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ABSTRACT

Recurrent neural networks are a powerful tool for modeling sequential data, but
the dependence of each timestep’s computation on the previous timestep’s out-
put limits parallelism and makes RNNs unwieldy for very long sequences. We
introduce quasi-recurrent neural networks (QRNNs), an approach to neural se-
quence modeling that alternates convolutional layers, which apply in parallel
across timesteps, and a minimalist recurrent pooling function that applies in par-
allel across channels. Despite lacking trainable recurrent layers, stacked QRNNs
have better predictive accuracy than stacked LSTMs of the same hidden size. Due
to their increased parallelism, they are up to 16 times faster at train and test time.
Experiments on language modeling, sentiment classification, and character-level
neural machine translation demonstrate these advantages and underline the viabil-
ity of QRNNs as a basic building block for a variety of sequence tasks.

1 INTRODUCTION

Recurrent neural networks (RNNs), including gated variants such as the long short-term memory
(LSTM) (Hochreiter & Schmidhuber, 1997) have become the standard model architecture for deep
learning approaches to sequence modeling tasks. RNNs repeatedly apply a function with trainable
parameters to a hidden state. Recurrent layers can also be stacked, increasing network depth, repre-
sentational power and often accuracy. RNN applications in the natural language domain range from
sentence classification (Wang et al., 2015) to word- and character-level language modeling (Zaremba
et al., 2014). RNNs are also commonly the basic building block for more complex models for tasks
such as machine translation (Bahdanau et al., 2015; Luong et al., 2015; Bradbury & Socher, 2016)
or question answering (Kumar et al., 2016; Xiong et al., 2016). Unfortunately standard RNNs, in-
cluding LSTMs, are limited in their capability to handle tasks involving very long sequences, such
as document classification or character-level machine translation, as the computation of features or
states for different parts of the document cannot occur in parallel.

Convolutional neural networks (CNNs) (Krizhevsky et al., 2012), though more popular on tasks in-
volving image data, have also been applied to sequence encoding tasks (Zhang et al., 2015). Such
models apply time-invariant filter functions in parallel to windows along the input sequence. CNNs
possess several advantages over recurrent models, including increased parallelism and better scal-
ing to long sequences such as those often seen with character-level language data. Convolutional
models for sequence processing have been more successful when combined with RNN layers in a
hybrid architecture (Lee et al., 2016), because traditional max- and average-pooling approaches to
combining convolutional features across timesteps assume time invariance and hence cannot make
full use of large-scale sequence order information.

We present quasi-recurrent neural networks for neural sequence modeling. QRNNs address both
drawbacks of standard models: like CNNs, QRNNs allow for parallel computation across both
timestep and minibatch dimensions, enabling high throughput and good scaling to long sequences.
Like RNNs, QRNNs allow the output to depend on the overall order of elements in the sequence.
We describe QRNN variants tailored to several natural language tasks, including document-level
sentiment classification, language modeling, and character-level machine translation. These models
outperform strong LSTM baselines on all three tasks while dramatically reducing computation time.
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Figure 1: Block diagrams showing the computation structure of the QRNN compared with typical
LSTM and CNN architectures. Red signifies convolutions or matrix multiplications; a continuous
block means that those computations can proceed in parallel. Blue signifies parameterless functions
that operate in parallel along the channel/feature dimension. LSTMs can be factored into (red) linear
blocks and (blue) elementwise blocks, but computation at each timestep still depends on the results
from the previous timestep.

2 MODEL

Each layer of a quasi-recurrent neural network consists of two kinds of subcomponents, analogous
to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X ∈ RT×n of T n-dimensional vectors x1 . . .xT , the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
producing a sequence Z ∈ RT×m of m-dimensional candidate vectors zt. In order to be useful for
tasks that include prediction of the next token, the filters must not allow the computation for any
given timestep to access information from future timesteps. That is, with filters of width k, each zt
depends only on xt−k+1 through xt. This concept, known as a masked convolution (van den Oord
et al., 2016a), is implemented by padding the input to the left by the convolution’s filter size minus
one.

We apply additional convolutions with separate filter banks to obtain sequences of vectors for the
elementwise gates that are needed for the pooling function. While the candidate vectors are passed
through a tanh nonlinearity, the gates use an elementwise sigmoid. If the pooling function requires a
forget gate ft and an output gate ot at each timestep, the full set of computations in the convolutional
component is then:

Z = tanh(Wz ∗X)

F = σ(Wf ∗X)

O = σ(Wo ∗X),

(1)

where Wz ,Wf , and Wo, each in Rk×n×m, are the convolutional filter banks and ∗ denotes a
masked convolution along the timestep dimension. Note that if the filter width is 2, these equations
reduce to the LSTM-like

zt = tanh(W1
zxt−1 +W2

zxt)

ft = σ(W1
fxt−1 +W2

fxt)

ot = σ(W1
oxt−1 +W2

oxt).

(2)

Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
which Balduzzi & Ghifary (2016) term “dynamic average pooling”, uses only a forget gate:

ht = ft � ht−1 + (1− ft)� zt, (3)
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where � denotes elementwise multiplication. The function may also include an output gate:

ct = ft � ct−1 + (1− ft)� zt

ht = ot � ct.
(4)

Or the recurrence relation may include an independent input and forget gate:

ct = ft � ct−1 + it � zt

ht = ot � ct.
(5)

We term these three options f -pooling, fo-pooling, and ifo-pooling respectively; in each case we
initialize h or c to zero. Although the recurrent parts of these functions must be calculated for
each timestep in sequence, their simplicity and parallelism along feature dimensions means that,
in practice, evaluating them over even long sequences requires a negligible amount of computation
time.

A single QRNN layer thus performs an input-dependent pooling, followed by a gated linear combi-
nation of convolutional features. As with convolutional neural networks, two or more QRNN layers
should be stacked to create a model with the capacity to approximate more complex functions.

2.1 VARIANTS

Motivated by several common natural language tasks, and the long history of work on related ar-
chitectures, we introduce several extensions to the stacked QRNN described above. Notably, many
extensions to both recurrent and convolutional models can be applied directly to the QRNN as it
combines elements of both model types.

Regularization An important extension to the stacked QRNN is a robust regularization scheme
inspired by recent work in regularizing LSTMs.

The need for an effective regularization method for LSTMs, and dropout’s relative lack of efficacy
when applied to recurrent connections, led to the development of recurrent dropout schemes, in-
cluding variational inference–based dropout (Gal & Ghahramani, 2016) and zoneout (Krueger et al.,
2016). These schemes extend dropout to the recurrent setting by taking advantage of the repeating
structure of recurrent networks, providing more powerful and less destructive regularization.

Variational inference–based dropout locks the dropout mask used for the recurrent connections
across timesteps, so a single RNN pass uses a single stochastic subset of the recurrent weights.
Zoneout stochastically chooses a new subset of channels to “zone out” at each timestep; for these
channels the network copies states from one timestep to the next without modification.

As QRNNs lack recurrent weights, the variational inference approach does not apply. Thus we
extended zoneout to the QRNN architecture by modifying the pooling function to keep the previous
pooling state for a stochastic subset of channels. Conveniently, this is equivalent to stochastically
setting a subset of the QRNN’s f gate channels to 1, or applying dropout on 1− f :

F = 1− dropout(1− σ(Wf ∗X))) (6)

Thus the pooling function itself need not be modified at all. We note that when using an off-the-
shelf dropout layer in this context, it is important to remove automatic rescaling functionality from
the implementation if it is present. In many experiments, we also apply ordinary dropout between
layers, including between word embeddings and the first QRNN layer.

Densely-Connected Layers We can also extend the QRNN architecture using techniques intro-
duced for convolutional networks. For sequence classification tasks, we found it helpful to use
skip-connections between every QRNN layer, a technique termed “dense convolution” by Huang
et al. (2016). Where traditional feed-forward or convolutional networks have connections only be-
tween subsequent layers, a “DenseNet” with L layers has feed-forward or convolutional connections
between every pair of layers, for a total ofL(L−1). This can improve gradient flow and convergence
properties, especially in deeper networks, although it requires a parameter count that is quadratic in
the number of layers.

When applying this technique to the QRNN, we include connections between the input embeddings
and every QRNN layer and between every pair of QRNN layers. This is equivalent to concatenating
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Figure 2: The QRNN encoder–decoder architecture used for machine translation experiments.

each QRNN layer’s input to its output along the channel dimension before feeding the state into the
next layer. The output of the last layer alone is then used as the overall encoding result.

Encoder–Decoder Models To demonstrate the generality of QRNNs, we extend the model architec-
ture to sequence-to-sequence tasks, such as machine translation, by using a QRNN as encoder and a
modified QRNN, enhanced with attention, as decoder. The motivation for modifying the decoder is
that simply feeding the last encoder hidden state (the output of the encoder’s pooling layer) into the
decoder’s recurrent pooling layer, analogously to conventional recurrent encoder–decoder architec-
tures, would not allow the encoder state to affect the gate or update values that are provided to the
decoder’s pooling layer. This would substantially limit the representational power of the decoder.

Instead, the output of each decoder QRNN layer’s convolution functions is supplemented at every
timestep with the final encoder hidden state. This is accomplished by adding the result of the convo-
lution for layer ` (e.g., W`

z ∗X`, in RT×m) with broadcasting to a linearly projected copy of layer
`’s last encoder state (e.g., V`

zh̃
`
T , in Rm):

Z` = tanh(W`
z ∗X` +V`

zh̃
`
T )

F` = σ(W`
f ∗X` +V`

f h̃
`
T )

O` = σ(W`
o ∗X` +V`

oh̃
`
T ),

(7)

where the tilde denotes that h̃ is an encoder variable. Encoder–decoder models which operate on
long sequences are made significantly more powerful with the addition of soft attention (Bahdanau
et al., 2015), which removes the need for the entire input representation to fit into a fixed-length
encoding vector. In our experiments, we computed an attentional sum of the encoder’s last layer’s
hidden states. We used the dot products of these encoder hidden states with the decoder’s last layer’s
un-gated hidden states, applying a softmax along the encoder timesteps, to weight the encoder states
into an attentional sum kt for each decoder timestep. This context, and the decoder state, are then
fed into a linear layer followed by the output gate:

αst = softmax
all s

(cLt · h̃L
s )

kt =
∑
s

αsth̃
L
s

hL
t = ot � (Wkkt +Wcc

L
t ),

(8)

where L is the last layer. This procedure is closely analogous to the attention mechanism described
by Luong et al. (2015) as “global-dot without input feeding”. The reason for avoiding input feeding
is to allow the QRNN layers to run in a maximally timestep-parallel way during training, even
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Model Time / Epoch (s) Test Acc (%)
NBSVM-bi (Wang & Manning, 2012) − 91.2
2 layer sequential BoW CNN (Johnson & Zhang, 2014) − 92.3
Ensemble of RNNs and NB-SVM (Mesnil et al., 2014) − 92.6
2-layer LSTM (Longpre et al., 2016) − 87.6
Residual 2-layer bi-LSTM (Longpre et al., 2016) − 90.1

Our models
Densely-connected 4-layer LSTM (cuDNN optimized) 480 90.9
Densely-connected 4-layer QRNN 150 91.4
Densely-connected 4-layer QRNN with k = 4 160 91.1

Table 1: Accuracy comparison on the IMDb binary sentiment classification task. All of our models
use 256 units per layer; all layers other than the first layer, whose filter width may vary, use filter
width k = 2. Train times are reported on a single NVIDIA K40 GPU. We exclude semi-supervised
models that conduct additional training on the unlabeled portion of the dataset.

if they can’t during inference; any kind of input feeding would make this impossible, although it
would likely result in slightly better translation performance.

While the first step of this attention procedure is quadratic in the sequence length, in practice it
takes significantly less computation time than the model’s linear and convolutional layers due to the
simple and highly parallel dot-product scoring function.

3 EXPERIMENTS

We evaluate the performance of the QRNN on three different natural language tasks: document-level
sentiment classification, language modeling, and character-based neural machine translation. Our
QRNN models outperform LSTM-based models of equal hidden size on all three tasks while dra-
matically improving computation speed. Experiments were implemented in Chainer (Tokui et al.).

3.1 SENTIMENT CLASSIFICATION

We evaluate the QRNN architecture on a popular document-level sentiment classification bench-
mark, the IMDb movie review dataset (Maas et al., 2011). The dataset consists of a balanced sample
of 25,000 positive and 25,000 negative reviews, divided into equal-size train and test sets, with an
average document length of 231 words (Wang & Manning, 2012). We compare only to other results
that do not make use of additional unlabeled data (thus excluding e.g., Miyato et al. (2016)).

Our best performance on a held-out development set was achieved using a four-layer densely-
connected QRNN with 256 units per layer and word vectors initialized using 300-dimensional cased
GloVe embeddings (Pennington et al., 2014). Dropout of 0.3 was applied between layers, and we
used L2 regularization of 4 × 10−6. Optimization was performed on minibatches of 24 examples
using RMSprop (Tieleman & Hinton, 2012) with learning rate of 0.001, α = 0.9, and ε = 10−8.

Small batch sizes and long sequence lengths provide an ideal situation for demonstrating the
QRNN’s performance advantages over traditional recurrent architectures. This is because tradi-
tional architectures are only fully parallel over the batch dimension, while the QRNN parallelizes
over batch and timestep dimensions in the convolutional layer and over batch and feature dimensions
in the pooling layer. We observed a speedup of 3.2x on IMDb train time per epoch compared to the
optimized LSTM implementation provided in NVIDIA’s cuDNN library. For specific batch sizes
and sequence lengths, a 16x speed gain is possible. Figure 4 provides extensive speed comparisons.

In Figure 3, we visualize the hidden state vectors cLt of the final QRNN layer on part of an example
from the IMDb dataset. Even without any post-processing, changes in the hidden state are visible
and interpretable in regards to the input. This is a consequence of the elementwise nature of the
recurrent pooling function, which delays direct interaction between different channels of the hidden
state until the computation of the next QRNN layer.
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Figure 3: Visualization of the final QRNN layer’s hidden state vectors cLt in the IMDb task, with
timesteps along the vertical axis. Colors denote neuron activations. After an initial positive statement
“This movie is simply gorgeous” (off graph at timestep 9), timestep 117 triggers a reset of most
hidden states due to the phrase “not exactly a bad story” (soon after “main weakness is its story”).
Only at timestep 158, after “I recommend this movie to everyone, even if you’ve never played the
game”, do the hidden units recover.

3.2 LANGUAGE MODELING

We replicate the language modeling experiment of Zaremba et al. (2014) and Gal & Ghahramani
(2016) to benchmark the QRNN architecture for natural language sequence prediction. The experi-
ment uses a standard preprocessed version of the Penn Treebank (PTB) by Mikolov et al. (2010).

We implemented a gated QRNN model with medium hidden size: 2 layers with 640 units in each
layer. Both QRNN layers use a convolutional filter width k of two timesteps. While the “medium”
models used in other work (Zaremba et al., 2014; Gal & Ghahramani, 2016) consist of 650 units in
each layer, it was more computationally convenient to use a multiple of 32. As the Penn Treebank
is a relatively small dataset, preventing overfitting is of considerable importance and a major focus
of recent research. It is not obvious in advance which of the many RNN regularization schemes
would perform well when applied to the QRNN. Our tests showed encouraging results from zoneout
applied to the QRNN’s recurrent pooling layer, implemented as described in Section 2.1.

The experimental settings largely followed the “medium” setup of Zaremba et al. (2014). Optimiza-
tion was performed by stochastic gradient descent (SGD) without momentum. The learning rate was
set at 1 for six epochs, then decayed by 0.95 for each subsequent epoch, for a total of 72 epochs.
We additionally used L2 regularization of 2 × 10−4 and rescaled gradients with norm above 10.
Zoneout was applied by performing dropout with ratio 0.1 on the forget gates of the QRNN, without
rescaling the output of the dropout function. Batches consist of 20 examples, each 105 timesteps.

Model Parameters Validation Test

LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium, MC) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M − 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6

Our models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3

Table 2: Single model perplexity on validation and test sets for the Penn Treebank language model-
ing task. Lower is better. “Medium” refers to a two-layer network with 640 or 650 hidden units per
layer. All QRNN models include dropout of 0.5 on embeddings and between layers. MC refers to
Monte Carlo dropout averaging at test time.
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Figure 4: Left: Training speed for two-layer 640-unit PTB LM on a batch of 20 examples of 105
timesteps. “RNN” and “softmax” include the forward and backward times, while “optimization
overhead” includes gradient clipping, L2 regularization, and SGD computations.
Right: Inference speed advantage of a 320-unit QRNN layer alone over an equal-sized cuDNN
LSTM layer for data with the given batch size and sequence length. Training results are similar.

Comparing our results on the gated QRNN with zoneout to the results of LSTMs with both ordinary
and variational dropout in Table 2, we see that the QRNN is highly competitive. The QRNN without
zoneout strongly outperforms both our medium LSTM and the medium LSTM of Zaremba et al.
(2014) which do not use recurrent dropout and is even competitive with variational LSTMs. This
may be due to the limited computational capacity that the QRNN’s pooling layer has relative to the
LSTM’s recurrent weights, providing structural regularization over the recurrence.

Without zoneout, early stopping based upon validation loss was required as the QRNN would be-
gin overfitting. By applying a small amount of zoneout (p = 0.1), no early stopping is required
and the QRNN achieves competitive levels of perplexity to the variational LSTM of Gal & Ghahra-
mani (2016), which had variational inference based dropout of 0.2 applied recurrently. Their best
performing variation also used Monte Carlo (MC) dropout averaging at test time of 1000 different
masks, making it computationally more expensive to run.

When training on the PTB dataset with an NVIDIA K40 GPU, we found that the QRNN is sub-
stantially faster than a standard LSTM, even when comparing against the optimized cuDNN LSTM.
In Figure 4 we provide a breakdown of the time taken for Chainer’s default LSTM, the cuDNN
LSTM, and QRNN to perform a full forward and backward pass on a single batch during training of
the RNN LM on PTB. For both LSTM implementations, running time was dominated by the RNN
computations, even with the highly optimized cuDNN implementation. For the QRNN implementa-
tion, however, the “RNN” layers are no longer the bottleneck. Indeed, there are diminishing returns
from further optimization of the QRNN itself as the softmax and optimization overhead take equal
or greater time. Note that the softmax, over a vocabulary size of only 10,000 words, is relatively
small; for tasks with larger vocabularies, the softmax would likely dominate computation time.

It is also important to note that the cuDNN library’s RNN primitives do not natively support any form
of recurrent dropout. That is, running an LSTM that uses a state-of-the-art regularization scheme at
cuDNN-like speeds would likely require an entirely custom kernel.

3.3 CHARACTER-LEVEL NEURAL MACHINE TRANSLATION

We evaluate the sequence-to-sequence QRNN architecture described in 2.1 on a challenging neu-
ral machine translation task, IWSLT German–English spoken-domain translation, applying fully
character-level segmentation. This dataset consists of 209,772 sentence pairs of parallel training
data from transcribed TED and TEDx presentations, with a mean sentence length of 103 characters
for German and 93 for English. We remove training sentences with more than 300 characters in
English or German, and use a unified vocabulary of 187 Unicode code points.

Our best performance on a development set (TED.tst2013) was achieved using a four-layer encoder–
decoder QRNN with 320 units per layer, no dropout or L2 regularization, and gradient rescaling
to a maximum magnitude of 5. Inputs were supplied to the encoder reversed, while the encoder
convolutions were not masked. The first encoder layer used convolutional filter width k = 6, while
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Model Train Time BLEU (TED.tst2014)

Word-level LSTM w/attn (Ranzato et al., 2016) − 20.2
Word-level CNN w/attn, input feeding (Wiseman & Rush, 2016) − 24.0
Char-level ByteNet1 − 24.7

Our models
Char-level 4-layer LSTM 4.2 hrs/epoch 16.53
Char-level 4-layer QRNN with k = 6 1.0 hrs/epoch 19.41

Table 3: Translation performance, measured by BLEU, and train speed in hours per epoch, for the
IWSLT German-English spoken language translation task. All models were trained on in-domain
data only, and use negative log-likelihood as the training criterion. Our models were trained for 10
epochs. The QRNN model uses k = 2 for all layers other than the first encoder layer.

the other encoder layers used k = 2. Optimization was performed for 10 epochs on minibatches
of 16 examples using Adam (Kingma & Ba, 2014) with α = 0.001, β1 = 0.9, β2 = 0.999, and
ε = 10−8. Decoding was performed using beam search with beam width 8 and length normalization
α = 0.6. The modified log-probability ranking criterion is provided in the appendix.

Results using this architecture were compared to an equal-sized four-layer encoder–decoder LSTM
with attention, applying dropout of 0.2. We again optimized using Adam; other hyperparameters
were equal to their values for the QRNN and the same beam search procedure was applied. Table
3 shows that the QRNN outperformed the character-level LSTM, almost matching the performance
of a word-level attentional baseline.

4 RELATED WORK

Exploring alternatives to traditional RNNs for sequence tasks is a major area of current research.
Quasi-recurrent neural networks are related to several such recently described models, especially the
strongly-typed recurrent neural networks (T-RNN) introduced by Balduzzi & Ghifary (2016). While
the motivation and constraints described in that work are different, Balduzzi & Ghifary (2016)’s
concepts of “learnware” and “firmware” parallel our discussion of convolution-like and pooling-like
subcomponents. As the use of a fully connected layer for recurrent connections violates the con-
straint of “strong typing”, all strongly-typed RNN architectures (including the T-RNN, T-GRU, and
T-LSTM) are also quasi-recurrent. However, some QRNN models (including those with attention
or skip-connections) are not “strongly typed”. In particular, a T-RNN differs from a QRNN as de-
scribed in this paper with filter size 1 and f -pooling only in the absence of an activation function
on z. Similarly, T-GRUs and T-LSTMs differ from QRNNs with filter size 2 and fo- or ifo-pooling
respectively in that they lack tanh on z and use tanh rather than sigmoid on o.

Another related sequence model is the query-reduction network introduced by Seo et al. (2016).
Such a network without its query component could be rewritten as a QRNN with filter size 1, while
the full QRN is similar to a single layer of the decoder component of our sequence-to-sequence
architecture.

The PixelCNN model (van den Oord et al., 2016a) was the first to tackle a sequence prediction prob-
lem (in particular, the computer vision equivalent of language modeling) using masked convolutions
in place of recurrent units. Like the QRNN, the PixelCNN architecture allows for highly parallel
computation whenever the whole input is available ahead of time (e.g., during training). In order to
enable conditional image generation (a setting similar to the QRNN encoder–decoder), the outputs
of the convolutions in a PixelCNN can be augmented with a term that depends on the encoder state,
while better generation performance was obtained by adding an elementwise gate to the model out-
put (van den Oord et al., 2016b). The PixelCNN, however, relies on depth and large filter sizes to
provide long-term context dependence; unlike the QRNN, the gating mechanism is not recurrent.

1Unpublished result from NIPS 2016 tutorial by Nal Kalchbrenner, given after the submission of this paper
(slides at https://drive.google.com/file/d/0B7jhGCaUwDJeZWZWUXJ4cktxVU0/view).
See Related Work for discussion.
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The QRNN encoder–decoder model shares the favorable parallelism and path-length properties ex-
hibited by the ByteNet (Kalchbrenner et al., 2016), a PixelCNN-like architecture for character-level
machine translation based on residual convolutions over binary trees. Their model was constructed
to achieve three desired properties: parallelism, linear-time computational complexity, and short
paths between any pair of words in order to better propagate gradient signals. While the ByteNet
outperforms the QRNN encoder–decoder by about five BLEU points on the IWSLT dataset, it is
unclear how much of this difference can be attributed to the overall ByteNet model architecture, as
opposed to the many other contributions of that paper, like residual multiplicative blocks or sub-
batch normalization.

The QRNN is also related to work in hybrid convolutional–recurrent models. Zhou et al. (2015)
apply CNNs at the word level to generate n-gram features used by an LSTM for text classification.
Xiao & Cho (2016) also tackle text classification by applying convolutions at the character level,
with a stride to reduce sequence length, then feeding these features into a bidirectional LSTM.
A similar approach was taken by Lee et al. (2016) for character-level machine translation. Their
model’s encoder uses a convolutional layer followed by max-pooling to reduce sequence length, a
four-layer highway network, and a bidirectional GRU. The parallelism of the convolutional, pooling,
and highway layers allows training speed comparable to subword-level models without hard-coded
text segmentation.

5 CONCLUSION

Intuitively, many aspects of the semantics of long sequences are context-invariant and can be com-
puted in parallel (e.g., convolutionally), but some aspects require long-distance context and must be
computed recurrently. Many existing neural network architectures either fail to take advantage of the
contextual information or fail to take advantage of the parallelism. QRNNs exploit both parallelism
and context, exhibiting advantages from both convolutional and recurrent neural networks. QRNNs
have better predictive accuracy than LSTM-based models of equal hidden size, even though they use
fewer parameters and run substantially faster. Our experiments show that the speed and accuracy
advantages remain consistent across tasks and at both word and character levels.

Extensions to both CNNs and RNNs are often directly applicable to the QRNN, while the model’s
hidden states are more interpretable than those of other recurrent architectures as its channels main-
tain their independence across timesteps. We believe that QRNNs can serve as a building block for
long-sequence tasks that were previously impractical with traditional RNNs.
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APPENDIX

BEAM SEARCH RANKING CRITERION

The modified log-probability ranking criterion we used in beam search for translation experiments
is:

log(Pcand) =
T + α

T
. . .

Ttrg + α

Ttrg

T∑
i=1

log(p(wi|w1 . . . wi−1)), (9)

where α is a length normalization parameter (Wu et al., 2016), wi is the ith output character, and
Ttrg is a “target length” equal to the source sentence length plus five characters. This reduces at
α = 0 to ordinary beam search with probabilities:

log(Pcand) =

T∑
i=1

log(p(wi|w1 . . . wi−1)), (10)

and at α = 1 to beam search with probabilities normalized by length (up to the target length):

log(Pcand) ∼
1

T

T∑
i=1

log(p(wi|w1 . . . wi−1)). (11)

Conveniently, this ranking criterion can be computed at intermediate beam-search timesteps, obvi-
ating the need to apply a separate reranking on complete hypotheses.

RESULTS ON COPY AND ADDITION TASKS

We take the addition task to mean sequence-to-sequence decimal addition of unaligned, variable-
length numbers (the hardest of several versions). An example of this task for maximum length 5
digits is “73952+9462”→“83414”. We train on ntrain randomly generated examples for up to 100
epochs with early stopping, and report the smallest model setup that achieves> 99% character-level
validation accuracy, or the best validation accuracy achieved by any model setup if none achieve
99%.

For ndigits = 5 and ntrain = 100000, the QRNN converges with models larger than 3 layers of 256
units, while in our experiments LSTMs require only 2 layers of 128 units. For ndigits = 10 and
ntrain = 100000, an LSTM reaches 98.5% with 3 layers of 1024 units, while the best QRNN model
(4 layers of 512 units) reaches only 95.0%.

The copy task is similarly implemented as sequence-to-sequence reconstruction of variable-length
decimal numbers. For 5 digits, an example is “23532”→“23532”. We train on 10000 randomly
generated examples for up to 100 epochs. For ndigits = 5, the QRNN converges with models larger
than 2 layers of 32 units or 1 layer of 256 units, while the LSTM requires only 1 layer of 32 units.
For ndigits = 10, the QRNN requires a model larger than 2 layers of 128 units while the LSTM
requires a model of at least 2 layers of 64 units or 1 layer of 256 units. For ndigits = 40, a QRNN
with 5 layers of 512 units reaches 98.0% while the best LSTM model, with 3 layers of 512 units,
only reaches 95.5%.

A deeper LSTM would likely need some kind of residual or highway connections to converge on
this task, while the deep QRNN converges relatively well despite our earlier experiences with 4-layer
QRNNs without dense connections not converging successfully on the sentiment task.
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