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ABSTRACT

Neural sequence models are widely used to model time-series data. Equally ubiq-
uitous is the usage of beam search (BS) as an approximate inference algorithm to
decode output sequences from these models. BS explores the search space in a
greedy left-right fashion retaining only the top B candidates. This tends to result
in sequences that differ only slightly from each other. Producing lists of nearly
identical sequences is not only computationally wasteful but also typically fails
to capture the inherent ambiguity of complex AI tasks. To overcome this prob-
lem, we propose Diverse Beam Search (DBS), an alternative to BS that decodes a
list of diverse outputs by optimizing a diversity-augmented objective. We observe
that our method not only improved diversity but also finds better top 1 solutions
by controlling for the exploration and exploitation of the search space. Moreover,
these gains are achieved with minimal computational or memory overhead com-
pared to beam search. To demonstrate the broad applicability of our method, we
present results on image captioning, machine translation, conversation and visual
question generation using both standard quantitative metrics and qualitative hu-
man studies. We find that our method consistently outperforms BS and previously
proposed techniques for diverse decoding from neural sequence models.

1 INTRODUCTION

In the last few years, Recurrent Neural Networks (RNNs), Long Short-Term Memory networks
(LSTMs) or more generally, neural sequence models have become the standard choice for modeling
time-series data for a wide range of applications including speech recognition (Graves et al., 2013),
machine translation (Bahdanau et al., 2014), conversation modeling (Vinyals & Le, 2015), image
and video captioning (Vinyals et al., 2015; Venugopalan et al., 2015), and visual question answering
(Antol et al., 2015). RNN based sequence generation architectures model the conditional probability,
Pr(y|x) of an output sequence y = (y1, . . . , yT ) given an input x (possibly also a sequence); where
the output tokens yt are from a finite vocabulary, V .

Inference in RNNs. Maximum a Posteriori (MAP) inference for RNNs is the task of finding the
most likely output sequence given the input. Since the number of possible sequences grows as
|V|T , exact inference is NP-hard – so, approximate inference algorithms like beam search (BS) are
commonly employed. BS is a heuristic graph-search algorithm that maintains the B top-scoring
partial sequences expanded in a greedy left-to-right fashion. Fig. 1 shows a sample BS search tree.

Lack of Diversity in BS. Despite the widespread usage of BS, it has long been understood that
solutions decoded by BS are generic and lacking in diversity (Finkel et al., 2006; Gimpel et al.,
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Beam Search

Diverse Beam Search

A steam engine train travelling down train tracks. 
A steam engine train travelling down tracks. 
A steam engine train travelling through a forest. 
A steam engine train travelling through a lush green forest. 
A steam engine train travelling through a lush green countryside
A train on a train track with a sky background. 

A steam engine travelling down train tracks.
A steam engine train travelling through a forest. 
An old steam engine train travelling down train tracks. 
An old steam engine train travelling through a forest. 
A black train is on the tracks in a wooded area. 
A black train is on the tracks in a rural area. 

Single engine train rolling down the tracks. 
A steam locomotive is blowing steam.

A locomotive drives along the tracks amongst trees and bushes.
An old fashion train with steam coming out of its pipe. A black and red train moving down a train track.

An engine is coming down the train track.
Ground Truth Captions

Figure 1: Comparing image captioning outputs decoded by BS (top) and our method, Diverse Beam Search
(middle) – we notice that BS captions are near-duplicates with similar shared paths in the search tree and
minor variations in the end. In contrast, DBS captions are significantly diverse and similar to the variability in
human-generated ground truth captions (bottom).

2013; Li et al., 2015; Li & Jurafsky, 2016). Comparing the human (bottom) and BS (top) generated
captions shown in Fig. 1 demonstrates this deficiency. While this behavior of BS is disadvantageous
for many reasons, we highlight the three most crucial ones here:

i) The production of near-identical beams make BS a computationally wasteful algorithm, with
essentially the same computation being repeated for no significant gain in performance.

ii) Due to loss-evaluation mismatch (i.e. improvements in posterior-probabilities not necessarily
corresponding to improvements in task-specific metrics), it is common practice to deliberately
throttle BS to become a poorer optimization algorithm by using reduced beam widths (Vinyals
et al., 2015; Karpathy & Fei-Fei, 2015; Ferraro et al., 2016). This treatment of an optimization
algorithm as a hyperparameter is not only intellectually dissatisfying but also has a significant
practical side-effect – it leads to the decoding of largely bland, generic, and “safe” outputs, e.g.
always saying “I don’t know” in conversation models (Kannan et al., 2016).

iii) Most importantly, lack of diversity in the decoded solutions is fundamentally crippling in AI
problems with significant ambiguity – e.g. there are multiple ways of describing an image or
responding in a conversation that are “correct” and it is important to capture this ambiguity by
finding several diverse plausible hypotheses.

Overview and Contributions. To address these shortcomings, we propose Diverse Beam Search
(DBS) – a general framework to decode a set of diverse sequences that can be used as an alternative
to BS. At a high level, DBS decodes diverse lists by dividing the given beam budget into groups and
enforcing diversity between groups of beams. Drawing from recent work in the probabilistic graph-
ical models literature on Diverse M-Best (DivMBest) MAP inference (Batra et al., 2012; Prasad
et al., 2014; Kirillov et al., 2015), we optimize an objective that consists of two terms – the sequence
likelihood under the model and a dissimilarity term that encourages beams across groups to differ.
This diversity-augmented model score is optimized in a doubly greedy manner – greedily optimizing
along both time (like BS) and groups (like DivMBest).

Our primary technical contribution is Diverse Beam Search, a doubly greedy approximate infer-
ence algorithm to decode diverse sequences from neural sequence models. We report results on
image captioning, machine translation, conversations and visual question generation to demonstrate
the broad applicability of DBS. Results show that DBS produces consistent improvements on both
task-specific oracle and other diversity-related metrics while maintaining run-time and memory re-
quirements similar to BS. We also evaluate human preferences between image captions generated by
BS or DBS. Further experiments show that DBS is robust over a wide range of its parameter values
and is capable of encoding various notions of diversity through different forms of the diversty term.

Overall, our algorithm is simple to implement and consistently outperforms BS in a wide range
of domains without sacrificing efficiency. Our implementation is publicly available at https:
//github.com/ashwinkalyan/dbs. Additionally, we provide an interactive demonstration
of DBS for image captioning at http://dbs.cloudcv.org.
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2 PRELIMINARIES: DECODING RNNS WITH BEAM SEARCH

We begin with a refresher on BS, before describing our generalization, Diverse Beam Search.
For notational convenience, let [n] denote the set of natural numbers from 1 to n and let v[n] =
[v1, . . . , vn]ᵀ index the first n elements of a vector v ∈ Rm.

The Decoding Problem. RNNs are trained to estimate the likelihood of sequences of tokens from a
finite dictionary V given an input x. The RNN updates its internal state and estimates the conditional
probability distribution over the next output given the input and all previous output tokens. We
denote the logarithm of this conditional probability distribution over all tokens at time t as θ(yt) =
log Pr(yt|yt−1, . . . , y1,x). To avoid notational clutter, we index θ(·) with a single variable yt, but
it should be clear that it depends on all previous outputs, y[t−1]. We write the log probability
of a partial solution (i.e. the sum of log probabilities of all tokens decoded so far) as Θ(y[t]) =∑
τ∈[t] θ(yτ ). The decoding problem is then the task of finding a sequence y that maximizes Θ(y).

As each output is conditioned on all the previous outputs, decoding the optimal length-T sequence in
this setting can be viewed as MAP inference on a T -order Markov chain with nodes corresponding
to output tokens at each time step. Not only does the size of the largest factor in such a graph grow
as |V|T , but computing these factors also requires repetitively evaluating the sequence model. Thus,
approximate algorithms are employed and the most prevalent method is beam search (BS).

Beam search is a heuristic search algorithm which stores the topB highest scoring partial candidates
at each time step; where B is known as the beam width. Let us denote the set of B solutions held
by BS at the start of time t as Y[t−1] = {y1,[t−1], . . . ,yB,[t−1]}. At each time step, BS considers all
possible single token extensions of these beams given by the set Yt = Y[t−1] × V and retains the B
highest scoring extensions. More formally, at each step the beams are updated as

Y[t] = argmax
y1,[t],...,yB,[t]∈Yt

∑
b∈[B]

Θ(yb,[t]) s.t. yi,[t] 6= yj,[t] ∀i 6= j. (1)

The above objective can be trivially maximized by sorting all B × |V| members of Yt by their log
probabilities and selecting the top B. This process is repeated until time T and the most likely
sequence is selected by ranking the B complete beams according to their log probabilities.

While this method allows for multiple sequences to be explored in parallel, most completions tend to
stem from a single highly valued beam – resulting in outputs that are often only minor perturbations
of a single sequence (and typically only towards the end of the sequences).

3 DIVERSE BEAM SEARCH: FORMULATION AND ALGORITHM

To overcome this, we augment the objective in Eq. 1 with a dissimilarity term ∆(Y[t]) that measures
the diversity between candidate sequences, assigning a penalty ∆(Y[t])[c] to each possible sequence
completion c ∈ V . Jointly optimizing this augmented objective for allB candidates at each time step
is intractable as the number of possible solutions grows with |V|B (easily 1060 for typical language
modeling settings). To avoid this, we opt for a greedy procedure that divides the beam budget B
into G groups and promotes diversity between these groups. The approximation is doubly greedy
– across both time and groups – so ∆(Y[t]) is constant with respect to other groups and we can
sequentially optimize each group using regular BS. We now explain the specifics of our approach.

Diverse Beam Search. As joint optimization is intractable, we form G smaller groups of beams
and optimize them sequentially. Consider a partition of the set of beams Y[t] into G smaller sets
Y g[t], g∈[G] of B′ = B/G beams each (we pick G to divide B). In the example shown in Fig. 2,
B = 6 beams are divided into G = 3 differently colored groups containing B′ = 2 beams each.

Considering diversity only between groups, reduces the search space at each time step; however,
inference remains intractable. To enforce diversity efficiently, we consider a greedy strategy that
steps each group forward in time sequentially while considering the others fixed. Each group can
then evaluate the diversity term with respect to the fixed extensions of previous groups, returning the
search space to B′ × |V|. In the snapshot shown in Fig. 2, the third group is being stepped forward
at time step t = 4 and the previous groups have already been completed. With this staggered beam-
front, the diversity term of the third group can be computed using these completions. Here we use
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a flock of birds flying over

a flock of birds flying in

birds flying over the water

birds flying over an ocean

several birds are

several birds fly

Modify scores to include diversity:
θ(‘the′) + λ∆(‘birds′, ‘the′, ‘an′)[‘the′]...
θ(‘over′) + λ∆(‘birds′, ‘the′, ‘an′)[‘over′]

?

?

a flock of birds flying over the ocean

a flock of birds flying over a beach

birds flying over the water in the sun

birds flying the water near a mountain

several birds are flying over a body of water

several birds flying over a body of water

time t

Figure 2: Diverse beam search operates left-to-right through time and top to bottom through groups. Diversity
between groups is combined with joint log probabilities, allowing continuations to be found efficiently. The
resulting outputs are more diverse than for standard approaches.

hamming diversity, which adds diversity penalty -1 for each appearance of a possible extension word
at the same time step in a previous group – ‘birds’, ‘the’, and ‘an’ in the example – and 0 to all other
possible completions. We discuss other forms for the diversity function in Section 5.1.

As we optimize each group with the previous groups fixed, extending group g at time t amounts to
a standard BS using dissimilarity augmented log probabilities and can be written as:

Y g[t] = argmax
yg
1,[t]

,...,yg
B′,[t]∈Y

g
t

∑
b∈[B′]

Θ
(
ygb,[t]

)
+ λ∆

(
g−1⋃
h=1

Y h[t]

)
[ygb,t], (2)

s.t. λ ≥ 0, ygi,[t] 6= ygj,[t]∀i 6= j

where λ is scalar controlling the strength of the diversity term. The full procedure to obtain diverse
sequences using our method, Diverse Beam Search (DBS), is presented in Algorithm 1. It consists
of two main steps for each group at each time step –

1) augmenting the log probabilities of each possible extension with the diversity term computed
from previously advanced groups (Algorithm 1, Line 5) and,

2) running one step of a smaller BS with B′ beams using the augmented log probabilities to extend
the current group (Algorithm 1, Line 6).

Note that the first group (g = 1) is not ‘conditioned’ on other groups during optimization, so our
method is guaranteed to perform at least as well as a beam search of size B′.

Algorithm 1: Diverse Beam Search
1 Perform a diverse beam search with G groups using a beam width of B
2 for t = 1, . . . T do

// perform one step of beam search for first group without diversity

3 Y 1
[t] ← argmax(y1

1,[t]
,...,y1

B′,[t])

∑
b∈[B′] Θ(y1

b,[t])

4 for g = 2, . . . G do
// augment log probabilities with diversity penalty

5 Θ(ygb,[t])← Θ(ygb,[t]) + λ∆(
⋃g−1
h=1 Y

h
[t])[y

g
b,t] b ∈ [B′],ygb,[t] ∈ Y

g
t and λ > 0

// perform one step of beam search for the group
6 Y g[t] ← argmax(

yg
1,[t]

,...,yg
B′,[t]

)∑
b∈[B′] Θ(ygb,[t]) s.t. yi,[t] 6= yj,[t] ∀i 6= j

7 Return set of B solutions, Y[T ] =
⋃G
g=1 Y

g
[T ]

4 RELATED WORK

Diverse M-Best Lists. The task of generating diverse structured outputs from probabilistic models
has been studied extensively (Park & Ramanan, 2011; Batra et al., 2012; Kirillov et al., 2015; Prasad
et al., 2014). Batra et al. (2012) formalized this task for Markov Random Fields as the DivMBest
problem and presented a greedy approach which solves for outputs iteratively, conditioning on pre-
vious solutions to induce diversity. Kirillov et al. (2015) show how these solutions can be found
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jointly (non-greedily) for certain kinds of energy functions. The techniques developed by Kirillov
are not directly applicable to decoding from RNNs, which do not satisfy the assumptions made.

Most related to our proposed approach is the work of Gimpel et al. (2013), who applied DivMBest
to machine translation using beam search as a black-box inference algorithm. Specifically, in this
approach, DivMBest knows nothing about the inner-workings of BS and simply makesB sequential
calls to BS to generate B diverse solutions. This approach is extremely wasteful because BS is
called B times, run from scratch every time, and even though each call to BS produces B solutions,
only one solution is kept by DivMBest. In contrast, DBS avoids these shortcomings by integrating
diversity within BS such that no beams are discarded. By running multiple beam searches in parallel
and at staggered time offsets, we obtain large time savings making our method comparable to a
single run of classical BS. One potential disadvantage of our method w.r.t. Gimpel et al. (2013) is
that sentence-level diversity metrics cannot be incorporated in DBS since no group is complete when
diversity is encouraged. However, as observed empirically by us and Li et al. (2015), initial words
tend to disproportionally impact the diversity of the resultant sequences – suggesting that later words
may not be important for diverse inference.

Diverse Decoding for RNNs. Efforts have been made by Li et al. (2015) and Li & Jurafsky (2016)
to produce diverse decodings from recurrent models for conversation modeling and machine trans-
lation. Both of these works propose new heuristics for creating diverse M-Best lists and employ
mutual information to re-rank lists of sequences. The latter achieves a goal separate from ours,
which is simply to re-rank diverse lists.

Li & Jurafsky (2016) proposes a BS diversification heuristic that discourages beams from sharing
common roots, implicitly resulting in diverse lists. Introducing diversity through a modified objec-
tive (as in DBS) rather than via a procedural heuristic provides easier generalization to incorporate
different notions of diversity and control the exploration-exploitation trade-off as detailed in Section
5.1. Furthermore, we find that DBS outperforms the method of Li & Jurafsky (2016).

Li et al. (2015) introduced a novel decoding objective that maximizes mutual information between
inputs and predicted outputs to penalize generic sequences. This operates on a principle orthogo-
nal and complementary to DBS and Li & Jurafsky (2016). It works by penalizing utterances that
are generally more frequent (diversity independent of input) rather than penalizing utterances that
are similar to other utterances produced for the same input (diversity conditioned on input). Fur-
thermore, the input-independent approach requires training a new language model for the target
language while DBS just requires a diversity function ∆. Combination of these complementary
techniques is left as interesting future work.

In other recent work, Wu et al. (2016) modify the beam search objective by introducing length-
normalization to favor longer sequences and a coverage penalty that favors sequences that account
for the complete input sequence. While the coverage term does not generalize to all neural sequence
models, the length-normalization term can be implemented by modifying the joint-log-probability
of each sequence. Although the goal of this method is not to produce diverse lists and hence not
directly comparable, it is a complementary technique that can be used in conjunction with our diverse
decoding method.

5 EXPERIMENTS

In this section, we evaluate our approach on image captioning, machine translation, conversation and
visual question generation tasks to demonstrate both its effectiveness against baselines and its gen-
eral applicability to any inference currently supported by beam search. We also analyze the effects
of DBS parameters, explore human preferences for diversity, and discuss diversity’s importance in
explaining complex images. We first explain the baselines and evaluations used in this paper.

Baselines & Metrics. Apart from classical beam search, we compare DBS with the diverse decoding
method proposed in Li & Jurafsky (2016). We also compare against two other complementary
decoding techniques proposed in Li et al. (2015) and Wu et al. (2016). Note that these two techniques
are not directly comparable with DBS since the goal is not to produce diverse lists. We now provide
a brief description of the comparisons mentioned:

- Li & Jurafsky (2016): modify BS by introducing an intra-sibling rank. For each partial solution,
the set of |V| beam extensions are sorted and assigned intra-sibling ranks k ∈ [|V|] in order
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of decreasing log probabilities, θt(yt). The log probability of an extension is then reduced in
proportion to its rank, and continuations are re-sorted under these modified log probabilities to
select the top B ‘diverse’ beam extensions.

- Li et al. (2015): train an additional unconditioned target sequence model U(y) and perform BS
decoding on an augmented objective P (y|x)− λU(y), penalizing input-independent decodings.

- Wu et al. (2016) modify the beam-search objective by introducing length-normalization that fa-
vors longer sequences. The joint log-probability of completed sequences is divided by a factor,
(5 + |y|)α/(5 + 1)α, where α ∈ [0, 1].

We compare to our own implementations of these methods as none are publicly available. Both Li
& Jurafsky (2016) and Li et al. (2015) develop and use re-rankers to pick a single solution from
the generated lists. Since we are interested in evaluating the quality of the generated lists and in
isolating the gains due to diverse decoding, we do not implement any re-rankers, simply sorting by
log-probability.

We evaluate the performance of the generated lists using the following two metrics:

- Oracle Accuracy: Oracle or top k accuracy w.r.t. some task-specific metric, such as BLEU (Pap-
ineni et al., 2002) or SPICE (Anderson et al., 2016), is the maximum value of the metric achieved
over a list of k potential solutions. Oracle accuracy is an upper bound on the performance of any
re-ranking strategy and thus measures the maximum potential of a set of outputs.

- Diversity Statistics: We count the number of distinct n-grams present in the list of generated
outputs. Similar to Li et al. (2015), we divide these counts by the total number of words generated
to bias against long sentences.

Simultaneous improvements in both metrics indicate that output sequences have increased diversity
without sacrificing fluency and correctness with respect to target tasks.

5.1 SENSITIVITY ANALYSIS AND EFFECT OF DIVERSITY FUNCTIONS

Here we discuss the impact of the number of groups, strength of diversity , and various forms of
diversity for language models. Note that the parameters of DBS (and other baselines) were tuned
on a held-out validation set for each experiment. The supplement provides further discussion and
experimental details.

Number of Groups (G). Setting G=B allows for the maximum exploration of the search space,
while settingG=1 reduces DBS to BS, resulting in increased exploitation of the search-space around
the 1-best decoding. Empirically, we find that maximum exploration correlates with improved oracle
accuracy and hence use G=B to report results unless mentioned otherwise. See the supplement for
a comparison and more details.

Diversity Strength (λ). The diversity strength λ specifies the trade-off between the model score and
diversity terms. As expected, we find that a higher value of λ produces a more diverse list; however,
very large values of λ can overpower model score and result in grammatically incorrect outputs. We
set λ via grid search over a range of values to maximize oracle accuracies achieved on the validation
set. We find a wide range of λ values (0.2 to 0.8) work well for most tasks and datasets.

Choice of Diversity Function (∆). In Section 3, we defined ∆(·) as a function over a set of partial
solutions that outputs a vector of dissimilarity scores for all possible beam completions. Assuming
that each of the previous groups influences the completion of the current group independently, we
can simplify ∆(

⋃g−1
h=1 Y

h
[t]) as the sum of each group’s contributions as

∑g−1
h=1 ∆(Y h[t]). In Section

3, we illustrated a simple hamming diversity of this form that penalizes selection of tokens propor-
tionally to the number of time it was used in previous groups. However, this factorized diversity
term can take various forms in our model – with hamming diversity being the simplest. For lan-
guage models, we study the effect of using cumulative (i.e. considering all past time steps), n-gram
and neural embedding based diversity functions. Each of these forms encode differing notions of
diversity and result in DBS outperforming BS. We find simple hamming distance to be effective and
report results based on this diversity measure unless otherwise specified. More details about these
forms of the diversity term are provided in the supplementary.
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5.2 IMAGE CAPTIONING

Dataset and Models. We evaluate on two datasets – COCO (Lin et al., 2014) and PASCAL-50S
(Vedantam et al., 2015). We use the public splits as in Karpathy & Fei-Fei (2015) for COCO.
PASCAL-50S is used only for testing (with 200 held out images used to tune hyperparameters). We
train a captioning model (Vinyals et al., 2015) using the neuraltalk21 code repository.

Results. Table 1 shows Oracle (top k) SPICE for different values of k. DBS consistently outper-
forms BS and Li & Jurafsky (2016) on both datasets. We observe that gains on PASCAL-50S are
more pronounced (7.14% and 4.65% SPICE@20 improvements over BS and Li & Jurafsky (2016))
than COCO. This suggests diverse predictions are especially advantageous when there is a mismatch
between training and testing sets, implying DBS may be better suited for real-world applications.

Table 1 also shows the number of distinct n-grams produced by different techniques. Our method
produces significantly more distinct n-grams (almost 300% increase in the number of 4-grams pro-
duced) as compared to BS. We also note that our method tends to produce slightly longer captions
compared on average. Moreover, on the PASCAL-50S test split we observe that DBS finds more
likely top-1 solutions on average – DBS obtains an average maximum log probability of -6.53 op-
posed to -6.91 found by BS of the same beam width. This empirical evidence suggests that using
DBS as a replacement to BS may lead to lower inference approximation error.

Table 1: Oracle accuracy and distinct n-grams on COCO and PASCAL-50S datasets for image captioning at
B = 20. While we report SPICE, we observe similar trends in other metrics (reported in supplement).

Dataset Method Oracle Accuracy (SPICE) Diversity Statistics

@1 @5 @10 @20 distinct-1 distinct-2 distinct-3 distinct-4

Beam Search 4.933 7.046 7.949 8.747 0.12 0.57 1.35 2.50
Li & Jurafsky (2016) 5.083 7.248 8.096 8.917 0.15 0.97 2.43 5.31

PASCAL-50S DBS 5.357 7.357 8.269 9.293 0.18 1.26 3.67 7.33

Wu et al. (2016) 5.301 7.322 8.236 8.832 0.16 1.10 3.16 6.45
Li et al. (2015) 5.129 7.175 8.168 8.560 0.13 1.15 3.58 8.42

Beam Search 16.278 22.962 25.145 27.343 0.40 1.51 3.25 5.67
Li & Jurafsky (2016) 16.351 22.715 25.234 27.591 0.54 2.40 5.69 8.94

COCO DBS 16.783 23.081 26.088 28.096 0.56 2.96 7.38 13.44

Wu et al. (2016) 16.642 22.643 25.437 27.783 0.54 2.42 6.01 7.08
Li et al. (2015) 16.749 23.271 26.104 27.946 0.42 1.37 3.46 6.10

Human Studies. To evaluate human preference between captions generated by DBS and BS, we
perform a human study via Amazon Mechanical Turk using all 1000 images of PASCAL-50S. For
each image, both DBS and standard BS captions are shown to 5 different users. They are then asked
– “Which of the two robots understands the image better?” In this forced-choice test, DBS captions
were preferred over BS 60% of the time by human annotators.

Is diversity always needed? While these results show that diverse outputs are important for systems
that interact with users, is diversity always beneficial? While images with many objects (e.g., a park
or a living room) can be described in multiple ways, the same is not true when there are few objects
(e.g., a close up of a cat or a selfie). This notion is studied by Ionescu et al. (2016), which defines
a “difficulty score”: the human response time for solving a visual search task. On the PASCAL-
50S dataset, we observe a positive correlation (ρ = 0.73) between difficulty scores and humans
preferring DBS to BS. Moreover, while DBS is generally preferred by humans for ‘difficult’ images,
both are about equally preferred on ‘easier’ images. Details are provided in the supplement.

5.3 MACHINE TRANSLATION

We use the WMT’14 dataset containing 4.5M sentences to train our machine translation models.
We train stacking LSTM models as detailed in Luong et al. (2015), consisting of 4 layers and 1024-
dimensional hidden states. While decoding sentences, we employ the same strategy to replace UNK
tokens. We train our models using the publicly available seq2seq-attn2 code repository. We re-
port results on news-test-2013 and news-test-2014 and use the news-test-2012 to tune the parameters
of DBS. We use sentence level BLEU scores to compute oracle metrics and report distinct n-grams

1https://github.com/karpathy/neuraltalk2
2https://github.com/harvardnlp/seq2seq-attn
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similar to image captioning. Results are shown in Table 2 and we again find that DBS consistently
outperforms all baselines.

Table 2: Quantitative results on English-German translation on the newstest-2013 and newstest-2014 datasets
combined (at B = 20).

Method Oracle Accuracy (BLEU-4) Diversity Statistics

@1 @5 @10 @20 distinct-1 distinct-2 distinct-3 distinct-4

Beam Search 20.5 22.4 23.8 24.2 0.04 0.75 2.10 3.23
Li & Jurafsky (2016) 20.7 22.6 24.0 24.3 0.04 0.81 2.92 4.61

DBS 20.8 22.9 24.4 24.8 0.06 0.95 3.67 5.54
Wu et al. (2016) 20.6 22.6 24.3 24.6 0.05 0.88 2.83 4.50
Li et al. (2015) 20.7 23.1 24.4 24.6 0.04 0.86 2.76 4.31

5.4 DIALOG GENERATION

Dialog generation is a task that is inherently diverse as there are multiple valid ways to respond to a
statement. We train a seq2seq model consisting of LSTMs as in Vinyals & Le (2015) on the Cornell
Movie Dialogs Corpus (Danescu-Niculescu-Mizil & Lee, 2011) using the neuralconvo3 reposi-
tory. The training dataset consists of 222,182 conversational exchanges between movie characters.
Since automatic evaluation of dialog generation responses is an open research problem with exist-
ing metrics being poorly correlated with human judgement (Liu et al., 2016), we show qualitative
results to demonstrate the effectiveness of DBS. Table 3 compares BS and DBS at B=3.

Table 3: Qualitative examples of dialog generation comparing best-first search, BS and DBS
Prompt Beam Search Diverse Beam Search

Why do you want to be the president?
I don’t know. I don’t know.

I don’t know... Because you know!
I don’t know, but I am the best Because, I have another life.

It’s such a beautiful day!
I know! I know.
It’s true. Well...

Yeah. That’s not true, honey.

What’s your name?
Jacob. Jacob.

Berger, my man. Berger, darling
Berger, Thomas. My mother used to hum that to me.

5.5 VISUAL QUESTION GENERATION

We also report results on Visual Question Generation (VQG) (Mostafazadeh et al., 2016), where
a model is trained to produce questions about an image. Generating visually focused questions is
interesting because it requires reasoning about multiple problems that are central to vision – e.g.,
object attributes, relationships between objects, and natural language. Furthermore, many questions
could make sense for one image, so it is important that lists of generated questions be diverse.

We use the VQA dataset (Antol et al., 2015) to train a model similar to image captioning architec-
tures. Instead of captions, the training set now consists of 3 questions per image. Similar to previous
results, using beam search to sample outputs results in similarly worded questions (see Fig. 3) and
DBS brings out new details captured by the model. Counting the number of types of questions gen-
erated (as defined by Antol et al. (2015)) allows us to measure this diversity. We observe that the
number of question types generated per image increases from 2.3 for BS to 3.7 for DBS (at B = 6).

6 CONCLUSION

Beam search is widely a used approximate inference algorithm for decoding sequences from neural
sequence models; however, it suffers from a lack of diversity. Producing multiple highly similar
and generic outputs is not only wasteful in terms of computation but also detrimental for tasks with

3https://github.com/macournoyer/neuralconvo
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Input Image Beam Search Diverse Beam Search
What sport is this? What color is the man’s shirt?

What sport is being played? What is the man holding?
What color is the man’s shirt? What is the man wearing on his head?

What color is the ball? Is the man wearing a helmet
What is the man wearing? What is the man in the white shirt doing?

What color is the man’s shorts? Is the man in the background wearing a helmet?

How many zebras are there? How many zebras are there?
How many zebras are in the photo? How many zebras are in the photo?
How many zebras are in the picture? What is the zebra doing?

How many animals are there? What color is the grass?
How many zebras are shown? Is the zebra eating?

What is the zebra doing? Is the zebra in the wild?

Figure 3: Qualitative results on Visual Question Generation. DBS generates questions that are non-generic and
belong to different question types.

inherent ambiguity like many involving language. In this work, we modify Beam Search with a
diversity-augmented sequence decoding objective to produce Diverse Beam Search. We develop a
‘doubly greedy’ approximate algorithm to minimize this objective and produce diverse sequence
decodings. Our method consistently outperforms beam search and other baselines across all our
experiments without extra computation or task-specific overhead. DBS is task-agnostic and can be
applied to any case where BS is used, which we demonstrate in multiple domains. Our implementa-
tion available at https://github.com/ashwinkalyan/dbs.
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APPENDIX

SENSIVITY STUDIES

Number of Groups. Fig. 4 presents snapshots of the transition from BS to DBS at B = 6 and
G = {1, 3, 6}. As beam width moves from 1 to G, the exploration of the method increases resulting
in more diverse lists.

Figure 4: Effect of increasing the number of groups G. The beams that belong to the same group are colored
similarly. Recall that diversity is only enforced across groups such that G = 1 corresponds to classical BS.

Diversity Strength. As noted in Section 5.1, our method is robust to a wide range of values of the
diversity strength (λ). Fig. 5a shows a grid search of λ for image-captioning on the PASCAL-50S
dataset.

Choice of Diversity Function. The diversity function can take various forms ranging from sim-
ple hamming diversity to neural embedding based diversity. We discuss some forms for language
modelling below:

- Hamming Diversity. This form penalizes the selection of tokens used in previous groups
proportional to the number of times it was selected before.

- Cumulative Diversity. Once two sequences have diverged sufficiently, it seems unnecessary and
perhaps harmful to restrict that they cannot use the same words at the same time. To encode
this ‘backing-off’ of the diversity penalty we introduce cumulative diversity which keeps a
count of identical words used at every time step, indicative of overall dissimilarity. Specifically,
∆(Y h[t])[y

g
[t]] = exp{−(

∑
τ∈t

∑
b∈B′ I[y

h
b,τ 6=y

g
b,τ ])/Γ} where Γ is a temperature parameter control-

ling the strength of the cumulative diversity term and I[·] is the indicator function.

- n-gram Diversity. The current group is penalized for producing the same n-grams as previous
groups, regardless of alignment in time – similar to Gimpel et al. (2013). This is proportional to
the number of times each n-gram in a candidate occurred in previous groups. Unlike hamming
diversity, n-grams capture higher order structures in the sequences.

- Neural-embedding Diversity. While all the previous diversity functions discussed above perform
exact matches, neural embeddings such as word2vec (Mikolov et al., 2013) can penalize semanti-
cally similar words like synonyms. This is incorporated in each of the previous diversity functions
by replacing the hamming similarity with a soft version obtained by computing the cosine simi-
larity between word2vec representations. When using with n-gram diversity, the representation of
the n-gram is obtained by summing the vectors of the constituent words.

Each of these various forms encode different notions of diversity. Hamming diversity ensures dif-
ferent words are used at different times, but can be circumvented by small changes in sequence
alignment. While n-gram diversity captures higher order statistics, it ignores sentence alignment.
Neural-embedding based encodings can be seen as a semantic blurring of either the hamming or
n-gram metrics, with word2vec representation similarity propagating diversity penalties not only to
exact matches but also to close synonyms. Fig. 5b shows the oracle performace of various forms of
the diversity function described in Section 5.1. We find that using any of the above functions help
outperform BS in the tasks we examine; hamming diversity achieves the best oracle performance
despite its simplicity.

IMAGE CAPTIONING EVALUATION

While we report oracle SPICE values in the paper, our method consistently outperforms base-
lines and classical BS on other standard metrics such as CIDEr (Table 4), METEOR (Table 5) and
ROUGE (Table 6). We provide these additional results in this section.
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(a) Grid search of diversity strength parameter (b) Effect of multiple forms for the diversity function

Figure 5: Fig. 5a shows the results of a grid search of the diversity strength (λ) parameter of DBS on the
validation split of PASCAL 50S dataset. We observe that it is robust for a wide range of values. Fig. 5b
compares the performance of multiple forms for the diversity function (∆). While naïve diversity performs the
best, other forms are comparable while being better than BS.

Table 4: CIDEr Oracle accuracy on COCO and PASCAL-50S datasets for image captioning at B = 20.
Dataset Method Oracle Accuracy (CIDEr)

@1 @5 @10 @20

Beam Search 53.79 83.94 96.70 107.63
Li & Jurafsky (2016) 54.61 85.21 99.80 110.64

PASCAL-50S DBS 57.82 89.38 103.75 113.43

Wu et al. (2016) 47.77 72.12 84.64 105.66
Li et al. (2015) 49.80 81.35 96.87 107.37

Beam Search 87.27 121.74 133.46 140.98
Li & Jurafsky (2016) 91.42 111.33 116.94 119.14

COCO DBS 86.88 123.38 135.68 142.88

Wu et al. (2016) 87.54 122.06 133.21 139.43
Li et al. (2015) 88.18 124.20 138.65 150.06

Table 5: METEOR Oracle accuracy on COCO and PASCAL-50S datasets for image captioning at B = 20.
Dataset Method Oracle Accuracy (METEOR)

@1 @5 @10 @20

Beam Search 12.24 16.74 19.14 21.22
Li & Jurafsky (2016) 13.52 17.65 19.91 21.76

PASCAL-50S DBS 13.71 18.45 20.67 22.83

Wu et al. (2016) 13.34 17.20 18.98 21.13
Li et al. (2015) 13.04 17.92 19.73 22.32

Beam Search 24.81 28.56 30.59 31.87
Li & Jurafsky (2016) 24.88 29.10 31.44 33.56

COCO DBS 25.04 29.67 33.25 35.42

Wu et al. (2016) 24.82 28.92 31.53 34.14
Li et al. (2015) 24.93 30.11 32.34 34.88

Modified SPICE evaluation. To measure both the quality and the diversity of the generated cap-
tions, we compute SPICE-score by comparing the graph union of all the generated hypotheses with
the ground truth scene graph. This measure rewards all the relevant relations decoded as against ora-
cle accuracy that compares to relevant relations present only in the top-scoring caption. We observe
that DBS outperforms both baselines under this measure with a score of 18.345 as against a score of
16.988 (beam search) and 17.452 (Li & Jurafsky, 2016).
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Table 6: ROUGE Oracle accuracy on COCO and PASCAL-50S datasets for image captioning at B = 20.
Dataset Method Oracle Accuracy (ROUGE-L)

@1 @5 @10 @20

Beam Search 45.23 56.12 59.61 62.04
Li & Jurafsky (2016) 46.21 56.17 60.15 62.95

PASCAL-50S DBS 46.24 56.90 60.35 63.02

Wu et al. (2016) 43.73 52.29 56.49 61.65
Li et al. (2015) 44.12 54.67 57.34 60.11

Beam Search 52.46 58.43 62.56 65.14
Li & Jurafsky (2016) 52.87 59.89 63.45 65.42

COCO DBS 53.04 60.89 64.24 67.72

Wu et al. (2016) 52.13 58.26 62.89 65.77
Li et al. (2015) 53.10 59.32 63.04 66.19

HUMAN STUDIES

For image-captioning, we conduct a human preference study between BS and DBS captions as
explained in Section 5. A screen shot of the interface used to collect human preferences for captions
generated using DBS and BS is presented in Fig. 6. The lists were shuffled to guard the task from
being gamed by a turker.

Table 7: Frequency table for image difficulty and human preference for DBS captions on PASCAL50S dataset

difficulty score # images % images DBS
bin range was preffered

≤ µ− σ 481 50.51%
[µ−σ, µ+σ] 409 69.92%
≥ µ+ σ 110 83.63%

As mentioned in Section 5, we observe that difficulty score of an image and human preference for
DBS captions are positively correlated. The dataset contains more images that are less difficulty
and so, we analyze the correlation by dividing the data into three bins. For each bin, we report the
% of images for which DBS captions were preferred after a majority vote (i.e. at least 3/5 turkers
voted in favor of DBS) in Table 7. At low difficulty scores consisting mostly of iconic images – one
might expect that BS would be preferred more often than chance. However, mismatch between the
statistics of the training and testing data results in a better performance of DBS. Some examples for
this case are provided in Fig. 7. More general qualitative examples are provided in Fig. 8.

DISCUSSION

Are longer sentences better? Many recent works propose a scoring or a ranking objective that
depends on the sequence length. These favor longer sequences, reasoning that they tend to have
more details and resulting in improved accuracies. We measure the correlation between length of
a sequence and its accuracy (here, SPICE) and observe insignificant correlation between SPICE
and sequence length. On the PASCAL-50S dataset, we find that BS and DBS have are negatively
correlated (ρ = −0.003 and ρ = −0.015 respectively), while (Li & Jurafsky, 2016) is correlated
positively (ρ = 0.002). Length is not correlated with performance in this case.

Efficient utilization of beam budget. In this experiment, we emperically show that DBS makes
efficient use of the beam budget in exploring the search space for better solutions. Fig. 9 shows the
variation of oracle SPICE (@B) with the beam size. At really high beam widths, all decoding tech-
niques achieve similar oracle accuracies. However, diverse decoding techniques like DBS achieve
the same oracle at much lower beam widths. Hence, DBS not only produces sequence lists that are
significantly different but also efficiently utilizes the beam budget to decode better solutions.
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Figure 6: Screen-shot of the interface used to perform human studies
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Figure 7: For images with low difficulty score, BS captions are preferred to DBS – as show in the first figure.
However, we observe that DBS captions perform better when there is a mismatch between the statistics of the
testing and training sets. Interesting captions are colored in blue for readability.
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Figure 8: For images with a high difficulty score, captions produced by DBS are preferred to BS. Interesting
captions are colored in blue for readability.
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(a) Oracle SPICE (@B) vs B (b) Oracle METEOR (@B) vs B

Figure 9: As the number of beams increases, all decoding methods tend to achieve about the same oracle
accuracy. However, diverse decoding techniques like DBS utilize the beam budget efficiently achieving higher
oracle accuracies at much lower beam budgets.
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