Therefore, the dot product between the weighted parameter vector
w and an adversarial example xi′ becomes:

wTxi
′ = wTxi + wT η.

Let J(w, xi, yi) be the cost used to train the neural network. By linearizing the cost function around
the current value of w, an optimal max-norm constrained perturbation is generated as

η = εsign(OxJ(w, xi, yi)),

where the adversary can vary ε to generate adversarial examples with different attacking abilities for
different deep neural networks.

Coordinate Greedy. Another more general adversary model A(cg) is the local search framework
Coordinate Greedy (cg) proposed in Li et al. (2016) for approximating the optimal adversarial in-
stance. As an illustration, we focus on binary classification, and assume that gw(x) = sign(f(x))
for some continuous function f , which in this case would be represented by a deep neural network.

The coordinate greedy approach is quite general, but we consider a specific adversary objective
in which the adversary here tries to balance between two considerations: 1) appear as benign as
possible to the classifier, and 2) minimize the cost of modification of the original instance (e.g.,
minimally manipulate the image). Note that it is also natural to assume that the attacker obtains no
value from a manipulation to the original feature vector if the result is still classified as malicious.
Therefore, an adversary aiming to transform an instance xi into an adversarial example xi′ is solving
the following optimization problem:

min
xi

′∈X
min{0, f(xi′)}+ c(xi

′, xi), (2)

where c(xi′, xi) is the cost function of modifying from xi to xi′. Here c(xi′, xi) ≥ 0, c(xi′, xi) = 0
iff xi′ = xi, and the cost function c is strictly increasing in ‖xi′ − xi‖2 and strictly convex in xi′.
Because Problem 2 is non-convex, so the objective of adversary can be formed to minimize an upper
bound:

min
xi

′
Q(xi

′) ≡ f(xi′) + c(xi
′, xi). (3)

So the high-level idea of cg is to iteratively choose a feature, and greedily update this feature ac-
cording to the partial derivatives of the attacker’s objective as 3 to evade the classifier. Below, we
take the exponential cost function c(xi′, xi) = exp

(
λ(
∑
j(xij

′ − xij)2 + 1)1/2
)

as an example
to estimate the modification cost, which is also quite natural: options become exponentially less
desirable to an attacker as they are more distant from their ideal attack. Then we take the following
partial derivative to update the adversary’s objective until the convergence.

∂Q(xi
′)

∂xij
=
∂f(xi

′)

∂xij
+
∂c(xi

′, xi)

∂xij
=
∂f(xi

′)

∂xij
+

λc(xi
′, xi)(xij

′ − xij)
(
∑
j(xij

′ − xij)2 + 1)1/2
,

To avoid the algorithm converges only to a locally optimal solution, random restarts strategy is
applied to randomly select the starting points in the feature space. As long as a global optimum has
a basin of attraction with positive Lebesgue measure, or the feature space is finite, this process will
asymptotically converge to a globally optimal solution with enough random restarts.

Adam. Another adversary model A(adam) applies the stochastic gradient-based optimization al-
gorithm Adam Kingma & Ba (2014) to generate adversarial examples. Specifically, the adversary
uses Adam to solve the same optimization problem as in Equation 3.

3.2 DEFENDER MODEL

Given the possible adversary models, several defensive strategies have been proposed focusing on
different perspectives. Basically, the learner tries to integrate the prior knowledge of either the
adversary model or the data distribution with the classification process. Here we consider different
defensive strategies given the adversary model and form the interaction as a Stackelberg game. We
will also consider the repeated game setting in section 4.4.
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Adversarial Retraining framework (RAD). A systematic defensive approach based on adversarial
retraining (RAD) has been proposed in Li et al. (2016). At the high level, RAD starts with the
original training data and iteratively updating the learner with adversarial instances that evade the
previously computed classifier until the convergence. It has been proved that the algorithm will
terminate and the lower bound of the empirical loss of RAD is also provided. The important part for
RAD is to select the adversarial retraining instances. In practice, it is hard to exactly estimate the
adversary model as well as the parameters used within their model. Therefore, the generalization
ability of RAD across different adversary models is quite important. Surprisingly, RAD generalizes
quite well among various adversary models without requiring to know the exact attacker strategy.
We will present the cross-model analysis for RAD in details in section 4.3.

AutoEncoder stacked with Classifier (AEC). One of the recent and efficient defensive method is
the AutoEncoder stacked with a classifier to initialize deep architectures proposed in Gu & Rigazio
(2014). To assess the structure of the adversarial noise, an autoencoder on mapping adversarial
examples back to the original data samples is trained and stacked with the classifier. We train the
AutoEncoder with different adversarial algorithms, including the fast gradient sign method (fgs), the
coordinate greedy (cg) method, as well as Adam.

Improved AutoEncoder stacked with Classifier (IAEC). Since the baseline AEC cannot perform
very well by only mapping the adversarial images back to the original image, we apply an improved
AutoEncoder stacked with classifier (IAEC) defensive method. As AutoEncoder itself can not en-
sure that adversarial examples are denoised, we add a cross-entropy regularizer term as the loss
function to help ensure that the output of AutoEncoder is classified correctly. Let yi be the one-hot
representation of ground truth label of an input instance xi, then our loss function becomes:

J(xi) = ‖s(xi)− xi′‖+H(yi, f(xi)),

where s(xi) represents the mapping result of xi by the AutoEncoder, and the cross-entropy function
H(yi, f(xi)) = −

∑
xi

yi log f(xi).

Distillation. Considering the fact that the knowledge extracted during training, which is in the form
of probability vectors, and transferred in smaller networks to maintain accuracy comparable with
those of larger networks can also be beneficial to improving generalization capabilities of deep neu-
ral networks outside of their training dataset, a defensive strategy against the adversarial examples
has been proposed in Papernot et al. (2015). This defensive strategy transfers the knowledge con-
tained in probability vectors through the distillation training step, then applies these probabilities in
the next training step instead of using the original hard labels, and therefore enhances its resilience
to perturbations. This defensive model is independent of the adversary models and we will evaluate
its robustness and vulnerabilities in details in section 4.

4 EXPERIMENTAL ANALYSIS

In this section, we empirically compare the adversarial retraining framework RAD with other state-
of-the-art baseline methods Distillation Papernot et al. (2015), AutoEncoder stacked with Classifier
(AEC) Gu & Rigazio (2014) and our improved AutoEncoder stacked with Classifier (IAEC) against
various adversary models based on both MNIST and CIFAR-10 datasets.

Basically, we first analyze the robustness of RAD and Distillation, which performs the best against
adversarial examples currently, by comparing the classification results before and after applying the
adversarial retraining technique based on both MNIST and CIFAR-10 datasets. Then we estimate the
cross-model classification robustness for RAD, AEC, the improved IAEC, and Distillation. Precisely,
during the cross-model evaluation, we allow the attacker to generate the adversarial examples with
different adversarial algorithms, while the defender has no clue about what adversarial algorithm
is used. Therefore, we are able to evaluate the resilience of the “black-box” defensive strategies
without requiring to know the actual adversary model.

Besides, we allow the attacker to attack these robustly enhanced learners and we compare the re-
silience of the RAD with the baseline defensive models and show that with retraining instances gen-
erated by adam, the RAD is almost unassailable for attacks based on the fast gradient sign method,
which is promising to design universal defensive algorithms based on RAD.
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Additionally, another perspective to measure the robustness of the learners is to evaluate how much
noise is needed to make the learner misclassify an otherwise correct instance. As pointed out by Gu
& Rigazio (2014), even a learner can be demonstrated to perform robustly against certain adversarial
examples, it may become more vulnerable in the sense of being attacked by adding much smaller
magnitude of adversarial noise. This means increasing the noticeability of the smallest adversarial
noise for each example becomes the key to solve the adversarial examples problem. Therefore, we
compare the malicious distortion required to attack each model, aiming to evaluate the vulnerability
of different learners. The distortion is measured by d(xi′, xi) = 1

n

√∑
(xi′ − xi)2, where xi′ =

A(β, xi) representing the adversarial manipulated instance based on arbitrary adversary model A.

4.1 EXPERIMENTAL SETUP

In our experiments, we focus on binary classification, and the adversary tries to modify a malicious
instance (classified as +1) to evade the classifier and be classified as benign (-1). On MNIST, we
select digit “4” as the malicious (positive) class, and “7” as the benign (negative) class. On CIFAR-
10, we use “Airplane” as the malicious class, and “Cat” as the benign class. We use LeNet-5 LeCun
et al. (1998) to perform the binary classification, and all classifiers used to evaluate the efficiency
of different adversary models and defender models are based on this model architecture. All input
pixel values are normalized into [−0.5, 0.5].
With respect to adversary models, during the evaluation, all of them modify the malicious instances
in the original testset to evade the classifier, and keep the benign instances untouched. Meanwhile,
for iterative attack methods evaluated in our experiments, i.e., cg and adam, according to our exper-
iments, actually we can find adversarial examples with small modification cost using any λ, even
when setting λ = 0, i.e., not considering the cost function c(xi′, xi) for optimization. Therefore, we
set λ = 0 for all experiments using these two attack methods.

With respect to defensive models, for RAD, we only add adversarial examples generated on original
malicious instances into the dataset for retraining, since the goal of adversary is trying to fool a
classifier to label a malicious instance as benign, which follows the framework proposed in Li et al.
(2016). As for AEC and IAEC, we use the same autoencoder architecture for removing adversarial
noises proposed in Gu & Rigazio (2014), i.e., a three-hidden-layer autoencoder (784-256-128-256-
784 neurons). We train the autoencoder to map adversarial examples generated on original malicious
instances to the original images, and as suggested in Gu & Rigazio (2014), we also train the autoen-
coder to map original data back to itself. Both AEC and IAEC stack the autoencoder with a LeNet-5
classifier.

4.2 ROBUSTNESS ANALYSIS FOR DEFENSIVE LEARNERS

To evaluate the robustness and efficiency of the adversarial retraining framework and other defensive
learners, we generate adversarial examples based on the the coordinate gradient algorithm (cg),
adam, and the fast gradient sign algorithm (fgsε) with the size of perturbation ε = 0.1 ∼ 0.5
( Goodfellow et al. (2014)), respectively. Figure 1 shows the analysis of recall for the traditional
LeNet-5 and the robust RAD classifiers on MNIST. The test error of LeNet-5 on the original dataset
is 0.045%. It is obvious that after the adversarial retraining process based on RAD, the classifiers
perform nearly optimal. It is interesting to observe that with the ε of fgs increases, the adversarial
examples generated by fgs can attack the original LeNet-5 more efficiently.

Figure 2 presents the comparisons of recall for the original LeNet-5 and the adversarial retraining
framework on CIFAR-10. It shows that the adversarial retraining framework works robustly against
different adversarial example generation methods. Note the test error of LeNet-5 on the original
dataset is 5.5%. From the results of recall, we can see that almost all the “generated” adversarial
instances are correctly classified by the retraining framework. Additionally, sometimes the test er-
ror of RAD is even smaller than that of the original model LeNet-5 based on the uncontaminated
(no adversary) data. This means, with the adversarial robust retraining process, some “blind-spots”
in the input space volume can be filled out without decreasing the performance on the normal test
data. Moreover, surprisingly, with the increase of ε, the fast gradient sign method works worse for
generating adversarial examples against LeNet-5, which is different for MNIST. This is actually
caused by the properties of the fast gradient sign method itself. By following the gradient, the gen-
erated instance can be trapped into sub-optimal and therefore fail to converge to the global optima,
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(a) (b) (c)

Figure 1: Performance of retraining with instances generated from different models based on
MNIST. (a) The retraining instances are generated by cg; (b) the adversarial examples are gener-
ated by cg; (c) the adversarial examples are generated by adam.

(a) (b) (c)

Figure 2: Performance of retraining with instances generated from different models based on
CIFAR-10. (a) The retraining instances are generated by CG; (b) the adversarial examples are
generated by CG; (c) the adversarial examples are generated by adam.

so different step size can affect their final convergence. Therefore, by comparing with the results
of MNIST, we can see learners on CIFAR-10 is easier to be trapped by the sub-optima and larger
ε values can lead the learner to be trapped into these points with higher probability. On the other
hand, no matter how much the strength of adversarial ability is affected by different parameters, the
adversarial retraining framework works robustly by almost identifying all the manipulated instances
correctly on different datasets consistently.

4.3 CROSS-MODEL ANALYSIS FOR DIFFERENT DEFENSIVE LEARNERS

Aiming to defend a more broad class of attacks, here we assume the the learner has no clue about
which adversarial algorithm the attacker uses to generate the adversarial instances. Therefore, the
defender can perform robustly as the “black-box” learner against arbitrary adversaries. Here we
use different attack algorithms to generate the adversarial examples, and the retraining instances for
RAD are also generated across various adversary models to evaluate the learners’ generalization abil-
ity. We also compare the results with the state-of-the-art Distillation, AEC and our improved IAEC
algorithm based on different adversarial models. Here the AEC is trained on the adam model, which
offers the best classification results. The IAEC is also trained corresponding to different adversary
models to compare the cross-model learning ability with RAD. Table 1 shows the test error com-
parisons for these cross-model learners. “No adversary” presents the test error of different learners
on the clean data. Basically, the adversarial retraining framework performs consistently better than
AEC, IAEC, and Distillation on all different adversarial examples in terms of the classification error.
This conclusion is independent of what models are used to generate adversarial retraining instances
for RAD. Based on the results, the adversarial retraining framework has the potential to be applied
to defend against any arbitrary attacks without requiring to know the exact adversary model. Based
on the classification error results for our improved IAEC in Table 1, it is obvious that the IAEC with
the same adam adversary model works much more robust than AEC. This means the proposed IAEC
is much more robust compared with the original AEC by adding the cross-entropy regularization.
Additionally, we also evaluate the cross-model classification error for IAEC to test its generalization
ability. Table 1 shows that the IAEC can also defend against different adversarial examples without
requiring to know the exact adversary model.
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Table 1: Classification error of different learners against various adversary models based on MNIST
Model A(fgs0.1) A(fgs0.5) A(cg) A(adam) No adversary

LeNet-5 1.2% 46.1% 48.2% 48.9% 0.045%
RAD(fgs0.1) 0.1% 0.5% 0.4% 3.0% 0.045%
RAD(fgs0.5) 0.5% 0.1% 0 2.5% 0.045%

RAD(cg) 0.1% 1.4% 0.4% 2.9% 0.045%
RAD(adam) 0 0.1% 0.1% 0.1% 0.045%
AEC(adam) 3.2% 20.6% 9.7% 2.6% 4.5%

IAEC(fgs0.1) 1.3% 28.0% 18.3% 9.6% 1.1%
IAEC(fgs0.5) 1.2% 1.4% 2.6% 5.5% 1.0%

IAEC(cg) 1.6% 1.6% 1.5% 7.4% 1.2%
IAEC(adam) 1.2% 5.2% 7.3% 2.3% 1.7%

Distillation(T = 1) 0.6% 47.2% 29.4% 41.9% 0.2%
Distillation(T = 100) 0.3% 42.3% 12.4% 28.5% 0.2%

Similarly, we show the classification error comparison results of RAD across different adversary
models in Table 2 compared with Distillation. As CIFAR-10 images are more complex, the error
rates for adversarial retraining framework get larger compared with that on MNIST. However, over-
all the classification error for the retraining framework on different adversarial examples are below
13% with zero knowledge of the adversary model, while the classification error on normal data
is around 6%. Therefore, even on CIFAR-10 dataset, the adversarial retraining framework is still
promising to perform the “black-box” defending resiliently against various attacks. Additionally, the
distillation with T = 1 and T = 100 both encounter higher test error than RAD, even the distillation
method performs more robustly when T = 100 than T = 1.

Table 2: Comparisons for the error rate of RAD based on different adversary models on CIFAR-10
Model A(fgs0.1) A(fgs0.5) A(cg) A(adam) No adversary

LeNet-5 1.2% 46.1% 54.0% 52.7% 5.5%
RAD(fgs0.1) 2.35% 2.0% 4.65% 3.0% 5.3%
RAD(fgs0.5) 4.4% 2.7% 5.6% 2.6% 5.8%

RAD(cg) 7.5% 2.45% 5.05% 2.2% 5.7%
RAD(adam) 16.2% 2.8% 6.15% 2.4% 5.9%

Distillation(T = 1) 21.3% 30.8% 13.8% 22.0% 11.0%
Distillation(T = 100) 19.3% 25.2% 9.2% 20.2% 7.2%

4.4 ROBUSTNESS AGAINST ADDITIONAL ATTACKS

In order to test the robustness of the learner against the repeated attacks, where the attacker can
again conduct attacks on the robust learners, here we evaluate how the robust learner behaves given
additional attacks based on different adversary models. Table 3 presents the test error rate compar-
ison when the attacker generates adversarial examples to attack the robust RAD learner, IAEC, and
Distillation on MNIST. It is shown that the coordinate greedy (cg) and adam are somehow efficient
to attack RAD, while the fast gradient sign methods fail to attack the robust RAD. So if the RAD is
retrained with instances generated by arbitrary adversary models, it can be resilient against adversar-
ial examples produced by the fast gradient sign method with various ε values. This means the RAD
can confer robustness to single-step attack methods but not the iterative ones. However, adversaries
based on cg and adam can still find the vulnerabilities to attack the model. Compared with the per-
formance of the adversarial retraining framework (RAD) against these “repeated attacks”, the IAEC
encounters much higher classification error when being attacked. This indicates that the adversarial
retraining framework can not only enhance the resilience of the original learner (LeNet-5), but also
perform robustly against the additional attacks compared with the IAEC.

Similarly, Table 4 presents the test error for attacking different robust learners with various adversary
models on CIFAR-10. RAD again produces lower test error compared with Distillation (T = 1,
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Table 3: Error rate of attacking the robust learners with additional attacks on MNIST
Model A(fgs0.1) A(fgs0.5) A(cg) A(adam)

RAD(fgs0.1) 0.3% 9.6% 48.1% 49.0%
RAD(fgs0.5) 0.8% 0.1% 45.7% 49.0%

RAD(cg) 0.8% 3.4% 44.6% 49.0%
RAD(adam) 0.1% 0.1% 40.2% 48.7%

IAEC(fgs0.1) 4.2% 10.3% 49.9% 49.5%
IAEC(fgs0.5) 5.2% 3.8% 49.8% 49.9%

IAEC(cg) 5.3% 3.9% 49.9% 49.4%
IAEC(adam) 4.6% 7.0% 49.9% 49.9%

Distillation(T = 100) 0.2% 0.2% 49.0% 48.7%

Table 4: Error rate of attacking the robust learners with additional attacks on CIFAR-10
Model A(fgs0.1) A(fgs0.5) A(cg) A(adam)

RAD(fgs0.1) 3.7% 2.7% 42.0% 52.7%
RAD(fgs0.5) 5.3% 2.8% 49.0% 52.4%

RAD(cg) 7.9% 2.8% 52.0% 52.7%
RAD(adam) 6.3% 3.1% 54.0% 52.7%

Distillation(T = 100) 9.05% 8.6% 54.0% 54.1%

T = 100) given diverse adversarial attacking strategies. What is worth to mention is that these
robust learners all perform accurately on the normal dataset without adversarial manipulation, which
offers more potentials for the robust learners.

4.5 VULNERABILITY OF THE DEFENSIVE LEARNERS

Given the fact that the attacker can attack the learning model continuously, here we are concerned
with how vulnerable the robust models become in terms of the amount of distortion needed to add
to mislead the learner. We compare the average distortion for attacking the LeNet-5, RAD, IAEC,
and Distillation to evaluate their robustness. As mentioned by Gu & Rigazio (2014), AEC demands
smaller distortion to attack, which means AEC is quite fragile, and we also gain the similar observa-
tion and confirm that attacking the original LeNet-5 model requires larger magnitude of noise than
AEC. Thus, we focus on the improved IAEC.

In the Table 5 we present the demanded distortion to maliciously attack the RAD, the IAEC, and
Distillation on MNIST. Note that the fast gradient sign method here is a one-step method, which
will stop after computing one gradient to find the optimal perturbation of a linear approximation of
the cost or model, so it cannot guarantee to find the evasion instance xi′ and we do not consider its
distortion. so here we only consider cg and adam to generate distortions. We use RAD(.) to represent
the adversarial retraining framework retrained with arbitrary adversarial instances since they all
require the same amount of distortion to be attacked given their similar network structures. From
Table 5 RAD requires the same distortion as attacking the original LeNet-5 model. However, the
distortion needed for attacking the IAEC is substantially smaller than that for attacking the original
models. From this perspective, the IAEC becomes more vulnerable compared with the original
model even though it can be resilient against the adversarial examples. Similar for Distillation,
smaller distortion is demanded to attack the robust learner, which means more vulnerabilities are
introduced by the robust Distillation. On the contrary, the adversarial retraining framework RAD
can perform robustly against various diverse adversarial attacks without increasing the vulnerability
penalty.

Figure 3 shows the results of adding the corresponding adversarial noise to generate the misclassi-
fication for LeNet-5 model by different adversarial algorithms qualitatively. It shows that by using
fast gradient sign method with ε = 0.5, the original image is almost distorted. This indicates differ-
ent adversary models have different attacking strengths, so taking the stronger adversary model into
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Table 5: Adversarial distortion required for attacking different models on MNIST
Model A(cg) A(adam)

LeNet-5 0.0118 0.0060
RAD(.) 0.0118 0.0060

IAEC(fgs0.1) 0.0042 0.0031
IAEC(fgs0.5) 0.0058 0.0028

IAEC(cg) 0.0069 0.0023
IAEC(adam) 0.0064 0.0029

Distillation(T = 100) 0.0106 0.0060

(a) (b) (c) (d) (e)

Figure 3: Visualization of adversarial examples generated by different attacker models based on
MNIST. (a) Original image, (b) attacked by fgs0.1, (c) attacked by fgs0.5, (d) attacked by cg, (e)
attacked by adam.

account may have a chance to defend the weaker adversaries, which makes the universal defensive
model promising.

Similarly, Table 6 lists the amount of distortion needed to fool the original learner based on CIFAR-
10. It is shown that both the RAD and Distillation need exactly the same amount of distortion with
the original LeNet-5 model, which means these robust learners do not increase the vulnerability of
the original model.

Table 6: Adversarial distortion required for attacking different models on CIFAR-10
Model A(cg) A(adam)

LeNet-5 0.0025 0.0015
RAD(.) 0.0025 0.0015

Distillation(T = 100) 0.0025 0.0015

The visual attacking results by injecting malicious noise are shown in Figure 4. It is clear that fgs
with ε = 0.5 can distort the original images the most compared with other adversary algorithms.
Surprisingly, all the retraining framework based on different retraining instances only get the classi-
fication error lower than 3.0%.

(a) (b) (c) (d) (e)

Figure 4: Visualization of adversarial examples generated by different attacker models based on
CIFAR-10. (a) Original image, (b) attacked by fgs0.1, (c) attacked by fgs0.5, (d) attacked by cg,
(e) attacked by adam.

5 CONCLUSION

To understand the adversarial examples better, as well as the potential adversary models and cor-
responding defensive learners, we conduct extensive experiments to evaluate properties of different
defensive strategies. We point out that RAD works the best among all the defensive strategies against
different adversary models, including one-step and iterative ones, in terms of the classification test
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error. The adversarial retraining framework, RAD, also generalizes well for the cross-model eval-
uation compared with AEC, IAEC, and Distillation. Moreover, both RAD and Distillation do not
introduce additional vulnerability penalty to the original models, while still increase the robustness.
So in the future work, to generalize the robust learner across different adversary models, one di-
rection could be to generate retraining instances based on diverse adversarial algorithms to cover as
much as possible the “blind-spots” within the input space. In addition, we will dynamically optimize
the choice of adversary model and the quantity of retraining instances according to the robustness
requirements of a specific learner. Therefore, the tradeoff between robustness and accuracy on the
normal data can be balanced based on the specific resilience demand of the learner.
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