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ABSTRACT

Problem-specific algorithms and generic machine learning approaches have com-
plementary strengths and weaknesses, trading-off data efficiency and generality.
To find the right balance between these, we propose to use problem-specific infor-
mation encoded in algorithms together with the ability to learn details about the
problem-instance from data. We demonstrate this approach in the context of state
estimation in robotics, where we propose end-to-end learnable histogram filters—
a differentiable implementation of histogram filters that encodes the structure of
recursive state estimation using prediction and measurement update but allows the
specific models to be learned end-to-end, i.e. in such a way that they optimize the
performance of the filter, using either supervised or unsupervised learning.

1 INTRODUCTION
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Figure 1: End-to-end learnable histogram
filters. Models are learned; algorithmic
structure is given.

Traditionally, computer scientists solve problems by
designing algorithms. Recently, this practice has re-
ceived competition from machine learning methods
that automatically extract solutions from data. One
example of this development is the field of computer
vision, where the state of the art is based on deep
neural networks rather than on human-designed algo-
rithms (He et al., 2015). But these two approaches
to problem solving—algorithms and learning—are not
mutually exclusive; in fact, they can complement each
other. Effective problem solving exploits all available
information, whether it be encoded in algorithms or
captured by data. This paper presents a step towards
tightly combining these sources of information.

We demonstrate the combination of problem-specific algorithms with generic machine learning in
the context of state estimation in robotics. The state estimation problem exhibits a clear algorithmic
structure, captured in a provably optimal way by Bayes filters (Thrun et al., 2005). But the use of
such a filter requires the specification of a motion model and a measurement model that is specific
to a particular problem instance. We want to leverage the general knowledge captured in the Bayes
filter, while extracting the instance-specific models from data using deep learning (Goodfellow et al.,
2016). We achieve this by implementing a differentiable version of the histogram filter—a specific
type of Bayes filter that represents probability distributions with histograms—including learnable
motion and measurement models (see Fig. 1). With this implementation, we can learn these models
end-to-end using backpropagation, while still taking advantage of the structure encoded in Bayes
filters. Interestingly, this combination also enables unsupervised learning.

Our contributions are both conceptual and technical. Our conceptual contribution is the principle
of tightly combining algorithms and machine learning to balance data-efficiency and generality.
Our technical contribution is the end-to-end learnable histogram filter, which enables the use of
this Bayes filter variant in a more generic way. Our experiments show that our method is more
data-efficient than generic neural networks, improves performance compared to standard histogram
filters, and—most importantly—enables unsupervised learning of recursive state estimation loops.
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2 COMBINING ALGORITHMS AND MACHINE LEARNING
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Figure 2: Information sources: prior and data

Every information that is contained in the solution to
a problem must either be provided as prior knowl-
edge (prior for short) or learned from data. Differ-
ent approaches balance these sources of information
differently. In the classic approach to computer sci-
ence, all required information is provided by a hu-
man (e.g. in the form of algorithms and models).
In the machine learning approach, only a minimal
amount of prior knowledge is provided (in form of
a learning algorithm) while most information is ex-
tracted from data (see Fig. 2). When trading-off how
much and which information should be provided as a prior or emerge from data, we should consider
the entire spectrum rather than limit ourselves to these two end points.

In the context of robotics, for example, it is clear that the left end of this spectrum will not enable
intelligent robots, because we cannot foresee and specify every detail for solving a wide range of
tasks in initially unknown environments. Robots need to collect data and learn from them. But if
we go all the way to the right end of the spectrum, we need large amounts of data, which is very
difficult to obtain in robotics where data collection is slow and costly. Luckily, robotic tasks include
rich structure that can be used as prior. Physics, for example, governs the interaction of any robot
and its environment and physics-based priors can substantially improve learning (Scholz et al., 2014;
Jonschkowski & Brock, 2015). But robotic tasks include additional structure that can be exploited.

Every algorithm that has proven successful in robotics implicitly encodes information about
the structure of robotic tasks. We propose to use this robotics-specific information captured
by robotic algorithms and combine it with machine learning to fill in the task-specific details
based on data. By tightly combining algorithms and machine learning, we can strike the right
balance between generality and data-efficiency.

3 RELATED WORK

Algorithms and machine learning can be combined in different ways, using algorithms either 1) as
fixed parts of solutions, 2) as parts of the learning process, or 3) as both. The first approach learns
task-specific models in isolation and then combines them with algorithms in the solution. Examples
for this approach are numerous, e.g. a Go player that applies a planning algorithm on learned models
(Silver et al., 2016), a perception pipeline that combines the iterative closest point algorithm with
learned object segmentation (Zeng et al., 2016), or robot control based on learned motion models
(Nguyen-Tuong & Peters, 2011).

The second approach uses algorithms as teachers to generate training data. With this data, we can
learn a function that generalizes beyond the capabilities of the original algorithm or that can be fine-
tuned to a specific problem instance. For example, self-play in Go (using the algorithm as part of
the solution) can be used to create new samples to learn from (Silver et al., 2016), training data for
learning segmentation can be generated by simple algorithms such as background subtraction (Zeng
et al., 2016), and reinforcement learning problems can be solved using training samples generated
via trajectory optimization (Levine & Koltun, 2013).

The third approach—the one that we are focusing on in this paper—uses the same algorithms in the
learning process and in the solution. The main idea is to optimize the models for the algorithms that
use them rather than learning them in isolation. To achieve this, the algorithms need to be differen-
tiable, such that we can compute how changes in the model affect the output of the algorithm, which
allows to train the models end-to-end. This idea has been applied to different algorithms, e.g. in
the form of neural Turing machines (Graves et al., 2014) and neural programmer-interpreters (Reed
& de Freitas, 2015). In the context of robotics, Tamar et al. (2016) have presented a differentiable
planning algorithm based on value iteration. And, most directly related to our work, Haarnoja et al.
(2016) have applied this idea to Kalman filters, showing that measurement models based on visual
input can be learned end-to-end as part of the filter. Our work differs from this by representing the
belief with a histogram rather than a Gaussian, which allows to track multiple hypotheses—a neces-
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sity for many robotic tasks. Furthermore, we focus on tasks where the robot has information about
its actions and learn both the measurement model and the motion model jointly. Our paper extends
an earlier workshop submission (Jonschkowski & Brock, 2016).

4 PRELIMINARIES: HISTOGRAM FILTERS AND OTHER BAYES FILTERS

A Bayes filter (Thrun et al., 2005) is an algorithm to recursively estimate a probability distribution
over a latent state s (e.g. robot pose) conditioned on the history of observations o (e.g. camera
images) and actions a (e.g. velocity commands). This posterior over states is also called belief,
Bel(st) = p(st|a1:t−1, o1:t). A histogram filter is a type of Bayes filter that represents the belief as
a histogram; a discretization of the state space with one probability value per discrete state s. One
of the key assumptions in Bayes filters is the Markov property of states, from which follows that the
current belief Bel(st) summarizes all information of the entire history of observations and actions
that is relevant for predicting the future.

Other key assumptions determine how the belief is recursively updated using two alternating steps:
the prediction step based on the last action at−1 and the measurement update step based on the
current measurement ot. Note that these two sources of information are separated, which results
from the assumption of conditional independence of observation and action given the state.

The prediction step assumes actions to change the state according to the known motion model p(st |
st−1, at−1). After performing an action at−1, the new belief for a given state st is computed by
summing over all possible ways through which state st could have come about,

Bel(st) =
∑
st−1

p(st | st−1, at−1)Bel(st−1). (1)

The measurement update step assumes observations to only depend on the current state as defined
by a known measurement model p(ot | st). After receiving an observation ot, the belief for every
state st is updated using Bayes’ rule,

Bel(st) ∝ p(ot | st)Bel(st). (2)

If motion model and measurement model are unknown, we want the robot to learn these models from
data. Apart from the assumptions already mentioned, learning explicit models allow us to restrict
their hypothesis space according to assumptions (e.g. linear motion). Our goal is to train these
models end-to-end such that we find the models that optimize state estimation performance, while
preserving the useful assumptions of Bayes filters. Towards this end, we formulate the belief, the
prediction, the measurement update, and the corresponding models in the deep learning framework.

5 END-TO-END LEARNABLE HISTOGRAM FILTERS

An end-to-end learnable histogram filter (E2E-HF) is a differentiable implementation of a histogram
filter that allows both motion model and measurement model to be learned end-to-end by backprop-
agation through time (Werbos, 1990). Alternatively, we can view the E2E-HF as a new recurrent
neural network architecture that implements the structure of a histogram filter (see Fig. 3).

5.1 END-TO-END LEARNING AND DIFFERENTIABILITY

If we want to use the structure of a histogram filter as a prior and fit the measurement model and the
motion model to data, we can essentially do one of two things: a) learn the models in isolation to
optimize a quality measure of the model or b) learn the models end-to-end, i.e. train the models as
part of the entire system and optimize the end-to-end performance.

In either way, we might want to optimize the models using gradient descent, for example by com-
puting the gradient of the learning objective with respect to the model parameters using backpropa-
gation (repeated application of the chain rule). Therefore, the motion model and the measurement
model need to be differentiable regardless of whether we choose option a) or option b). For b) end-
to-end learning, we need to backpropagate the gradient through the histogram filter algorithm (not to

3



Under review as a conference paper at ICLR 2017

change the algorithm but to compute how to change the models to improve the algorithm’s output).
Therefore, in addition to the models, the algorithm itself needs to be differentiable.

The remainder of this section describes how histogram filters can be implemented in a differentiable
way and how they can be learned in isolation or end-to-end. To comply with the deep learning
framework, we will define the E2E-HF using vector and matrix operations. We will also introduce
additional priors for computational or data efficiency. For the sake of readability, we assume a
one-dimensional state space here. All formulas can easily be adapted to higher dimensions.

5.2 BELIEF

PredictionMeasurement
update

Observation

Belief over states

Action

Figure 3: End-to-end learnable histogram
filter. Motion model (purple) and measure-
ment model (green) are learned; the algo-
rithmic structure is given (∗ : convolution,
� : element-wise multiplication).

The histogram over states is implemented as a vector
b of probabilities with one entry per bin,

bt = [Bel(St = 1), Bel(St = 2), . . . , Bel(St = |S|)].

We can also think of the belief as a neural network
layer where the activation of each unit represents the
value of a histogram bin. The belief bt constitutes the
output of the histogram filter at the current step t and
an input at the next step t+ 1—together with an action
at and an observation ot+1 (see Fig. 3).

5.3 PREDICTION (MOTION UPDATE)

The most direct implementation of the prediction step
(which we replace shortly) defines a learnable function
f for the motion model, f : st, st−1, at−1 7→ p(st |
st−1, at−1), and employs f in the prediction step
(Eq. 1). The equation can be vectorized for computa-
tional efficiency by defining a |S| × |S| matrix F with
Fi,j(a) = f(i, j, a), such that bt = F (at−1)bt−1.

However, this approach is computationally expensive because it requires |S|2 evaluations of f for a
single prediction step. We can make this computation more efficient, if we assume robot motion to
be local and consistent across the state space, i.e.

p(st | st−1, at−1) = p(∆st | at−1),

∀t|∆st| ≤ k,

where ∆st = st−st−1 and k is the maximum state change. Accordingly, we define a new learnable
function for the motion model, g : ∆st, at−1 7→ p(∆st | at−1) and use g instead of f . For
vectorization, we define a (2k+1)-dimensional vector g(a), whose elements gi(a) = g(i−k−1, a)
represent the probabilities of all positive and negative state changes up to k. We can now reformulate
the prediction step (Eq. 1) as a convolution (∗),

bt = bt−1 ∗ g(at−1),

where the belief bt−1 is convolved with the motion kernel g(at−1) for action at−1 (see Fig. 3).

5.3.1 MOTION MODEL

The learnable motion model g can be implemented as any feedforward network that maps ∆s and
a to a probability. The prior that g(a) represents a probability mass function, i.e. that the elements
of g(a) should be positive and sum to one, can be enforced using the softmax nonlinearity on the
vector of unnormalized network outputs g̃(a), such that gi(a) = eg̃i(a)∑

j e
g̃j(a) .

Another useful prior for g is smoothness with respect to ∆s and a, i.e. that similar combinations of
∆s and a lead to similar probabilities. This smoothness is the reason why (for standard feedforward
networks), we should use ∆s as an input rather than as index for different output dimensions. With
additional knowledge about robot motion, we can replace smoothnes by a stronger prior. For the
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experiments in this paper, we assumed linear motion with zero mean Gaussian noise, and therefore
defined the motion model with only two learnable parameters α and σ,

g̃(∆s, a) = e−
(∆s−αa)2

σ2 ,

and the obligatory normalization, g(∆s, a) = g̃(∆s,a)∑k
j=−k g̃(j,a)

.

5.4 MEASUREMENT UPDATE

Analogously to the motion model in the prediction step, we define a learnable function h that rep-
resents the measurement model for the measurement update, h : st, ot 7→ p(ot | st). To vectorize
the update equation (Eq. 2), we define a vector h(o) with elements hi(o) = h(i, o), such that the
measurement update corresponds to element-wise multiplication (�) with this vector,

b̃t = h(o)� bt,

followed by a normalization, bt = b̃t∑
j b̃t,j

(see Fig. 3).

5.4.1 MEASUREMENT MODEL

The learnable function h that represents the measurement model can again be implemented by
any feedforward network. Since h corresponds to p(ot | st)—a probability distribution over
observations—it needs to be normalized across observations, not across states. To realize the correct
normalization, we need to compute the unnormalized likelihood vector h̃(o) for every observation
o and compute the softmax over the corresponding scalars in different vectors rather than over the
scalars of the same vector: h(o) = eh̃(o)∑

o′ e
h̃(o′) . If the observations are continuous instead of discrete,

this summation must be approximated using sampled observations.

For the experiments in this paper, we represented h by a network with three hidden layers of 32
rectified linear units (Nair & Hinton, 2010), followed by a linear function and a normalization as
described above. Using the observation and state as input rather than output dimensions again
incorporates the smoothness prior on these quantities.

5.5 LEARNING

We can learn the motion model g and the measurement model h using different learning objectives
based on different sequences of data. We will first look at a number of supervised learning objectives
that require o1:T , a1:T , s1:T , and sometimes x1:T —the underlying continuous state. Then, we will
describe unsupervised learning that only needs o1:T and a1:T .

5.5.1 SUPERVISED LEARNING IN ISOLATION

Both models can be learned in isolation by optimizing an objective function, e.g. the cross-entropy
between experienced state change / observation and the corresponding outputs of g and h,

Lg = − 1

T − 1

T∑
t=2

e(∆st−k−1) log(g(at−1)),

Lh = − 1

T

T∑
t=1

e(ot) log(h(ot)),

where e(i) denotes a standard basis vector with all zeros except for a one at position i, that is the
position that represents the experienced state change or observation.

5.5.2 SUPERVISED END-TO-END LEARNING

Due to our differentiable implementation, the models can also be learned end-to-end using back-
propagation through time (Werbos, 1990), which we apply on several overlapping subsequences

5



Under review as a conference paper at ICLR 2017

of length C (in our experiments, C = 32). In the corresponding learning objectives, we compare
the belief at the final time step of this subsequence with the true state. If we want to optimize the
accuracy of the filter with respect to its discrete states, we can again use a cross-entropy loss,

Lacc. = − 1

T − C

T∑
t=C+1

e(st) log(b
(t−C:t)
t ),

where b
(t−C:t)
t denotes the final belief at time step t when the histogram filter is applied on the

subsequence that spans steps t− C to t. Alternatively, we might want to optimize other objectives,
e.g. the mean square error with respect to the underlying continuous state,

Lmse = − 1

T − C

T∑
t=C+1

(xt − xb
(t−C:t)
t )2,

where x denotes a vector of the continuous values to which the discrete states correspond, such that
xb

(t−C:t)
t is the weighted average of these values according to the final belief in this subsequence.

5.5.3 UNSUPERVISED END-TO-END LEARNING

By exploiting the structure of the histogram filter algorithm and the differentiability, we can even
train the models without any state labels by predicting future observations, but later use the models
for state estimation. Similarly to supervised end-to-end learning, we apply the filter on different
subsequences of length C, but then we follow this with D steps without performing the measure-
ment update (in our experiments, D = 32). Instead, we use the measurement model to predict the
observations. Pred(ot) =

∑
st
p(ot | st)Bel(st) = h(ot)bt. To predict the probabilities for all

observations, we define a matrix H with elements Hi,j = h(i, j) as defined in Section 5.4. Putting
everything together, we get the following loss for unsupervised end-to-end learning:

Lunsup. = − 1

(T − C)D

T∑
t=C+1

D∑
d=1

e(ot+d) log(H>b
(t−C:t+d)

t+d ).

6 EXPERIMENTS

We consider the problem of learning to estimate the robot’s state in unknown environments with
partial observations. In this problem, we compare histogram filters for which the models are learned
in isolation (HF), end-to-end learnable histogram filters (E2E-HFs), and two-layer long-short-term
memory networks (LSTMs, Hochreiter & Schmidhuber, 1997). The models of the HFs are learned
by optimizing the loss functions Lg and Lh presented in the previous section. For the E2E-HFs and
LSTMs, we compare end-to-end learning using Lacc., Lmse, and Lunsup..

Our results show that 1) the algorithmic prior in HFs and E2E-HFs increases data efficiency for
learning localization compared to generic LSTMs, 2) end-to-end learning improves the performance
of E2E-HFs compared to HFs, and 3) E2E-HFs are able to learn state estimation without state labels.

6.1 PROBLEM: LEARNING RECURSIVE STATE ESTIMATION IN UNKNOWN ENVIRONMENTS

An important state estimation problem in partially observable environments is localization: a robot
moves through an environment by performing actions and receives partial observations, such that it
needs to filter this information over time to estimate its state, i.e. its position. In our experiments, the
robot does not know the environment beforehand and thus has to learn state estimation from data.

We performed experiments in two localization tasks: a) a hallway localization task (Thrun et al.,
2005) and b) a drone localization task (see Fig. 4). The tasks are similar in that they have continuous
actions and binary observations (door/wall and purple/white tile), both of which are subject to 10%
random error. The tasks differ in their dimensionality. In the hallway task, the robot only needs to
estimate a one-dimensional state (its position along the hallway), which for all methods is discretized
into 100 states. The drone localization task has a two-dimensional state, which is discretized into 50
bins per dimension resulting in 2500 bins in total. The challenge in both tasks is that the door/tile
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(a) Hallway localization task (b) Drone localization task

Figure 4: Randomly sampled environments per task. Motion and measurement models are unknown.

(a) (b) (c)

Figure 5: Hallway task, learning curves for different metrics: (a) mean squared error of estimat-
ing the continuous state—lower is better, (b) accuracy of estimation the discrete state—higher is
better, (c) accuracy of predicting the next 32 observations—higher is better. The legend specifies
both the architecture and the learning objective. Lines show means, shaded surfaces show standard
errors. The dashed line highlights unsupervised learning (no state labels). LSTMs trained for state
estimation cannot predict observations and therefore are not included in (c).

locations, the scale of the actions, and the amount of random noise are unknown and need to be
learned from data, i.e. a sequence of observations, actions, and—in the supervised setting—states
produced by the robot moving randomly through the environment. More details about the tasks, the
experimental setting, learning parameters, etc. can be found in Appendix A.

6.2 RESULTS: IMPROVED DATA-EFFICIENCY

Hallway task: We performed multiple experiments in the hallway localization task with different
amounts of training data. The learning curves with respect to mean squared error for supervised
learning show large differences in data efficiency (see solid lines in Fig. 5a): E2E-HFs require
substantially less training samples than LSTMs to achieve good performance (2000 rather than >
8000). HFs are even more data-efficient but quickly stop improving with additional data.

Drone task: For the drone localization task, we performed an experiment using 4000 training steps
(see Table 1). Our results show that this data is sufficient for the E2E-HF (but not for the LSTM) to
achieve good performance. Our method only required a similar amount of data as for the 1D hallway
task, even though the histogram size had increased from 100 to 2500 bins.

Discussion: The priors encoded in the E2E-HF improve data efficiency because any information
contained in these priors does not need to be extracted from data. This leads to better generalization,
e.g. the ability to robustly and accurately track multiple hypotheses (see Fig.6).

Note on computational limits: The size of the histogram is exponential in the number of state
dimensions. A comparison between the 1D and the 2D task suggests that data might not be the
bottleneck for applying the method to higher dimensional problems, since the data requirements
were similar. However, the increased histogram size directly translates into longer training times,
such that computation quickly becomes the bottleneck for scaling this method to higher-dimensional
problems. Addressing this problem will require to change the belief representation, e.g. to particles
or a mixture of Gaussians, which is an important direction for future work.
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Method MSE (state) Acc. (state) Acc. (obs.)
HF 0.22 0.05 0.81
E2E-HF (unsup.) 0.22 0.03 0.81
E2E-HF (acc.) 0.39 0.17 0.40
E2E-HF (mse) 0.16 0.08 0.66
LSTM (acc.) 3.03 0.03 –
LSTM (mse) 0.50 0.06 –

Table 1: Drone task: test performance of different methods with 4000 training samples

6.3 RESULTS: OPTIMIZATION OF END-TO-END PERFORMANCE

Hallway task: While HFs excel with very few data, E2E-HFs surpass them if more than 2000 train-
ing samples are available (see gray and yellow lines in Fig. 5a). For the mean squared error metric,
the best method is the E2E-HF with a mean squared error objective (yellow line). However, if we
care about a different metric, e.g. accuracy of estimating the discrete state, the methods rank differ-
ently (see Fig. 5b). The best method for the previous metric (yellow line) is outperformed by HFs
(gray line) and even more so by E2E-HFs that are optimized for accuracy (teal line). For yet another
metric, i.e. accuracy of predicting future observations, HFs outperform both other approaches but
are equal to E2E-HFs optimized for predicting future observations (see Fig. 5c).

Drone task: The results of the drone localization task show the same pattern (see Table 1). The best
method for every metric is the E2E-HF that optimizes this metric.

Discussion: E2E-HFs perform better than HFs because they optimize the models for the filtering
process (with respect to the metric they were trained for) rather than optimizing model accuracy.
This can be advantageous because “inaccurate” models can improve end-to-end performance (com-
pare the HF model learned in isolation to the models learned end-to-end in Fig. 6a).

6.4 RESULTS: ENABLING UNSUPERVISED LEARNING

Hallway and drone tasks: In both tasks, unsupervised E2E-HFs were similar to HFs and better
than all other methods for predicting future observations. Interestingly, they also had comparatively
low mean squared error for state estimation even though they had never seen any state labels (see
dashed green line in Fig. 5 and second line in Table 1). In fact, the qualitative results for both tasks
show a remarkable similarity between the learned models and the estimated belief between HFs and
unsupervised E2E-HFs (compare HF and E2E-HF (unsup.) in Fig. 6) and Fig. 7.

Discussion: E2E-HFs can learn state estimation purely based on observations and actions. By pre-
dicting future observations using the structure of the histogram filter algorithm, the method discovers
a state representation that works well with this algorithm, which is surprisingly close to the “correct”
models learned by HFs, although no state labels are used.

7 CONCLUSION

We proposed to tightly combine prior knowledge captured in algorithms with the ability to learn
from data. We demonstrated the feasibility and the advantages of this idea in the context of state
estimation in robotics. Algorithmic priors lead to data-efficient learning, as knowledge about the
problem structure encoded in the algorithm is provided explicitly and does not have to be extracted
from data. The ability to learn from data enables the use of algorithms when task-specifics are
unknown. The tight combination of both improves performance as the models are optimized for use
in the algorithm. Furthermore, the explicit algorithmic structure enables unsupervised learning. We
view our results as a proof of concept and are convinced that the combination of algorithms and
machine learning will help solve novel problems, while balancing data efficiency and generality.
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(a) Learned measurement models (b) Learned motion models (for actions -1.0, 0.0, 1.0)

(c) Belief over time during a test run. The true trajectory is marked by black dots.

Figure 6: Hallway navigation task: (a-b) learned models for one environment (D=door state) and
(c) belief evolution for a single test run in this environment. All methods used 4000 training samples.

Figure 7: Drone localization task: belief evolution during single test run for different methods. Black
dots/lines show the true position/trajectory of the drone. All methods used 4000 training samples.
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A ADDITIONAL EXPERIMENT DETAILS

A.1 HALLWAY LOCALIZATION TASK

The hallway has a length of 10 meters, where every full meter is either occupied by a door or by a
wall. At the beginning of every experiment trial, 5 doors are randomly arranged in the 10 spots in the
hallway. The binary observation of the robot senses whether the center of the robot is next to a door
or next to a wall. With probability 0.1, the observation returns the wrong information, e.g. “wall”
instead of “door” if the robot is next to a door.

The robot is represented as a single point. It moves with a velocity between -1 and 1 meter per
time step and stops when it reaches either end of the hallway. The action information that the robot
receives is the step that it performed as measured by odometry. This odometry measurement is
corrupted with zero mean Gaussian noise with standard deviation of 10% of it’s actual movement.
Additionally, the odometry is scaled by a number between 0.5 and 5.0, which is randomly sampled
at the beginning of every trial, i.e. the robot does not know its exact embodiment. This makes the
exact motion model unknown, such that the robot needs to learn it from data.

Both during training and during testing the robot moves randomly, i.e. it randomly accelerates by a
value between -0.5 and 0.5 at each time step. Apart from this acceleration, its velocity is affected by
10% friction at each time step and is set to zero when the robot reaches either end of the hallway.
For each trial, the training data consists of a single random walk of the robot of length between
500 steps and 8000 steps. The data for the unsupervised learning, includes only the sequence of
noisy observations and actions. For supervised learning, it additionally includes the groundtruth
continuous and discrete state, i.e. the position of the robot.

The test data consisted of 1000 short time sequences of the robot moving in the same fashion starting
from a random position. For all performance metrics, the belief was tracked for 32 steps. For the
metric that measured observation prediction accuracy, the task was to predict 32 future observations
given a sequence of 32 actions based on the current belief.

A.2 DRONE LOCALIZATION TASK

The area for the drone localization task has a size of 5 times 5 meters, where every one meter tile is
either purple or white. At the beginning of every experiment, the color of each tile is decided by a
fair coin flip. Analogously to the hallway task, the binary observations inform the robot about the
color of the tile which is directly underneath it. With probability of 0.1, this observation returns the
wrong color.

The drone is represented as a single point in 2D space. It moves with velocities between -0.5 and
0.5 meter per time step and stops when it reaches the boundary of the area. The other aspects of its
movement, the noisy odometry, and the movement generation for training and test data are analogous
to the hallway localization task.

A.3 EXPERIMENTAL DETAILS

LSTM baseline: The LSTM baseline consists of two LSTM layers with 32 units per layer, followed
by a softmax layer.

Training procedure: All methods where trained via minibatch stochastic gradient descent with
batch size 32 using Adam (Kingma & Ba, 2014) with learning rate 0.001. The training length
was determined using early stopping with patience, where 20% of the training data was used for
validation. After 100 epochs without an improvement on the validation data, the parameters that
achieved highest validation performance were returned.

A.4 SOFTWARE

We used v-rep for simulation (E. Rohmer, 2013) and theano (Theano Development Team, 2016)
with Lasagne (Dieleman et al., 2015) as deep learning framework for our implementation.
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