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ABSTRACT

We propose a metric learning framework for the construction of invariant geo-
metric functions of planar curves for the Euclidean and Similarity group of trans-
formations. We leverage on the representational power of convolutional neural
networks to compute these geometric quantities. In comparison with axiomatic
constructions, we show that the invariants approximated by the learning archi-
tectures have better numerical qualities such as robustness to noise, resiliency to
sampling, as well as the ability to adapt to occlusion and partiality. Finally, we de-
velop a novel multi-scale representation in a similarity metric learning paradigm.

1 INTRODUCTION

The discussion on invariance is a strong component of the solutions to many classical problems in
numerical differential geometry. A typical example is that of planar shape analysis where one desires
to have a local function of the contour which is invariant to rotations, translations and reflections
like the Euclidean curvature. This representation can be used to obtain correspondence between
the shapes and also to compare and classify them. However, the numerical construction of such
functions from discrete sampled data is non-trivial and requires robust numerical techniques for
their stable and efficient computation.

Convolutional neural networks have been very successful in recent years in solving problems in
image processing, recognition and classification. Efficient architectures have been studied and de-
veloped to extract semantic features from images invariant to a certain class or category of transfor-
mations. Coupled with efficient optimization routines and more importantly, a large amount of data,
a convolutional neural network can be trained to construct invariant representations and semanti-
cally significant features of images as well as other types of data such as speech and language. It
is widely acknowledged that such networks have superior representational power compared to more
principled methods with more handcrafted features such as wavelets, Fourier methods, kernels etc.
which are not optimal for more semantic data processing tasks.

In this paper we connect two seemingly different fields: convolutional neural network based metric
learning methods and numerical differential geometry. The results we present are the outcome of
investigating the question: ”Can metric learning methods be used to construct invariant geometric
quantities?” By training with a Siamese configuration involving only positive and negative examples
of Euclidean transformations, we show that the network is able to train for an invariant geometric
function of the curve which can be contrasted with a theoretical quantity: Euclidean curvature. An
example of each can be seen Figure 1. We compare the learned invariant functions with axiomatic
counterparts and provide a discussion on their relationship. Analogous to principled constructions
like curvature-scale space methods and integral invariants, we develop a multi-scale representation
using a data-dependent learning based approach. We show that network models are able to con-
struct geometric invariants that are numerically more stable and robust than these more principled
approaches. We contrast the computational work-flow of a typical numerical geometry pipeline with
that of the convolutional neural network model and develop a relationship among them highlighting
important geometric ideas.

In Section 2 we begin by giving a brief summary of the theory and history of invariant curve repre-
sentations. In Section 3 we explain our main contribution of casting the problem into the form which
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Figure 1: Comparing the axiomatic and learned invariants of a curve.

enables training a convolutional neural network for generating invariant signatures to the Euclidean
and Similarity group transformations. Section 4 provides a discussion on developing a multi-scale
representation followed by the experiments and discussion in Section 5.

2 BACKGROUND

An invariant representation of a curve is the set of signature functions assigned to every point of
the curve which does not change despite the action of a certain type of transformation. A powerful
theorem from E. Cartan (Cartan (1983)) and Sophus Lie (Ackerman (1976)) characterizes the space
of these invariant signatures. It begins with the concept of arc-length which is a generalized notion
of the length along a curve. Given a type of transformation, one can construct an intrinsic arc-
length that is independent of the parameterization of the curve, and compute the curvature with
respect to this arc-length. The fundamental invariants of the curve, known as differential invariants
(Bruckstein & Netravali (1995), Calabi et al. (1998)) are the set of functions comprising of the
curvature and its successive derivatives with respect to the invariant arc-length. These differential
invariants are unique in a sense that two curves are related by the group transformation if and only
if their differential invariant signatures are identical. Moreover, every invariant of the curve is a

function of these fundamental differential invariants. Consider C(p) =

[
x(p)
y(p)

]
: a planar curve with

coordinates x and y parameterized by some parameter p. The Euclidean arc-length, is given by

s(p) =

∫ p

0

|Cp| dp =

∫ p

0

√
x2
p + y2

p dp, (1)

where xp = dx
dp , and yp = dy

dp and the principal invariant signature, that is the Euclidean curvature is
given by

κ(p) =
det(Cp, Cpp)

|Cp|3
=
xpypp − ypxpp

(x2
p + y2

p)
3
2

. (2)

Thus, we have the Euclidean differential invariant signatures given by the set {κ, κs, κss ...} for
every point on the curve. Cartan’s theorem provides an axiomatic construction of invariant signatures
and the uniqueness property of the theorem guarantees their theoretical validity. Their importance is
highlighted from the fact that any invariant is a function of the fundamental differential invariants.

The difficulty with differential invariants is their stable numerical computation. Equations 1 and
2, involve non-linear functions of derivatives of the curve and this poses serious numerical issues
for their practical implementation where noise and poor sampling techniques are involved. Apart
from methods like Pajdla & Van Gool (1995) and Weiss (1993), numerical considerations motivated
the development of multi-scale representations. These methods used alternative constructions of
invariant signatures which were robust to noise. More importantly, they allowed a hierarchical rep-
resentation, in which the strongest and the most global components of variation in the contour of the
curve are encoded in signatures of higher scale, and as we go lower, the more localized and rapid
changes get injected into the representation. Two principal methods in this category are scale-space
methods and integral invariants. In scale-space methods (Mokhtarian & Mackworth (1992); Sapiro
& Tannenbaum (1995); Bruckstein et al. (1996)), the curve is subjected to an invariant evolution pro-
cess where it can be evolved to different levels of abstraction. See Figure 5. The curvature function
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Cost: L(Θ)

L(Θ) = λ || SΘ(C1)− SΘ(C2) || + (1− λ) max( 0, µ − || SΘ(C1)− SΘ(C2) || )

Shared Weights

Figure 2: Siamese Configuration

at each evolved time t is then recorded as an invariant. For example, {κ(s, t), κs(s, t), κss(s, t)...}
would be the Euclidean-invariant representations at scale t.

Integral invariants (Manay et al. (2004); Fidler et al. (2008); Pottmann et al. (2009); Hong & Soatto
(2015)) are invariant signatures which compute integral measures along the curve. For example, for
each point on the contour, the integral area invariant computes the area of the region obtained from
the intersection of a ball of radius r placed at that point and the interior of the contour. The integral
nature of the computation gives the signature robustness to noise and by adjusting different radii of
the ball r one can associate a scale-space of responses for this invariant. Fidler et al. (2008) and
Pottmann et al. (2009) provide a detailed treatise on different types of integral invariants and their
properties.

It is easy to observe that differential and integral invariants can be thought of as being obtained
from non-linear operations of convolution filters. The construction of differential invariants employ
filters for which the action is equivalent to numerical differentiation (high pass filtering) whereas
integral invariants use filters which act like numerical integrators (low pass filtering) for stabilizing
the invariant. This provides a motivation to adopt a learning based approach and we demonstrate
that the process of estimating these filters and functions can be outsourced to a learning framework.
We use the Siamese configuration for implementing this idea. Such configurations have been used
in signature verification (Bromley et al. (1993)), face-verification and recognition(Sun et al. (2014);
Taigman et al. (2014); Hu et al. (2014)), metric learning (Chopra et al. (2005)), image descriptors
(Carlevaris-Bianco & Eustice (2014)), dimensionality reduction (Hadsell et al. (2006)) and also for
generating 3D shape descriptors for correspondence and retrieval (Masci et al. (2015); Xie et al.
(2015)). In these papers, the goal was to learn the descriptor and hence the similarity metric from
data using notions of only positive and negative examples. We use the same framework for estima-
tion of geometric invariants. However, in contrast to these methods, we contribute an analysis of
the output descriptor and provide a geometric context to the learning process. The contrastive loss
function driving the training ensures that the network chooses filters which push and pull different
features of the curve into the invariant by balancing a mix of robustness and fidelity.

3 TRAINING FOR INVARIANCE

A planar curve can be represented either explicitly by sampling points on the curve or using an
implicit representation such as level sets (Kimmel (2012)). We work with an explicit representa-
tion of simple curves (open or closed) with random variable sampling of the points along the curve.
Thus, every curve is a N × 2 array denoting the X and Y coordinates of the N points. We
build a convolutional neural network which inputs a curve and outputs a representation or signature
for every point on the curve. We can interpret this architecture as an algorithmic scheme of repre-
senting a function over the curve. However feeding in a single curve is insufficient and instead we
run this convolutional architecture in a Siamese configuration (Figure 2) that accepts a curve and a
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Figure 3: Network Architecture

transformed version (positive) of the curve or an unrelated curve (negative). By using two identical
copies of the same network sharing weights to process these two curves we are able to extract geo-
metric invariance by using a loss function to require that the two arms of the Siamese configuration
must produce values that are minimally different for curves which are related by Euclidean transfor-
mations representing positive examples and maximally different for carefully constructed negative
examples. To fully enable training of our network we build a large dataset comprising of positive
and negative examples of the relevant transformations from a database of curves. We choose to
minimize the contrastive loss between the two outputs of the Siamese network as this directs the
network architecture to model a function over the curve which is invariant to the transformation.

3.1 LOSS FUNCTION

We employ the contrastive loss function (Chopra et al. (2005); LeCun et al. (2006)) for training our
network. The Siamese configuration comprises of two identical networks of Figure 3 computing
signatures for two separate inputs of data. Associated to each input pair is a label which indicates
whether or not that pair is a positive (λ = 1) or a negative (λ = 0) example (Figure 2). Let C1i

and C2i be the curves imputed to first and second arm of the configuration for the ith example of
the data with label λi. Let SΘ(C) denote the output of the network for a given set of weights Θ for
input curve C. The contrastive loss function is given by:

C(Θ) =
1

N

{ i=N∑
i=1

λi || SΘ(C1i)−SΘ(C2i) || + (1−λi) max( 0, µ − || SΘ(C1i)−SΘ(C2i) || )
}
,

(3)
where µ is a cross validated hyper-parameter known as margin which defines the metric threshold
beyond which negative examples are penalized.

3.2 ARCHITECTURE

The network inputs a N × 2 array representing the coordinates of N points along the curve. The
sequential nature of the curves and the mostly 1D-convolution operations can also be looked at from
the point of view of temporal signals using recurrent neural network architectures. Here however
we choose instead to use a multistage CNN pipeline. The network, given by one arm of the Siamese
configuration, comprises of three stages that use layer units which are typically considered the basic
building blocks of modern CNN architectures. Each stage contains two sequential batches of convo-
lutions appended with rectified linear units (ReLU) and ending with a max unit. The convolutional
unit comprises of convolutions with 15 filters of width 5 as depicted in Figure 3. The max unit
computes the maximum of 15 responses per point to yield an intermediate output after each stage.
The final stage is followed by a linear layer which linearly combines the responses to yield the final
output. Since, every iteration of convolution results in a reduction of the sequence length, sufficient
padding is provided on both ends of the curve. This ensures that the value of the signature at a point
is the result of the response of the computation resulting from the filter centered around that point.
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Figure 4: Contours extracted from the MPEG7 Database and the error plot for training.

3.3 BUILDING REPRESENTATIVE DATASETS AND IMPLEMENTATION

In order to train for invariance, we need to build a dataset with two major attributes: First, it needs
to contain a large number of examples of the transformation and second, the curves involved in
the training need to have sufficient richness in terms of different patterns of sharp edges, corners,
smoothness, noise and sampling factors to ensure sufficient generalizability of the model. To suffi-
ciently span the space of Euclidean transformations, we generate random two dimensional rotations
by uniformly sampling angles from [−π, π]. The curves are normalized by removing the mean and
dividing by the standard deviation thereby achieving invariance to translations and uniform scaling.
The contours are extracted from the shapes of the MPEG7 Database (Latecki et al. (2000)) as shown
in first part of Figure 4. It comprises a total of 1400 shapes containing 70 different categories of
objects. 700 of the total were used for training and 350 each for testing and validation. The positive
examples are constructed by taking a curve and randomly transforming it by a rotation, translation
and reflection and pairing them together. The negative examples are obtained by pairing curves
which are deemed dissimilar as explained in Section 4. The contours are extracted and each contour
is sub-sampled to 500 points. We build the training dataset of 10, 000 examples with approximately
50% each for the positive and negative examples. The network and training is performed using the
Torch library Collobert et al. (2002). We trained using Adagrad Duchi et al. (2011) at a learning rate
of 5 × 10−4 and a batch size of 10. We set the contrastive loss hyperparameter margin µ = 1 and
Figure 4 shows the error plot for training and the convergence of the loss to a minimum. The rest of
this work describes how we can observe and extend the efficacy of the trained network on new data.

4 MULTI-SCALE REPRESENTATIONS

Invariant representations at varying levels of abstraction have a theoretical interest as well as prac-
tical importance to them. Enumeration at different scales enables a hierarchical method of analysis
which is useful when there is noise and hence stability is desired in the invariant. As mentioned
in Section 2, the invariants constructed from scale-space methods and integral invariants, naturally
allow for such a decomposition by construction.

A valuable insight for multi-scale representations is provided in the theorems of Gage, Hamilton
and Grayson (Gage & Hamilton (1986); Grayson (1987)). It says that if we evolve any smooth non-
intersecting planar curve with mean curvature flow, which is invariant to Euclidean transformations,
it will ultimately converge into a circle before vanishing into a point. The curvature corresponding to
this evolution follows a profile as shown in Figure 5, going from a possibly noisy descriptive feature
to a constant function. In our framework, we observe an analogous behavior in a data-dependent
setting. The positive part of the loss function (λ = 1) forces the network to push the outputs of the
positive examples closer, whereas the negative part (λ = 0) forces the weights of network to push
the outputs of the negative examples apart, beyond the distance barrier of µ. If the training data does
not contain any negative example, it is easy to see that the weights of the network will converge to
a point which will yield a constant output that trivially minimizes the loss function in Equation 3.
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Curvature: κ

Figure 5: Curve evolution and the corre-
sponding curvature profile.
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Table 1: Examples of training pairs for different scales. Each
row indicates the pattern of training examples for a different
scale.
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Figure 6: Experiments with multi-scale representations. Each signature is the output of a network
trained on a dataset with training examples formed as per the rows of Table 1. Index1 indicates low
and 5 indicates a higher level of abstraction.

This is analogous to that point in curvature flow which yields a circle and therefore has a constant
curvature.

Designing the negative examples of the training data provides the means to obtain a multi-scale
representation. Since we are training for a local descriptor of a curve, that is, a function whose value
at a point depends only on its local neighborhood, a negative example must pair curves such that
corresponding points on each curve must have different local neighborhoods. One such possibility
is to construct negative examples which pair curves with their smoothed or evolved versions as in
Table 1. Minimizing the loss function in equation 3 would lead to an action which pushes apart the
signatures of the curve and its evolved or smoothed counterpart, thereby injecting the signature with
fidelity and descriptiveness. We construct separate data-sets where the negative examples are drawn
as shown in the rows of Table1 and train a network model for each of them using the loss function
3. In our experiments we perform smoothing by using a local polynomial regression with weighted
linear least squares for obtaining the evolved contour. Figure 6 shows the outputs of these different
networks which demonstrate a scale-space like behavior.

5 EXPERIMENTS AND DISCUSSION

Ability to handle low signal to noise ratios and efficiency of computation are typical qualities desired
in a geometric invariant. To test the numerical stability and robustness of the invariant signatures
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Figure 7: Stability of different signatures in varying levels noise and Euclidean transformations. The
correspondence for the shape and the signature is the color. All signatures are normalized.

we designed two experiments. In the first experiment, we add increasing levels of zero-mean Gaus-
sian noise to the curve and compare the three types of signatures: differential (Euclidean curvature),
integral (integral area invariant) and the output of our network (henceforth termed as network in-
variant) as shown in Figure 7. Apart from adding noise, we also rotate the curve to obtain a better
assessment of the Euclidean invariance property. In Figure 8, we test descriptiveness of the signature
under noisy conditions in a shape retrieval task for a set of 30 shapes with 6 different categories. For
every curve, we generate 5 signatures at different scales for the integral and the network invariant
and use them as a representation for that shape. We use the Hausdorff distance as a distance measure
(Bronstein et al. (2008)) between the two sets of signatures to rank the shapes for retrieval. Figure 7
and 8 demonstrate the robustness of the network especially at high noise levels.

In the second experiment, we decimate a high resolution contour at successive resolutions by ran-
domly sub-sampling and redistributing a set of its points (marked blue in Figure 9) and observe the
signatures at certain fixed points (marked red in Figure 9) on the curve. Figure 9 shows that the
network is able to handle these changes in sampling and compares well with the integral invariant.
Figures 7 and Figure 9 represent behavior of geometric signatures for two different tests: large noise
for a moderate strength of signal and low signal for a moderate level of noise.

6 CONCLUSION

We have demonstrated a method to learn geometric invariants of planar curves. Using just positive
and negative examples of Euclidean transformations, we showed that a convolutional neural network
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Figure 9: Testing robustness of signatures to different sampling conditions. The signatures are
evaluated at the fixed red points on each contour and the density and distribution of the blue points
along the curve is varied from 70% to 5% of the total number of points of a high resolution curve.

is able to effectively discover and encode transform-invariant properties of curves while remaining
numerically robust in the face of noise. By using a geometric context to the training process we were
able to develop novel multi-scale representations from a learning based approach without explicitly
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enforcing such behavior. As compared to a more axiomatic framework of modeling with differential
geometry and engineering with numerical analysis, we demonstrated a way of replacing this pipeline
with a deep learning framework which combines both these aspects. The non-specific nature of this
framework can be seen as providing the groundwork for future deep learning data based problems
in differential geometry.
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7 APPENDIX
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Figure 10: (a) Standard 1D Gaussian filters and its derivatives used for curvature and curvature scale
space calculations. (b) Some of the filters from the first layer of the network proposed in this paper.
One can interpret the shapes of the filters in (b) as derivative kernels which are learned from data
and therefore adapted to its sampling conditions.
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