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ABSTRACT

Given an image, humans effortlessly run the image formation process backwards
in their minds: they can tell albedo from shading, foreground from background,
and imagine the occluded parts of the scene behind foreground objects. In this
work, we propose a weakly supervised inversion machine trained to generate sim-
ilar imaginations that when rendered using differentiable, graphics-like decoders,
produce the original visual input. We constrain the imagination spaces by provid-
ing exemplar memory repositories in the form of foreground segmented objects,
albedo, shading, background scenes and imposing adversarial losses on the imagi-
nation spaces. Our model learns to perform such inversion with weak supervision,
without ever having seen paired annotated data, that is, without having seen the
image paired with the corresponding ground-truth imaginations. We demonstrate
our method by applying it to three Computer Vision tasks: image in-painting,
intrinsic decomposition and object segmentation, each task having its own dif-
ferentiable renderer. Data driven adversarial imagination priors effectively guide
inversion, minimize the need for hand designed priors of smoothness or good con-
tinuation, or the need for paired annotated data.

Consider Figure 1. We imagine a missing triangle occluding three small black circles rather than
three carefully arranged pacman shapes – which is what the pixels depict. In (b), we do not per-
ceive two parts of the sea separated by a standing person, rather a continuous sea landscape. In
(c), we explain the input as a ”masked 8” rather than two semicircles. Consistent explanations of
visual observations in terms of familiar concepts and memories we call “imaginations”. Imagina-
tions invert the image formation process and propose 3D shape, camera pose, scene layering, spatial
layout, albedo, shading, inpainted, un-occluded perceptions of the world, necessary for the under-
standing of the visual scene and interaction with it. Gestalt philosophers (Smith (1988)) proposed
a set or principles to explain formation of such percepts, such as, closure, center surround pop-out,
good continuity, smoothness etc, which many works attempt to hand design principles to incorpo-
rate those into computational frameworks of e.g., perceptual grouping (Yu (2003)). In this work, we
present a learning-based inversion model that uses data-driven priors instead.

We propose a computational model that addresses inverse problems in Computer Vision using ad-
versarial imagination priors. Figure 2 illustrates our model. It is comprised of a generator neural net-
work that given a visual input predicts visual imaginations, such as, in-painted image, un-occluded
background scene, object segmentation, albedo and shading etc. Relevant memories, assumed to

+

How much is it?

(a) (b) (c)

Figure 1: Humans come up with complete and plausible imaginations based on their familiar mem-
ories, they imagine, rather than merely labeling pixels.
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Figure 2: Our model consists of an imagination generator, a graphics-like imagination renderer,
a memory retrieval engine and discriminator networks for distribution matching between inferred
imaginations and retrieved relevant memories. Here we show our model tailored to the task of
figure-ground layer inference, where the imaginations are the segmented foreground object and the
completed background scene.

have been acquired from past experience, are retrieved based on coarse attribute matching. Fully-
convolutional discriminator networks match statistics of the generated imaginations with retrieved
relevant memories. A non-parametric graphics-like differentiable renderer projects such imagina-
tions accordingly and reconstructs the original image. Our model is trained using a combination of
adversarial and reconstruction losses.

Architectures we explore ensure the original images can be reconstructed from the inferred imagina-
tions using basic, parameter-free differentiable renderers. This particular choice of decoder function
further enforces the imagination spaces to take the particular desired forms, along with the adversar-
ial priors. We are inspired by work of capsules (Tieleman (2014)) that first introduced such domain
specific, graphics-like decoders for image generation. We empirically validate the choice of such
decoders against standard parametric deconvolutional networks employed by previous works, e.g.,
inverse graphics network of Kulkarni et al. (2015b).

Our model can infers visual imaginations without having seen paired annotations, that is, each
input image paired with the corresponding ground-truth. Instead, repositories of relevant memories
suffice, in the form of collections of albedo, shading, segmented objects, complete background
scenes etc. This distinguishes it from previous works that rely on supervision for decomposing an
image into imaginations (Kulkarni et al. (2015b)) or that train image conditioned generator networks
using a combination of adversarial and L2 reconstruction loss on imaginations -such as works of
Pathak et al. (2016) for in-painting, work of Jiajun Wu (2016) for 3D object reconstruction, work of
Dong et al. (2015) for super-resolution. In these works, L2 loss is used to condition the imagination
on the input image, e.g., in Jiajun Wu (2016), the adversarial loss ensures the generated voxel grid
looks like a 3D object and the L2 loss ensures it is the 3D object corresponding to that particular
input image instead of an arbitrary one. Instead, we employ a different method of conditioning: we
add a reconstruction loss after our graphics-like decoder, when imaginations are projected (rendered
back) to image pixels, reconstructing the original image; our model is like an autoencoder in that
sense. In this way, we do not need paired supervision, we can take advantage of unlabelled data
and we do not discriminate between training and test phases: adversarial priors useful for inversion
can be employed at any time, and the relevant memory repositories may be updated. However, any
available annotated pairs can always be used to pretrain the generator network. We did consider
such small amount of pretraining in one of the considered tasks and this in this paper to emphasize
the power of adversarial priors.

Our model enables feedback from the input image directly to its memory priors: the relevant memory
engine retrieves memories based on matching of attribute/ feature descriptors. In this way, priors are
tailored to the visual input which alleviates the rare sample problem of traditional training methods,
which suffer from the imbalance of training data samples: some examples are way more typical
than others, and thus more represented on the neural network weights. Hard negative mining has
been used to fight such skewness of training distributions. We empirically show that fixing the prior
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distribution instead of adapting it results in undesirable, wrong imaginations, and makes the balance
of adversarial and reconstruction losses dependent on example by example basis.

In our model, distribution matching of predicted imaginations and retrieved memories concerns
local image statistics. In contrast to most previous use cases of adversarial networks, our work
(1) conditions imaginations to the input image -does not generate from random noise- and (2) has a
feedback loop by projecting imaginations back to the image through rendering and L2 reconstruction
loss. Both (1) and (2) constrain the imagination space and thus our adversarial distribution matching
cares mostly about local statistics, rather than global structure, texture matching rather than semantic
content. For example, for grass in-painting, we do not care whether the imagination looks similar or
exactly the same as a retrieve grass image, we only want to make sure each part in the imagination
follows a grass-like texture. We propose fully-convolutional discriminator networks, that predict
real versus fake binary tests densely across the feature grid, rather than once for the whole image.
This accelerates training, makes our model robust to the size of the network input size and across
different field-of-views.

In summary, our contributions are as follows:

• A weakly supervised model for inverse problems given visual input based on adversarial
imagination priors and graphics-like decoders.

• Relevant memory retrieval for informative adversarial priors.

• Fully-convolutional discriminator networks for matching local image statistic distributions
robust to network input size and image field-of-view.

We demonstrate our model in the tasks of image in-painting, figure-ground layer extraction and
intrinsic image decomposition. We show successful imagination prediction without using paired
ground-truth annotations. We are working towards updating the draft with inverse problems in
videos to convey the generality of the proposed model.

1 RELATED WORK

Vision as an inference problem Both Computer and Human Vision fields have worked towards
models that given visual observations attempt to infer hidden properties about the visual scene by in-
verting the image formation process, ”un”-doing camera projection, occlusions, motion blur, down-
sampling, image masking. Examples are inferring 3D shape and camera pose in videos or images
in Tomasi & Kanade (1992), decoupling 3D shape, lighting and albedo interactions in Barron &
Malik (2013); Kong et al. (2014), inferring scene depth segmentation layering in Yang et al. (2012),
super-resolving low resolution input in Yang et al. (2010), filling in pixels in masked (”hole”) images
(in-painting) Efros & Leung (1999) etc.

Multimodality Inverse problems are ill-posed: There are many imagination solutions whose pro-
jection or rendering would result in the same visual image. Multi-modality of the desired hidden
representation causes methods that rely on maximum likelihood to suffer from regression-to-the-
mean problem. Despite this fact, direct feed-forward neural networks regressors or classifiers have
been trained in a supervised way to achieve such inversion, e.g., depth estimation in Eigen et al.
(2014), albedo estimation in Narihira et al. (2015b), volumetric inference in Firman et al. (2016),
super-resolution in Dong et al. (2015) etc. The argument is that with large enough receptive fields,
ambiguities of inversion are diminished. However, such approaches require human supervision, may
not generalize well enough to handle different inputs, adapt to the example at hand effectively, or
achieve global consistency of the solution (Narihira et al. (2015a)).

Generative adversarial networks (Goodfellow et al. (2014); Sebastian Nowozin (2016); Radford
et al. (2015)) instead have shown to minimize Jensen-Shannon divergence between the matched
distributions and exhibit a mode seeking behaviour (Theis et al. (2016)) desirable for inversion.
Our adversarial priors can be thought as a surrogate to true perceptual losses, which would involve
humans in the loop and would be very expensive to obtain in practise.

Concurrent work of Sønderby et al. (2016) proposes a model for super-resolution that does not re-
quired paired supervision, similar to our model. They have an adversarial loss in the high resolution
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image and their decoder is a downsampler. Their model is a special case of our model, in which we
consider general graphics-like decoders, tailored to each task. Further, they do not consider relevant
memory retrieval and do not consider fully-convolutional decoders.

Priors Other research approaches on inverse problems do not employ learning but rather rely on
hand designed priors, such as sparsity in Yang et al. (2010), spatial smoothness (for optical flow,
depth, albedo etc), temporal smoothness (for shading in Kong et al. (2014)), low-rank 3D shape or
trajectory priors in Akhter et al. (2008); Wu et al. (2016), deformable 3D scene models in Kulkarni
et al. (2015a). Such hand designed priors, though do not suffer from generalization issues, cannot
exploit data available effectively.

Our work proposes data driven priors implemented through adversarial distribution matching be-
tween inferred imaginations and retrieval memories. Such priors exploit unlabelled data available in
the form of imagination repositories, do not suffer from training and test discrepancies, do not need
paired supervision and alleviate the engineering burden of designing good prior models.

Feedback Feedback is visual processing has been incorporated in recent computational models
through iterative processing, where each step produces a better estimate of the relevant memory,
let is be image reconstruction Raiko et al. (2014), body pose estimation Carreira et al. (2015) etc.
Such feedback is incorporated in our adversarial prior model through a memory retrieval mechanism
which uses coarse feature extraction and attributes on unoccluded parts of the visual input to retrieve
relevant examples, and thus influence the reconstruction in an example by example case, alleviat-
ing the problem of data imbalance and finetuning, catastrophic forgetting, hard negative mining of
traditional training paradigms.

Domain specific non-parametric decoders Model architectures we explore are based on the fact
that the inferred imaginations are such that the original image can be reconstructed using basic,
parameter-free operations, such as, camera projection, that project inferred 3D and camera pose
to 2D scene Handa et al. (2016), pointwise multiplication for image decomposition, layering that
assembles different imaginations based on their depth and segmentation masks. Our work is inspired
by work of Tieleman (2014) which proposes capsules, a model for image generation by assembling
2D image pieces and their poses predicted from the encoder into one canvas.

2 MODEL

Our model is illustrated in Figure 2. Given a set of images X = {xi, x2, · · · , xn}, and a mem-
ory database M , a generator network inverts each image x into a set of imaginations z1,z2, · · ·zK ,
which, (1) when rendered back to pixels, the projection should match the corresponding input im-
age; and (2) the imagination statistics should match the distribution of relevant memories retrieved
from M through a memory retrieval engine. Our model is trained to minimize the combination of
(1) an image reconstruction loss and (2) an adversarial imagination loss that constraints the imag-
ination space(s). The imagination spaces and renderer architecture depend on the inversion task.
We consider thress tasks in this work: 1) image in-painting, 2) intrinsic image decomposition, 3)
figure-ground layer extraction.

We denote the generator as a mapping function from input to imaginations G(x), the renderer as
a mapping function from the imagination to the input image P (z), the image retrieval engine as
a mapping function from memories M and input image x to relevant memories R(M,x), and the
discriminator for imposing distribution matching between imaginations and retrieved memories as
D. In case of multiple imagination spaces (e.g., shading and albedo, in-painted background and
foreground object mask etc.) we will use Gi(x) to denote the i-th imagination proposed by the
generator. Suppose there are K imagination spaces, the memory retrieval engine will need to re-
trieved K relevant memory that corresponds to each of the imaginations. Besides, we also need K
discriminators to look after each generated imagination. Here we use Ri(M,x) and Di to denote
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Figure 3: Model architecture for (a) image in-painting, (b) intrinsic image decomposition, and (c)
figure-ground layer extraction.

the corresponding retrieved relevant memory and discriminator for the i-th imagination space. Our
loss reads as follows:

min
D

max
G

Ex∈X ||P (G(x))− x||2︸ ︷︷ ︸
reconstruction loss

+β

n∑
i=1

logDi(Ri(M,x)) + log(1−Di(Gi(x)))︸ ︷︷ ︸
adversarial loss

, (1)

where β the relative weight of reconstruction and adversarial losses.

2.1 IMAGINATION GENERATOR G

Given an image, the generator outputs one or more imaginations. In the tasks we consider, imag-
inations have a retinotopic representation, that is, they have the same size as the input image. Our
generators are convolutional/deconvolutional neural networks with skip-layer connections from the
encoding to the decoding layers. Skip-layer connections much improve the precision of the pro-
duced imaginations. We share weights of the first convolutional layers across multiple imagination
spaces. Figure 3 shows the generator architectures we used for the different inversion tasks.
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2.2 IMAGINATION RENDERER P

Below we present our domain-specific renderers for three Computer Vision tasks: image in-painting,
intrinsic image decomposition and figure-ground layer extraction.

Image in-painting The input is a masked image x, an image whose content is covered by a black
contiguent mask m. The task is to invert such masking and produce an imagination that corresponds
to the complete (in-painted) image before the masking operation, as shown in Figure 3 (a). The ren-
dering function P in this case is defined as P (z) = m�z,where� denotes pointwise multiplication.

Intrinsic image decomposition Given an image x, the generator generates albedo z1 and shading
z2, as shown in Figure 3 (b). For Lambertian surfaces that the product of albedo and shading should
recover the original image, we thus define our renderer to be: P (z1,z2) =z1�z2. Note that we need
two discriminator networks, one that controls the statistics distribution of generated albedos and
one that controls the statistics distribution of generated shading imaginations. In practise, instead of
pointwise multiplication, we used addition in the log space.

Figure-ground layer extraction In this task, given an image, we want to invert the layering su-
perimposition caused by the objects against their background and produce imaginations of the seg-
mented objects and in-painted background scene. Given an image x, the generator outputs a fore-
ground segmentation mask zm, corresponding image foreground z1 = x�zm and an in-painted
background z2 such that the in-painted background matches the relevant background memories and
the image foreground matches memories of segmented relevant objects with clean (black) back-
ground, as shown in Figure 3 (c). Our renderer in this case is defined to be: P (z1,z2,zm) =
(1−zm)�z2+z1 � x, that is, it overlays the object on the in-painted background.

2.3 FULLY-CONVOLUTIONAL DISCRIMINATOR D

We propose fully-convolutional discriminator architectures for matching local image statistics be-
tween inferred imaginations and retrieved relevant memories. Fully-convolutional discriminators
employ many -instead of one- classifiers centered at grid points of the feature maps, that calculate
the confidence scores of being real of fake pattern for each of the local receptive fields, in dif-
ferent layers of the network. Fully-convolutional discriminators allow better generalization from
relevant memories to generated imaginations as they match only local statistics and not global pat-
terns. Further, they are much faster and more stable to train as the number of examples fed into the
discriminator increases. In our experimental section, we show empirically that fully-convolutional
adversarial loss accelerates and stabilizes training.

2.4 MEMORY RETRIEVAL ENGINE R

Given an input image and a memory database of the same imagination types we want to generate,
e.g., albedos of natural images, the memory retrieval engine retrieves the most relevant memories.
The details of memory retrieval depend on the inversion task.

Image in-painting In this case, we measure the L2 pixel distance between the visible part of the
input image and images in our memory database, and retrieve the top nearest neighbors.

Intrinsic image decomposition We retrieve relevant shadings by L2 pixel matching between the
grayscale version of the input image and albedo memories. We retrieve relevant albedos by comput-
ing pixel matching between the input image and albedo memories.

Figure-ground layer extraction Our foreground object memories are segmented objects, as shown
in Figure 3 (c) z1. We retrieve relevant segmented objects according to an object detector output, that
makes sure our segmented object imaginations agree on the object category with retrieved memories
(here the object category of interest is “chair”). For the in-painted background memories, we use L2
pixel distance between the current image and images from the SUN scene dataset.

In any of the aforementioned inversion tasks, after the model starts to generate reasonable initial
imaginations, we can use those to retrieve more relevant memories. Such iterative feedback between
memory and visual processing though very reasonable to do, we did not consider it in this work to
keep the framework simple.
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3 EXPERIMENTS

We show results of our model for (1) image in-painting, (2) intrinsic image decomposition and (3)
figure-ground layer extraction. The corresponding model architectures are shown in Figure 3 and
further training details are provided in the Appendix.

3.1 IMAGE IN-PAINTING

We used the MNIST dataset and masked parts of its digit images. Specifically, we randomly selected
2500 samples of digits 0, 1, 2, 3 from the dataset and overlayed a squared mask at the center over
them to create our input images. Our memory databaseM contains 1000 samples for each of the ten
digits. We purposefully designed such distribution mismatch between the input image dataset and
memory database to study the usefulness of retrieved memories under a controlled setup. The set of
digit images contained in M does not intersect the set of images we used to create our input images.
In other words, the groundtruth imaginations for our input images are not contained in our memory
database.

Figure 4 shows the results of four in-painting models: (1) a baseline with L2 pixel loss between
imaginations and retrieved relevant memories (BmemL2), (2) our model with memories retrieved
uniformly at random from M rather than conditioned on input images (we supress our memory
retrieval engine R) (Bmemrand), (3) our model with memories retrieved uniformly at random from
M and with larger weight on the reconstruction loss (BmemrandHR), (4) our model.

Treating retrieved relevant memories as the golden ground-truth produces blurry images, as shown
in Figure 4 Row 2. L2 matching optimizes the wrong objective, aside of the fact that it suffers from
regression-to-the-mean error even with perfectly correct paired ground-truth, as noted in previous
works (e.g., Sønderby et al. (2016)). Bmemrand produces imaginations that look like reasonable
digits but do not match the corresponding input image, as shown in Figure 4 Row 3, rightmost
column. Such discrepancy between memories and desired imagination distributions cannot be cor-
rected by increasing the reconstruction loss over the adversarial loss (BmemrandHR), shown in
Figure 4 Row 4. Then, the resulting imaginations do not look like correct digits anymore. Our
model correctly in-paints the masked digits, as shown in Figure 4 Row 5.

For each input digit image we show in Figure 4 Row 6 the closest retrieved memory from our
engine R. By comparing the output of our model with the closest memory, we see that we learn to

Inputs

Bmemrand
BmemrandHR

our model

imagination 
BmemL2

Retrieved Memory
With R 
Random draw  

Inputs

Bmemrand
BmemrandHR
our model

imagination 
BmemL2

Retrieved Memory
With R 
Random draw  

Figure 4: Results of image in-painting on MNIST dataset. Row 2: BmemL2 treats retrieved relevant
memories as ground-truth imagination and penalizes the l2 loss between them. Row 3: Bmemrand:
our model without memory retrieval but rather uniform at random memory access. Imaginations
do not respect the input image conditioning. Row 4: BmemrandHR: our model without memory
retrieval but increased weight on the reconstruction loss. Imaginations do not look like correct
digits. Row 5: Our model. It produces correct in shape and texture digit imaginations in contrast to
the baselines above. Row 6: Top closest relevant memories retrieved by our engine. Row 7: Random
memory retrieval.
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interpolate on the memory space and form an imagination that fits the current input image, without
copy pasting, as a nearest neighbor memory engine alone would do.

3.2 INTRINSIC IMAGE DECOMPOSITION

We use the MIT intrinsic image dataset of Grosse et al. (2009). We use ten objects for training and
ten objects for testing. During training, our inputs are images of the training objects and our memory
database contains albedos and shadings for the training objects. At test time, we just evaluate our
generator on images of the test objects, without finetuning our model. We used random image
cropping for data augmentation as described in the Appendix.

Figure 5 Left shows results of our model which never uses paired annotations, that is, does not have
access to pairing of each RGB image with its ground-truth albedo and shading. The results are
comparable to an oracle model that has access to such paired supervision and optimizes a regression
loss, similar to previous work of Narihira et al. (2015b), shown in Figure 5 Right. Our model
effectively generalizes to unseen objects (Figure 5 Bottom Right). Figure 6 shows how using fully-
convolutional discriminators on albedo and shading stabilize training and converge faster.
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Figure 5: MIT intrinsic decomposition with unpaired shading and albedo. I: Input Image, A: In-
ferred albedo, S: Inferred shading, R: Reconstructed Image using A and S. Left: inferred albedo and
shading using our weakly supervised method. Right: inferred albedo and shading using a fully su-
pervised model that minimizes regression loss. The bottom part shows the results of decompositions
on unseen objects.
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Figure 6: L2 distance between inferred albedo imagination and the ground truth. Fully-convolutional
discriminators (purple and green lines) converge faster than fully connected ones, that employ only
one fake/real classifier per image.
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3.3 FIGURE-GROUND LAYER EXTRACTION

We use the seeing 3D chairs dataset of Aubry et al. (2014) as object memory database which contains
1200 different chairs and the SUN scene dataset Xiao et al. (2010) as the background memory
database which contains 131000 images. Our input images are generated by randomly selecting an
SUN image and cropping it to 64 × 64. After that, we overlaid an chair image on top of it as our
input image.

We use 200 background images and 200 chair images to generate a small subset of ”labelled data”,
where we provide the network with ground-truth of mask and background and train the network
using regression loss, as described in the Appendix. Such small scale supervised pretraining suffices
for stability of our model in this task; it is very realistic to assume the existence of such strong sparse
supervision. Figure 7 shows the inferred mask and background we obtain.

Input

Inferred 
mask

Extracted 
chair

Inferred 
background

Recovered 
Image

Figure 7: Results for Figure-ground layer extraction. Row 1: input images. Rows 2,4: The segmen-
tation mask and in-painted background proposed by the generator. Row 5: By superimposing the
inferred mask on the in-painted background, the network outputs the recovered image, which should
match the input.

4 CONCLUSION

We have presented a weakly supervised inverse model of images that predicts imaginations of hidden
representations which then renders through image formation or layering to reconstruct the original
image. It regularizes the inferred hidden representations using convolutional adversarial priors by
distribution matching against retrieved relevant memories. It does not assume paired supervision
and can handle multimodal imagination spaces. We have empirically validated are design choices of
fully-convolutional adversarial discriminator networks and relevant memory retrieval. We believe
the proposed learning paradigm better exploits unlabelled data in the form of images, depth maps,
albedo, shading or segmentation maps and complements well human paired annotations.

We are working towards updating the paper with two inversion problems in videos, visual odometry
and motion object segmentation. Videos allow for much stronger observation module, with imagi-
nation projections from frame to frame, as well as temporal constraining of the imaginations in time.
Further, we are working towards quantifying generalization of our imaginations from training to test
images, specifically measuring how well our model can do with increasing dissimilarity between
memories in the database and input images.
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A IMPLEMENTATION DETAILS

All models are implemented in Tensor Flow Abadi et al. (2015).

Image in-painting Details of the generator architecture are illustrated in Figure 3 (a). The discrim-
inator consists of one convolutional layer and one fully-connected layer on top. Both the generator
and the discriminator use batch normalization with relu activation for the generator and leaky relu
activations for discriminator. We initialize all weights with sampling from normal distribution with
standard deviation 0.02. We use the Adam optimizer with a fixed learning rate of 0.0002.

Intrinsic Image Decomposition For each of the images in the MIT dataset, we randomly crop a
region of 112× 112. For memory retrieval, we find the top nearest-neighbors from 100 crops, using
the method described in Section 2.4.

Details of the generator architecture are illustrated in Figure 3 (b). Each convolutional layer will pass
though batch normalization layer, leaky relu activation and max pooling layer before sending to the
next convolutional layer. Discriminators for both albedo and shading contain four convolutional
layers with batch normalization leaky relu activations. The fully-convolutional adversarial loss is
built on top of the fourth layer. We initialize all weights with sampling from normal distribution
with standard deviation 0.02. We use the Adam optimizer with a fixed learning rate of 10e−6. We
put 0.1 weight on the l2 recovery loss.

Figure-ground layer extraction Details of the generator architecture are illustrated in Figure 3 (c).
Each convolutional layer passes though batch normalization layer, leaky relu activation and max
pooling layer before sending to the next convolutional layer. Discriminator for both objects and
background contains four convolutional layers with batch normalization and leaky relu activations.
We initialize all weights with sampling from normal distribution with standard deviation 0.02.. The
generator is pre-trained using 200 images annotated with groundtruth in-painted background and
foreground object mask using an L2 pixel loss. Then, the model is finetuned using only the described
adversarial imagination loss and image reconstruction loss. We use the Adam optimizer with a
fixed learning rate of 10e−5. Such pretraining, though small in scale, much helped stability of our
model. We have also experimented with adding noise to retrieved memories to make the task of
the discriminator harder at the beginning of the training, as in Sønderby et al. (2016). Small scale
supervised pretraining suffices for stability of the model in this task, and it is very realistic to assume
the existence of such strong sparse supervision.
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