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ABSTRACT

With the proliferation of specialized neural network processors that operate on
low-precision integers, the performance of Deep Neural Network inference be-
comes increasingly dependent on the result of quantization. Despite plenty of
prior work on the quantization of weights or activations for neural networks, there
is still a wide gap between the software quantizers and the low-precision accel-
erator implementation, which degrades either the efficiency of networks or that
of the hardware for the lack of software and hardware coordination at design-
phase. In this paper, we propose a learned linear symmetric quantizer for integer
neural network processors, which not only quantizes neural parameters and acti-
vations to low-bit integer but also accelerates hardware inference by using batch
normalization fusion and low-precision accumulators (e.g., 16-bit) and multipli-
ers (e.g., 4-bit). We use a unified way to quantize weights and activations, and
the results outperform many previous approaches for various networks such as
AlexNet, ResNet, and lightweight models like MobileNet while keeping friendly
to the accelerator architecture. Additional, we also apply the method to object de-
tection models and witness high performance and accuracy in YOLO-v2. Finally,
we deploy the quantized models on our specialized integer-arithmetic-only DNN
accelerator to show the effectiveness of the proposed quantizer. We show that even
with linear symmetric quantization, the results can be better than asymmetric or
non-linear methods in 4-bit networks. In evaluation, the proposed quantizer in-
duces less than 0.4% accuracy drop in ResNet18, ResNet34, and AlexNet when
quantizing the whole network as required by the integer processors.

1 INTRODUCTION

Deep neural networks have shown excellent performance on various computer vision and natural
language processing tasks, such as classification (Krizhevsky et al.| 2012} |Simonyan & Zisserman,
2015 He et al.| 2016)), object detection (Girshickl [2015; Redmon et al.| 2016} He et al., |2017),
segmentation (Long et al.,2015;|Noh et al.,[2015)), machine translation (Zhang et al.,2018b), speech
recognition (Nassif et al., 2019), etc. While the past few years witnessed the success of DNNs
on cloud and server-end computers, neural networks have been recently pushed to embedded and
mobile areas to enable edge intelligence. For these scenarios, the power provision and computational
strength on the edge computing devices are limited. As a result, it is essential to have more efficient
network architectures and less expensive inference overhead. Therefore, there is increasing attention
from the research community to study the compression of modern deep neural networks that are
typically over-parameterized and computationally costly.

Several categories of approaches are proposed to decrease the computational overhead of neural net-
works, such as lightweight neural network architectures (Howard et al., 2017), neural architecture
search (NAS) (Elsken et al.| 2018)), and network pruning (Han et al.| 2015} [2016; Wen et al., 2016;
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Table 1: Comparison between different quantizers: All-Layer (AL) denotes quantizing all the pa-
rameters of all the operators in networks, including weights, bias, activations, and the scaling factor
for low-precision networks; BN donates that the BN operation is only invoked in training but merged
into weights and induces no overhead in integer inference; Linear-Symmetric (LS) denotes linear
symmetric quantization; Activation Functions (AF) donates the support of Leaky ReLU and activa-
tion functions besides ReLU. Structure-Intact (SI) indicates the network structure is unmodified.

Method AL BN LS AF*® SI

Deep Compression (Han et al.| 2016)° Ve

WQ (Park et al.,2017)° v

LQ-Nets (Zhang et al.,[2018a) v

Min-Max Linear Quantization® v v

DoReFa (Zhou et al.| 2016)° Ve v

RQ (Louizos et al.,|2019) v v v
WRPN (Mishra et al.,|2018) Ve Ve v

PACT (Choil, [2018)¢ v v v

LLSQ(ours) v v v v v

* Naive linear quantization, which finds min-max value at runtime.

® Clustering-based approaches to quantize weights.

¢ DoReFa falls into linear asymmetric quantizer due to the need for offset.

4 Tn|Choil (2018), they use PACT to quantize activations, and DoReFa to quantize weights.

¢ DoReFa, RQ, WRPN, and PACT are designed for ReLU, but they can be extended to support other
activation functions in theory.

Molchanov et al.l [2017). Besides these techniques, quantizing high-precision floating-point net-
works to lower bitwidth representation can also drastically decrease both the static parameters and
the intermediate data generated during the network inference, resulting in reduced memory footprint
and also computational intensity. And this paper focuses on the quantization of neural networks.

Quantization technique is also closely related to the implementation of specialized hardware that
maps the procedure of network inference onto the energy-efficient low-precision integer or fixed-
point arithmetic circuits. In the hardware perspective, low-precision integer accelerators or proces-
sors are dominating the solutions targeted on neural network inference, especially for mobile and
embedded scenarios. Google’s Tensor Processing Unit 1.0 (TPU) (Jouppi et al.,[2017), Unified Deep
Neural Network Accelerator (UNPU) (Lee et al., [2018), Eyeriss (Chen et al., [2018]), Stripes (Judd
et al.,[2016), Pragmatic(Albericio et al.||2017) and many other newly proposed hardware implemen-
tations are generally reliant on the effectiveness of the underlying quantization techniques, which are
especially crucial for the low-precision integer hardware designed to process binary, ternary, 4-bit or
8-bit networks. In other words, quantization is not only a method to reduce the memory footprint as
in traditional work, but also a mandatory step to make the network deployable on integer hardware.

Though there is a lot of prior work that investigates low-precision quantization, they mainly target
on reducing the memory overhead caused by floating or high precision data representation in the
networks, but not focus on specialized integer hardware for network inference. To enable the neural
network processors to work with low-precision integer operands and minimize the accuracy losses,
a good network quantizer must satisfy the constraints as enlisted in Table[I]

First, all the parameters, including weights, bias, activations, partial results that eventually accumu-
late to an activation, and even the scaling factors, which are indispensable for low-precision networks
like binary and ternary representation, must be quantized into low bitwidth integers as required by
the underlying specialized hardware. In some prior work (Zhou et al.,|2016} Zhu et al., 2017} Zhang
et al.,|2018a; Mishra et al.|[2018;|Choi}, 2018)), they either leave bias and scaling factors unquantized
or keep the first and last layer in full or high precision. Besides, some designs rely on high-precision
internal register or ALUs to support high-precision partial results that are generated during com-
putation before the final output of activations or features. For example, [Krishnamoorthi| (2018]),
which quantizes the weights and activations to 8-bit, directly use 32-bit accumulators to cache the
intermediate values or partial results to avoid overflows. However, for 4-bit and lower bitwidth, the
integer accelerators cannot afford high bitwidth accumulators, which indicates higher silicon area
and power cost. For integer-only-arithmetic, we quantize the bias to fixed-point numbers by using
a straight-forward method. The value range of these numbers is wide, resulting in overflows of the
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low bitwidth accumulators. To overcome this problem, we quantize the bias to 8-bit and finetune the
bias of the model. As shown in Figure[] the bitwidth of accumulators can be reduced to 16-bit.

Second, the BatchNorm (BN) layer does not necessarily need to be processed during inference for
the reduction of computation and memory cost. For most of the convolutional neural networks, BN
layers are often after the Conv or FC layers. In these situations, BN can be merged into the weights
and biases of the corresponding Conv or FC layers. However, in |Zhou et al.|(2016)); [Zhang et al.
(2018a), they use asymmetric or non-linear quantization, causing barriers to BN fusion. There are
two ways to overcome this obstacle. One is “BN folded training”(Krishnamoorthi, 2018)), which
adopts BN fusion before weights quantization in every training step; the other is to use symmetric
linear quantization. However, the first method doubles the training time, while the second one has
no additional computational overhead, which will be introduced in Section

Third, linear quantization is necessary for state-of-the-art accelerators. There are many non-linear
quantization methods which achieve excellent bitwidth reduction efficacy and accuracy tradeoffs.
In these cases, it requires additional transformation to have correct arithmetic results after quantiz-
ing the value into non-linear distribution. For example, as in [Han et al.| (2016)); Park et al.| (2017),
it necessitates the operation of table lookup to have correct multiplication between quantized val-
ues. However, the linear quantization can make full use of the low-precision arithmetic compo-
nents in off-the-shelf accelerators. Further, linear quantization can be divided into symmetric mode
and asymmetric mode. Asymmetric quantization has one more parameter (e.g., zero-point (Kr-
1shnamoorthil [2018)) than symmetric quantization, and it requires additional subtraction or linear-
operation before multiplication. As a result, the symmetrical mode is compatible with the main-
stream integer accelerator chip design and do not require the redesign of datapath in these hardware.

Fourth, different CNNs or applications usually use a variety of activation functions. For instance,
the object detection model Redmon et al.| (2016)) typically uses Leaky ReLU. And the bottleneck
of ResNet block does not use any activation function. The quantization methods are expected to
be adapted to these situations. However, Zhang et al.| (2018a)); |Park et al.| (2017) only focus on
the quantization of activations after ReLU. In this paper, we demonstrate our method is friendly to
different activation methods such as Leaky ReLU.

Some of the previous researches change the network structure for better quantization performance,
e.g.,Mishra et al.| (2018) double or even triple the convolutional filters to reduce accuracy degrada-
tion. For the energy-efficient integer neural network chips, it needs to remap the changed network
architecture to hardware and adds to computational and memory access overhead due to the in-
creased filters and parameters. As a result, keeping the network structure intact is important.

Concerning all the factors above, in this paper, we present a learned linear symmetric quantiza-
tion (LLSQ) method and also evaluate it on a low-precision neural network accelerator through
hardware-software co-design. Specifically, our mainly contributions are:

e Unlike most of other quantization methods, we quantize the whole network including the
first and last layers. We also quantize bias and scaling factors, in support of the low bitwidth
integer arithmetic units and accumulators on the accelerator.

e We adopt learned linear symmetric quantization schemes which are hardware friendly (such
as the convenience of BN fusion implementation) while achieving state-of-the-art predic-
tion accuracy.

e We design a specialized low-precision CNN inference accelerator to validate the methodol-
ogy, which supports 2/4/8 integer operating and work with high efficiency. We then deploy
our quantization model on the accelerator to illustrate the efficacy of the workflow.

2  MOTIVATION

Edge or embedded neural network accelerators generally have three primary design goals— small-
footprint, high-throughput/low-latency, and low-power. For different applications and scenarios, the
prior researches on specialized deep learning processors are often falling into different categories:
cloud-oriented hardware for warehouse machines, low power mobile processors and ultra-low power
accelerators for [oT or cyber-physical devices.
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For mobile and embedded usage, specialized neural network processors are becoming increasingly
popular as an efficient hardware solution of inference. DianNao (Chen et al., 2014) is proposed
for fast inference of DNNs and it uses 16-bit fixed-point multipliers for small silicon area and low-
energy. Later, ShiDianNao (Du et al} [2015) is introduced and it burns extremely low energy con-
sumption by putting all weights onto the SRAM to eliminate considerable DRAM accesses. Besides,
DeepBurning (Wang et al., |2016) simplifies the design flow of accelerator for different NN models.
Eyeriss (Chen et al.|[2018)) is also another representative of low-power accelerators. And it presents
a row-stationary (RS) dataflow to minimize data movement energy consumption on a spatial archi-
tecture. To further reduce computation overhead, EIE (Han et al., 2016)) exploits the sparsity and
low-bit compression of the NNs and achieves better throughput, energy and area efficiency. These
typical edge neural network processors are accepting fixed-point data input and using fixed-point
processing elements to reduce the power and chip area overhead caused by floating-point arithmetic
components and memory. For the cloud scenarios, specialized architectures like TPU (Jouppi et al.,
2017) and FPGA-based accelerator cards are also replacing conventional GPGPU and CPU for high-
throughput inference tasks. Even for cloud-oriented inference architectures, fixed-point processing
architectures like TPU are favored because they are able to deliver much higher throughput for the
given power budget and silicon area overhead.

However, for the fixed-point or integer hardware targeted on neural network acceleration, quantiza-
tion is prerequisite to convert the floating-point network model into the fixed-point format compati-
ble with the specialized hardware, and it is also a critical step to ensure the accuracy of the network
after conversion. Many prior quantization methods are intended to reduce the running overhead of
networks but ignore the architecture and working mechanism of integer neural network processors,
as illustrated in Table |1} and they sometimes face considerable accuracy losses, or performance
penalty or even fail to be supported on the realistic integer datapath due to the unconsciousness of
the underlying hardware. This problem becomes particularly important for the hardware that is de-
signed to run low bitwidth networks such as binary, ternary, and 2/4-bit models. For instance, Deep
compression and WQ are clustering-based quantization methods, and they still need high-precision
values to represent the weights, bias, and activations. As a result, they are not compatible with the
hardware that only supports low-precision computing. LQ-Nets uses non-linear quantization based
on the binary code and basis vector, and it can theoretically calculate the inner products between
quantized weights and activations by bitwise operations only. However, it requires intensive modifi-
cations to the design of current processors by adding a lot of look-up tables in the datapath. Further,
bias and scaling factors are not quantized in PACT and WRPN, resulting in performance penalty
when employing additional high-precision or float-point ALUs to deal with them. In contrast, our
LLSQ is designed to ease the model quantization flow for the specialized integer neural network
processors by conforming to the constraints specified in Table [I] To validate the importance of
hardware-aware quantizer and software/hardware co-design, we also design a specialized CNN ac-
celerator for wearable applications. And the specialized accelerator supports 2/4/8 integer operation
and adopts the dataflow of low latency and energy design.

3 NETWORKS WITH LEARNED LINEAR SYMMETRIC QUANTIZATION

In this section, we firstly give the overview of the proposed quantization scheme. Then we detail the
scheme including low-precision representation, quantized network training, and the deployment of
quantization model on our specialized integer-only CNN accelerator for fast inference.

3.1 OVERVIEW OF LLSQ

Many of the previous researches focus on the quantization-aware training in GPU, showing the po-
tential of low-bit quantization on CNNs. |[Han et al.[(2016)); |Park et al.| (2017); [Zhang et al.| (2018al)
propose non-linear quantization methods but lacks of a detailed description of the hardware feasibil-
ity. [Krishnamoorthi| (2018) provides a quantization scheme that quantizes weights and activations
into 8-bit integers and integer-arithmetic-only implementation on ARM CPUs. The method achieves
evident hardware acceleration effects, but does not fully exploit lower-precision quantization. Based
on the researches, we propose a quantization scheme for state-of-the-art specialized accelerators
operating on low-precision integers only. Figure[l|shows an overview of the proposed scheme.
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Figure 1: An overview of LLSQ: using pre-trained weights for fast convergence; Retraining of the
network with quantized weights and activations; BN fusion for efficient inference; Quantization of
bias and scaling factors; Deployment of the quantized model to our accelerator. As shown in this
figure, weights, activations, bias, and scaling factors are quantized to low-bit integers. And the
bandwidth of accumulator can be set to lower (e.g., 16-bit in our experiments).

Compared with prior work, our proposed quantization scheme pays more attention to the constraints
imposed by real hardware. We use a unified learned linear symmetric quantizer to quantize weights
and activations. And the quantizer has only one parameter, known as the scaling factor. Linear
symmetric quantization consumes little additional resources based on the mainstream integer accel-
erator designs while achieving state-of-the-art accuracy in various networks. After that, we adopt
BN fusion for fast inference on hardware. As for bias and scaling factors, we also quantize them to
low-bitwidth integers. The integer accelerator illustrated in Figure [I]is an illustrative case of 4-bit
quantization and hardware acceleration.

3.2 MAKING FULL USE OF THE PRE-TRAINED PARAMETERS

In experiments, we find that it is more efficient to start with the pre-trained full-precision parameters
before quantization. [Louizos et al.|(2019); Zhou et al.| (2017)) use pre-trained weights for fast con-
vergence and deployment, while Zhang et al.|(2018a)); (Choi| (2018)); |Cai et al.| (2017) train quantized
network from scratch to show the robustness of the algorithm. However, for some object detection
models, the backbone models and pre-trained weights are essential to the detection performance.
Redmon et al.| (2016) shows that the pre-trained high-resolution classification network gives an in-
crease of almost 4% mAP. To have better performance in classification, object detection, and other
CNN based tasks, in this paper, we use pre-trained parameters to initialize the networks.

3.3 LOW-PRECISION REPRESENTATION AND QUANTIZATION ALGORITHM

We use channel-wise quantization for Conv layers and layer-wise quantization for FC layers and
activations. And we adopt the symmetric linear quantization to quantize weights or activations into
k bits words(e.g., 4-bit), which can be defined as

x? = Quantizeg(x” | a)

q r 1)
=20 = clamp(| 2], —251, 251 1) (
(0% (07

where " € R is one kernel of weights or one layer of activations, the variable & € R¥ is the
quantization parameter, known as the scaling factor, while ¢ € {—2F=1 ... 0,1,...,2*"1 — 1} is
the integer values flowing in the integer accelerator and ¢ € {—2F"1a,...,0,q, ..., (2¥"1 —1)a}
is the quantized weights or activations. Note that for activations, which are non-negative values
if the ActFun is ReLU, we clamp them to [0,2% — 1], resulting in ¢ € {0,1,...,2¥ — 1} and
z? € {0,a,...,(2" ! — 1)a}, respectively.

As defined above, we use « as our quantization parameter. And we optimize it with:

a* = arg min/p(a:r)kvq —z| (2)
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Table 2: Comparison of SG and EMA.

Method VGGSmallw4a4 VGGSmallw2a2 ResNet18w4a4 ResNet18w3a3
EMA 93.95 92.78 69.48 66.80
SG 94.34 93.31 69.84 68.08

VGGSmall is trained on Cifar10 and ResNet18 is on ImageNet.

where ", 7 are the same factors defined in Equation p(x") is the probability density distribution
of ", and [ € {1, 2} is an optional constraint (We use 2 in our experiments). In Figure we present
the relationship between quantization error and . When fixing weights ", we can find the optimal
a* by using the brute-force search approach, which induces high computation cost. Besides, the
weights are updated during the re-training phase and the optimal value a* changes accordingly. In
other words, the optimal value for the factors is not fixed and it takes considerable computational
overhead to find the dynamic optimal value.

Inspired by Zhang et al.| (2018al)), we find through exper-
iments that there is no need to find the optimal value a*,
. . ~ 1.00E-03

and it works well enough to find a near-optimal value &*. 0 200 400 600 800 1000 1200
Generally, quantization can be considered as a regular-
ization of the networks, and the quantization parameter
« needs only to be adjusted to a near-optimal value to
preserve the network capacity.

epoch 0 epoch 60
1.00E-04

1.00E-05

Quantization Error

Then the problem becomes how to find a &* in the for- 1LO0E-06 L
ward pass of the network training phase. At the begin- — =
ning of training, we assign « an initial value. Then in
every training iteration, we explore between 2« and /2
to find a better search direction dperrer € {—1,0,1},
anq use _azc,lbe“?r as the .simulated gradif.:nt (SG) of a data is from weights of the first FC layer in
which is detailed in Equation[9] The gradients of other  AjexNet. As shown in the figure, the optimal
parameters are still obtained by backpropagation algo- * changes with the updating of weights.
rithm. After that, we update all parameters with the gra-

dients or simulated gradients. Another method is updat-

ing a by the exponential moving average (EMA). We experiment both of the methods, and the results
show that SG is generally better than EMA on various networks (See Table [2). If not specifically
stated, we use the SG method in experiments. The re-training process with weights and activations
quantized is summarized in Step 1 of Algorithm|[I]

1.00€E-07 1/04

Figure 2: L2 distance of quantization. The

3.4 BN LAYER FUSION OF QUANTIZED NETWORKS

As described in Section[I] merging the BN layers into convolutional layers can reduce the latency of
network inference by removing additional computation overhead. The operator of quantized Conv[ﬂ
and FC layers can be expressed as

0 = gqqOwqu + b (3)

where «, q are the same as Equation (1} o, q,, oy g donate the quantized activations and weights,
while b is the bias and o is the output feature vector. Note that «,, v, and b are full precision values.
And the BN layer can be formulated as follows:

_ o~ p
Y Vo?+e

where 1 and o2 are EMA statistics, v and 3 are learned parameters in BN layers.

Y+8 “4)

Obviously, we can merge BN layers and figure out the corrected parameters:

gl

Gy = Car; b= (b—p)C + B CZW (5)

"For brevity, we only consider the operation of one channel.
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3.5 BIAS AND SCALING FACTOR QUANTIZATION FOR LOW-BIT INTEGER ONLY
ARITHMETIC

Further, the outputs of layers are quantized according to Equation [I] For integer-only-arithmetic,
the bias use o, as its scaling factor. And for the multiplier “Zﬂ, we use bit-shift quantization
(See Equation so that no multiplication but bit-shift operation is needed in hardware.

Aoqo = aaqa&wqw +ZA7

0 by

qo = o (Qaqw + Qb) (6)

-|7_2kb717 2kb71 - 1)

where g, = clamp(|

Qo
Note that o, v, is a very small number, resulting in large quantization noise when adopting the
clamp operation. In addition, the quantization of the scaling factors « can also raise the quantization
noise of weights and activations. Parameter re-training summarized in Step 2 of Algorithm |Ifis
required.

In the re-training phase, we adopt STE (Bengio et al.,[2013)) to realize the non-differentiable quanti-
zation function.

For weights and bias, we have
dy Oy Oy 9y

dwi ~ Duwr’ b1~ Db @
For activations, we have
Ay N{gg, if 0<a" < (2F—1)a 8
Oa? — |0 otherwise (

4 EXPERIMENTAL RESULTS

In this section, three sets of experiments on Cifar10, ImageNet and Pascal VOC datasets are pre-
sented. First, we conduct our proposed learned linear symmetric quantization (LLSQ) on weights
and activations, leaving the first and last layers in full precision for a fair comparison with Zhang
et al|(2018a)). Second, we quantize the whole networks including the first and last layers, which is
referred as LLSQF (LLSQ for Full network). Finally, we quantize the remaining bias and scaling
factors. LLSQ is implemented in PyTorch (Paszke et al.,[2017), and most of the baselines it uses in
evaluation are from PyTorch Model Zod?}

4.1 QUANTIZATION OF WEIGHTS AND ACTIVATIONS

We firstly employ the VGG-Small network on Cifarl0 to verify the LLSQ method. After that, we
use AlexNet (Krizhevsky et al.,[2012), ResNet18, ResNet34 (He et al., 2016), particularly the light-
weight and hard-to-compress network architecture of MobileNet (Howard et al., 2017;/Sandler et al.,
2018)) etc. to conduct more detailed experiments on the ImageNet dataset. Finally, we also quantize
YOLOV2 (Redmon & Farhadil 2017) to demonstrate that LL.SQ also works well for complicated
applications and especially the task adopting the activation functions like Leaky ReLU other than
ReLU used in previous work.

VGG-SMALL ON CIFAR10

The VGG-Small architecture is the same with Louizos et al.[(2019); Zhang et al.|(2018a)), consisting
of six Conv layers, three MaxPool layers, and one FC layer. We adopt a cosine learn rate scheduler
to train the VGG-Small reference and the quantized models. Specifically, we train the reference
network for 400 epochs using an initial learning rate of 2e-2. And for the training of the quantized
network, we use a warmup learning rate scheduler in the first ten epochs with an initial learning
rate of 2e-3. In all quantization experiments, the total training epochs are 100. The VGG-Small
quantization results are provided in Table[3] With 3-bit weights and 3-bit activations, the accuracy

“https://pytorch.org/docs/stable/torchvision/models.html
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Table 3: Comparison with the state-of-the-art low-bit quantization methods on CIFAR-10. The
bitwidth for weights(w), activations(a), bias(b) and scaling factor(cv) are given.

Method # Bits w/a/b/a Acc(%) Degradation(%)

LQ-Nets” Reference 93.8

(Zhang et al., 2018a) 3/3 93.8 0.0
2/2 93.5 0.3

RQ Reference 93.05

(Louizos et al., 2019) 8/8 93.30 -0.25
4/4 91.57 1.48
2/2 90.92 2.31

LLSQ(ours) Reference 93.34
4/4 94.34 -1.00
3/3 94.02 -0.68
2/2 93.31 0.03

LLSQF(ours) 4/4 94.30 -0.96
3/3 94.07 -0.73
2/2 93.12 0.22

4/4/8/8 93.84 -0.50

* first and last layer in full precision

using our method is better than state-of-the-art method, LQ-Nets. And even when the first and last
layers are all quantized in the same way, the loss of accuracy is minimal.

IMAGENET DATASET

We then quantize AlexNet, ResNet18, ResNet34 and MobileNetv2 on ILSVRC2012 dataset with
different bitwidth configuration to demonstrate the effectiveness of the method. All of the pre-
trained float-point weights except MobileNetVZE] are downloaded from the PyTorch Model Zoo, and
they are trained for 90 epochs with a step learning rate scheduler. After loading the pre-trained
weights, we employ a warmup learning scheduler in the first three epochs and the cosine scheduler
in the remained 57 epochs with an initial learning rate of 2e-2.

As shown in Figure [3a] when quantizing both weights and activations, our degradation of accuracy
is significantly smaller than LQ-Nets, PACT, and RQ. Especially, LLSQ outperforms the baselines
when quantizing weights and activations into 4-bit. And it also outperforms other non-linear quan-
tization methods with different bitwidth. Figure [3b] shows that even with the first and last layers
quantized, it can still achieve near baseline performance. In overall, the accuracy drop is less than
0.4% in ResNet18, ResNet34, and AlexNet when quantizing the whole network. We also quantize
MobileNetv2, a more compact network, and obtain results that are significantly better than RQ.
Please check Table [7] for detailed results.

OBJECT DETECTION ON PAscAL VOC

We also apply the proposed LLSQ to YOLOv2. The backbone of YOLOV2 is Darknet-19, and its
activation function is Leaky ReLU, so that the activations contain negative values. For YOLOv2
on Pascal VOC, we adopt the same quantization configuration (See Section [3.3)) of the weights to
the activations. Results are listed in Table As shown in the table, LLSQ induces minor losses
of mAP in different bitwidth presentation. For comparison, we also quantize the activations into
signed 5-bit integers using PACT, and consequently face considerable mAP losses (54.8mAP). Please
note that we use the open-source PyTorch implementation of YOLOV2 E] as the baseline. We train
the quantized model for 170 epochs (2/3 of baseline) with an initial learning rate of le-4 (1/10 of
baseline).

3https://github.com/tonylins/pytorch-mobilenet-v2
*https://github.com/marvis/pytorch-yolo2
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Figure 3: Quantization results on different networks.

Table 4: LLSQ on YOLOV2 detector.

bitwidthJ mAP‘ aero bike bird boat bottle bus car cat  chair cow table dog horse mbike person plant sheep sofa train tv

FP32 7321 789 80.0 728 623 471 792 79.6 857 544 797 722 833 8l.1 792 748 484 757 723 834 730
w4a5 703 | 739 761 678 573 399 812 79.1 826 518 757 683 803 839 787 706 426 722 71.6 835 695
w32a5 712 755 759 714 604 424 806 800 833 535 758 68.1 708 826 795 716 455 699 721 846 704
w4a8 734 745 79.1 755 60.6 43.8 809 807 858 56.6 800 709 835 845 81.0 745 475 748 752 841 736
w4a32 742 | 746 786 755 66.0 474 80.8 832 874 573 803 70.8 837 843 830 748 494 742 738 852 735

4.2 BN FUSION AND QUANTIZATION OF BIAS AND THE SCALING FACTOR

We adopt BN fusion in the PostAct (Conv—>BN—ReLU) networks according to the formula in Sec-
tion[3.4] And the scaling factor of bias is the product of the corresponding scaling factors belonging
to the activations and the weights, respectively. After that, we visualize the bias value distribution
of VGG-Small. FigureEl shows b/, is distributed between a vast range (-1000, 1000), resulting in
overflows of low bitwidth accumulators. And the overflow phenomena have a significantly harmful
impact on the network performance. To deal with this issue, we quantize the bias and the scaling
factors to 8-bit words, and then fine-tune the networks to restore the original performance. Gener-
ally, we need fine-tuning for one epoch only. After the quantization of bias and scaling factor, we
have a fully quantized model and have it deployed onto our integer-only accelerator with 16 bitwidth
accumulators. Table[3|and[7]show that the accuracy loss is negligible with w4a4b8a8 quantization
on both VGG-Small and AlexNet.
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0.0020
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0.0015
2 2
@ ‘2 0.002
@ 0.0010 5
kel ©
0.0005 0.001
A A
00000 3500 -500 0 500 1000 0000 500 o 500 1000
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(a) bias of convl (b) bias of conv2

Figure 4: Distribution of the bias/scaling factor. The data is from VGG-Small with w4a4 quantiza-
tion.

4.3 DEPLOYMENT ONTO REALISTIC HARDWARE

The introduced linear symmetric quantization is intended to deploy the quantized networks to spe-
cialized integer-only-arithmetic CNN accelerators or other integer-only hardware. Our accelerators

adopt the typical 2D systolic array architecture 2018), but they are featured with 4-bit

or 2-bit low-precision operation. As shown in Figure (1] the 8/4/2-bit accelerator has a 32x7 array of
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Table 5: Comparison of our low-precision integer Neural Network Processors.

Bitwidth  #MAC Unit Throughput Silicon Area Power (mW)
(GOps/sec) (mm?)
8-bit 224 179.2 4.71 228
4-bit 224 179.2 2.80 93
2-bit 224 179.2 1.84 41

Implemented and synthesized with Synopsys Design Compiler (DC) under the 40nm technology.

processing elements (PE). And the MAC unit in each PE consists of a 4-bit multiplier and a 16-bit
accumulator. For the 4-bit accelerator, we use INT4 representation for weights, UINT4 for activa-
tions, INTS for the bias and scaling factors, respectively. For the 2-bit accelerator, we use INT2
for weights, UINT?2 for activations, INT8 for the bias and scaling factors, respectively. Through
the quantization process described in the paper, we can have a fully quantized network that works
directly on the CNN accelerator. In addition, as we use linear symmetric quantization, we can use
a straight-forward way to conduct multiply-accumulate operations without introducing shifters or
lookup tables, which means the quantized models can run on state-of-the-art integer accelerators
and ensures that their output accuracy degradation is minimal as presented in the above sections. Fi-
nally, we implement the 8/4/2-bit integer neural network processors with Synopsys Design Compiler
(DC) under the 40nm technology, clocked at 800MHz. Table [5] shows that the 4/2-bit implemen-
tation achieves up to 2.56x lower silicon area and 5.56x lower power compared to that of the 8-bit
baseline.

5 CONCLUSIONS

In this paper, we introduced a learned linear symmetric quantization (LLSQ) to quantize the whole
network including the bias and scaling factors. We also use BN fusion and low bitwidth accumulators
to reduce the network inference overhead and the hardware resources in integer neural accelerators.
We show that our proposed method performs well for various networks on Cifar10, ImageNet, and
Pascal VOC datasets. We also show that even the linear symmetric quantizer can obtain better
results than asymmetric or non-linear quantization in the case of 4-bit networks. Finally, we deploy
the quantized network onto our specialized integer-only neural network accelerator. Currently, the
bitwidth of every layer in a network is all the same. Prior researches empirically find that different
layers have different sensitivity to bitwidth of quantization. Hence in the future, we will explore a
framework to support more flexible bitwidth for different layers or finer-grained quantization.
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APPENDIX

IMAGENET DETAILED
We conduct experiments on AlexNet, ResNet18, ResNer34, and MobileNetv2. For all of the ex-

periments, we adopt channel-wise quantization for Conv layers and layer-wise quantization for FC
layers as well as the activations. The AlexNet architecture is the same as the PyTorch Model Zoo,
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Table 6: Train Time of ResNet18

#Training Process training time
Train the fp32 network from scratch 1.0x
Quantize w/a to 4/4 according to Stepl of Alg. |1 0.69x
Quantize w/a to 3/3 according to Stepl of Alg.|l 0.69x
Quantize b/« to 8/8 according to Step2 of Alg. |1 0.01x

and it consists of five Conv layers, three FC layers, three MaxPool layers, and two Dropout layers.
To prevent over-fitting, we keep the Dropout layers when quantizing AlexNet. As shown in Figure
[5d, we use the same learning rate scheduler for all experiments on ImageNet. The test curves are
also shown in Figure[5] As we begin with the pre-trained full-precision weights, the test accuracy is
already acceptable after one-epoch training. The final results are listed in Table[7]

Training time. The proposed LLSQ requires about 2/3 training epochs than that of floating-point
network training. In each training iteration, LLSQ needs extra computation cost to optimize the
quantizers. Specifically, the simulated gradients generation of the scaling factors is the major cost.
Table [6] shows the total training time comparison of ResNet18 network. The quantization training
time is 70% of baseline only.
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Figure 5: Test curves for AlexNet, ResNet18, and ResNet34 on ImageNet.

THE LLSQ ALGORITHM

Generate simulate gradients for a:
En =Y (xf — quantizey(x | a))?

— quantizeg(x] | %))2

9)
E. = Z(az: — quantizey (] | 2a))?

dbetter = arg min([Ela Em7 ET‘D -1
AG(X = _a2dbette7'
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where " is one kernel of weights or one layer of activations. argmin([E;, E,,, E,]) € {0,1,2}
selects the index of the smallest number in the array [E;, E,,,, E,].

The bit-shift quantization can be formulated as:
a? = 5Qk(a)

_ clamp(round(24°°% . o), —2F—1 2F—1 1) (10)
- 9gcode

where a € R i the scaling factors to be quantized, k € Z is the bitwidth, and gcode € 7Z is

the parameter of the bit-shift quantizer simply obtained by:
qcode = k — ceil(log, (max(a)) + 1 — 1079) (11)

Algorithm 1 LLSQ

Input: Dataset (x, y), where x is input and vy is label; Pre-trained full-precision parameters (w, b),
where w is weights and b is bias; Suppose the network consists of L layers, wl(z) represents the
i+, kernel of weights of the l;;, layer while a; is the output of the I, layer.

Output: The quantized scaling factors:

e N |
aqa = [aqao’ .. .’ag‘Lil];

The quantized weights w? and bias b,

Step 1: Quantize weights and activations and Re-training
/I Re-training of quantized networks can converge faster and end with a higher accuracy due to
the mechanism of BN layers.

repeat
Forward:
ag < input
for/=1,---,Ldo
for wl(z) in w; do // This is accelerated in parallel when implemented.
wl(z)q +— Quantize(wl(z) | a, ) per Eq. H
1
Generate simulated gradients for o, ;) per Eq. (EP
1
end for

w;' < Concat wl(')q
a;  ReLU(BN(Conv(aj_,,w],b))))
a] < Quantize(a; | og,) per Eq.
Generate simulated gradients for aq, per Eq. (9)
end for
Backward:
Generate AG for weights and bias and AE for activation per Eq. (7)), (8) and
backpropagation algorithm.
Update w, b, oy, g
iter < iter +1

until iter > iter,, ., // need about 60 epochs, e.g. iter, 4, = GOM

batchsize

Step 2: Quantize bias and scaling factor after BN fusion and Re-training
iter <=0
aly,, b + BN fusion per Eq.
repeat
Forward:
ag < input
for/=1,---,Ldo
ad, < SQ(Ay,) per Eq.
for wl(l) in w; do // This is accelerated in parallel when implemented.

wl(i)q — Quantize(wl(i) | di}lm) per Eq.

14
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57+ Quantize(b” | o a! ) per Eq. "

a;_1
1
Generate simulated gradients for & ) per Eq. (ﬂ)
wy

end for

w + Concat w'"?
7

b? + Concat l;l(i)q

a; < ReLU(Conv(aj ;,w],b}))
ol < SQ(aq,) per Eq.
a] < Quantize(a; | af,) per Eq.
Generate simulated gradients for aq, per Eq. @I)
end for
Backward:
Generate AG for weights and bias and AE for activation per Eq. (7)), (8) and
backpropagation algorithm.
Update w, I;, Ay, Oy
iter < iter +1
until iter > iter,, ., // only need one epoch, e.g. iter,,q, = %
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Table 7: Comparison with state-of-the-art quantization methods on ImageNet. Topl, Top5 accu-
racy(%) and degradation of Topl are given.

Method Model # Bits Top1(%) Top5(%) Degradation(%)
w/a/bla
LQ-Nets” ResNet18 Reference 70.3 89.5
(Zhang et al.,[2018a) 4/4 69.3 88.8 1.0
3/3 68.2 87.9 2.1
RQ ResNet18 Reference  69.54 89.19
(Louizos et al., [2019) 8/8 69.97 89.44 -0.43
4/4 61.52 83.99 8.02
RQ+ST 8/8 69.63 89.33 -0.09
(Louizos et al.,2019) 4/4 62.46 84.78 7.08
LLSQ(ours)” ResNet18 Reference  69.76 89.08
4/4 69.84 89.14 -0.08
3/3 68.08 88.20 1.68
LLSQF(ours) ResNet18 4/4 69.40 88.72 0.36
3/3 66.67 87.42 3.09
LQ-Nets” ResNet34 Reference  73.80  91.40
(Zhang et al.,[2018a) 3/3 71.9 90.2 1.9
LLSQ(ours)” ResNet34 Reference  73.30 91.42
4/4 73.60 91.28 -0.30
3/3 72.02 90.66 1.28
LLSQF(ours) ResNet34 4/4 72.94 91.20 0.36
3/3 70.97 89.95 2.33
LLSQ(ours)” AlexNet Reference  56.55 79.09
4/4 56.57 79.02 -0.02
4/4/8/8 56.45 80.15 0.10
3/3 55.36 78.20 0.19
LLSQF(ours) AlexNet 4/4 56.40 78.85 0.15
4/4/8/8 55.58 77.47 0.97
3/3 54.28 77.65 2.27
RQ Mobilenet(vl)  Reference  70.61 89.47
(Louizos et al.,[2019) 8/8 70.43 89.42 0.18
6/6 68.02 88.00 2.59
5/5 61.38 83.73 9.23
RQ+ST Mobilenet(v1) 8/8 70.06 89.52 0.55
(Louizos et al.,[2019) 6/6 67.62 87.78 2.99
5/5 56.85 80.35 13.76
LLSQ(ours)” MobileNet(v2) Reference  71.80 90.37
6/6 71.20 89.99 0.60
5/5 70.45 89.69 1.35
4/4 67.37 87.99 4.43

* First and last layers in full precision.
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