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ABSTRACT

We propose a method to optimize the representation and distinguishability of
samples from two probability distributions, by maximizing the estimated power of
a statistical test based on the maximum mean discrepancy (MMD). This optimized
MMD is applied to the setting of unsupervised learning by generative adversarial
networks (GAN), in which a model attempts to generate realistic samples, and a
discriminator attempts to tell these apart from data samples. In this context, the
MMD may be used in two roles: first, as a discriminator, either directly on the
samples, or on features of the samples. Second, the MMD can be used to evaluate
the performance of a generative model, by testing the model’s samples against a
reference data set. In the latter role, the optimized MMD is particularly helpful, as
it gives an interpretable indication of how the model and data distributions differ,
even in cases where individual model samples are not easily distinguished either
by eye or by classifier.
This post-publication revision corrects some errors in constants of the estimator
(5). The appendix deriving the estimator has been replaced by Sutherland (2019).

1 INTRODUCTION

Many problems in testing and learning require evaluating distribution similarity in high dimensions,
and on structured data such as images or audio. When a complex generative model is learned, it is
necessary to provide feedback on the quality of the samples produced. The generative adversarial
network (Goodfellow et al., 2014; Gutmann et al., 2014) is a popular method for training generative
models, where a rival discriminator attempts to distinguish model samples from reference data.
Training of the generator and discriminator is interleaved, such that a saddle point is eventually
reached in the joint loss.

A useful insight into the behavior of GANs is to note that when the discriminator is properly trained,
the generator is tasked with minimizing the Jensen-Shannon divergence measure between the model
and data distributions. When the model is insufficiently powerful to perfectly simulate the test data,
as in most nontrivial settings, the choice of divergence measure is especially crucial: it determines
which compromises will be made. A range of adversarial divergences were proposed by Huszar
(2015), using a weight to interpolate between KL, inverse KL, and Jensen-Shannon. This weight
may be interpreted as a prior probability of observing samples from the model or the real world:
when there is a greater probability of model samples, we approach reverse KL and the model seeks
out modes of the data distribution. When there is a greater probability of drawing from the data
distribution, the model approaches the KL divergence, and tries to cover the full support of the data,
at the expense of producing some samples in low probability regions.

This insight was further developed by Nowozin et al. (2016), who showed that a much broader range
of f -divergences can be learned for the discriminator in adversarial models, based on the variational
formulation of f -divergences of Nguyen et al. (2008). For a given f -divergence, the model learns the
composition of the density ratio (of data to model density) with the derivative of f , by comparing
generator and data samples. This provides a lower bound on the “true” divergence that would be
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obtained if the density ratio were perfectly known. In the event that the model is in a smaller class
than the true data distribution, this broader family of divergences implements a variety of different
approximations: some focus on individual modes of the true sample density, others try to cover the
support. It is straightforward to visualize these properties in one or two dimensions (Nowozin et al.,
2016, Figure 5), but in higher dimensions it becomes difficult to anticipate or visualize the behavior
of these various divergences.

An alternative family of divergences are the integral probability metrics (Müller, 1997), which find a
witness function to distinguish samples from P and Q.1 A popular such class of witness functions
in GANs is the maximum mean discrepancy (Gretton et al., 2012a), simultaneously proposed by
Dziugaite et al. (2015) and Li et al. (2015). The architecture used in these two approaches is actually
quite different: Dziugaite et al. use the MMD as a discriminator directly at the level of the generated
and test images, whereas Li et al. apply the MMD on input features learned from an autoencoder, and
share the decoding layers of the autoencoder with the generator network (see their Figure 1(b)). The
generated samples have better visual quality in the latter method, but it becomes difficult to analyze
and interpret the algorithm given the interplay between the generator and discriminator networks.
In a related approach, Salimans et al. (2016) propose to use feature matching, where the generator
is tasked with minimizing the squared distance between expected discriminator features under the
model and data distributions, thus retaining the adversarial setting.

In light of these varied approaches to discriminator training, it is important to be able to evaluate
quality of samples from a generator against reference data. An approach used in several studies is to
obtain a Parzen window estimate of the density and compute the log-likelhiood (Goodfellow et al.,
2014; Nowozin et al., 2016; Breuleux et al., 2011). Unfortunately, density estimates in such high
dimensions are known to be very unreliable both in theory (Wasserman, 2006, Ch. 6) and in practice
(Theis et al., 2016). We can instead ask humans to evaluate the generated images (Denton et al., 2015;
Salimans et al., 2016), but while evaluators should be able to distinguish cases where the samples are
over-dispersed (support of the model is too large), it may be more difficult to find under-dispersed
samples (too concentrated at the modes), or imbalances in the proportions of different shapes, since
the samples themselves will be plausible images. Recall that different divergence measures result in
different degrees of mode-seeking: if we rely on human evaluation, we may tend towards always
using divergences with under-dispersed samples.

We propose to use the MMD to distinguish generator and reference data, with features and kernels
chosen to maximize the test power of the quadratic-time MMD of Gretton et al. (2012a). Optimizing
MMD test power requires a sophisticated treatment due to the different form of the null and alternative
distributions (Section 2). We also develop an efficient approach to obtaining quantiles of the
MMD distribution under the null (Section 3). We demonstrate on simple artificial data that simply
maximizing the MMD (as in Sriperumbudur et al., 2009) provides a less powerful test than our
approach of explicitly maximizing test power. Our procedure applies even when our definition of the
MMD is computed on features of the inputs, since these can also be trained by power maximization.

When designing an optimized MMD test, we should choose a kernel family that allows us to visualize
where the probability mass of the two samples differs most. In our experiments on GAN performance
evaluation, we use an automatic relevance determination (ARD) kernel over the output dimensions,
and learn which coordinates differ meaningfully by finding which kernels retain significant bandwidth
when the test power is optimized. We may further apply the method of Lloyd & Ghahramani (2015,
Section 5) to visualize the witness function associated with this MMD, by finding those model and
data samples occurring at the maxima and minima of the witness function (i.e., the samples from
one distribution least likely to be in high probability regions of the other). The optimized witness
function gives a test with greater power than a standard RBF kernel, suggesting that the associated
witness function peaks are an improved representation of where the distributions differ. We also
propose a novel generative model based on the feature matching idea of Salimans et al. (2016), using
MMD rather than their “minibatch discrimination” heuristic, for a more principled and more stable
enforcement of sample diversity, without requiring labeled data.

1Only the total variation distance is both an f -divergence and an IPM (Sriperumbudur et al., 2012).
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2 MAXIMIZING TEST POWER OF A QUADRATIC MMD TEST

Our methods rely on optimizing the power of a two-sample test over the choice of kernel. We first
describe how to do this, then review alternative kernel selection approaches.

2.1 MMD AND TEST POWER

We will begin by reviewing the maximum mean discrepancy and its use in two-sample tests. Let k be
the kernel of a reproducing kernel Hilbert space (RKHS)Hk of functions on a set X . We assume that
k is measurable and bounded, supx∈X k(x, x) <∞. Then the MMD inHk between two distributions
P and Q over X is (Gretton et al., 2012a):

MMD2
k(P,Q) := Ex,x′ [k(x, x′)] + Ey,y′ [k(y, y′)]− 2Ex,y [k(x, y)] (1)

where x, x′ iid∼ P and y, y′ iid∼ Q. Many kernels, including the popular Gaussian RBF, are character-
istic (Fukumizu et al., 2008; Sriperumbudur et al., 2010), which implies that the MMD is a metric,
and in particular that MMDk(P,Q) = 0 if and only if P = Q, so that tests with any characteristic
kernel are consistent. That said, different characteristic kernels will yield different test powers for
finite sample sizes, and so we wish to choose a kernel k to maximize the test power. Below, we will
usually suppress explicit dependence on k.

Given X = {X1, . . . , Xm} iid∼ P and Y = {Y1, . . . , Ym} iid∼ Q,2 one estimator of MMD(P,Q) is

M̂MD
2

U(X,Y ) :=
1(
m
2

) ∑
i6=i′

k(Xi, Xi′) +
1(
m
2

) ∑
j 6=j′

k(Yj , Yj′)−
2(
m
2

) ∑
i6=j

k(Xi, Yj). (2)

This estimator is unbiased, and has nearly minimal variance among unbiased estimators (Gretton
et al., 2012a, Lemma 6).

Following Gretton et al. (2012a), we will conduct a hypothesis test with null hypothesis H0 : P = Q

and alternative H1 : P 6= Q, using test statistic m M̂MD
2

U(X,Y ). For a given allowable probability
of false rejection α, we choose a test threshold cα and reject H0 if m M̂MD

2

U(X,Y ) > cα.

Under H0 : P = Q, m M̂MD
2

U(X,Y ) converges asymptotically to a distribution that depends on
the unknown distribution P (Gretton et al., 2012a, Theorem 12); we thus cannot evaluate the test
threshold cα in closed form. We instead estimate a data-dependent threshold ĉα via permutation:
randomly partition the data X ∪ Y into X ′ and Y ′ many times, evaluate m M̂MD

2

U(X ′, Y ′) on each
split, and estimate the (1 − α)th quantile ĉα from these samples. Section 3 discusses efficient
computation of this process.

We now describe a mechanism to choose the kernel k so as to maximize the power of its associated
test. First, note that under the alternative H1 : P 6= Q, M̂MD

2

U is asymptotically normal,

M̂MD
2

U(X,Y )− MMD2(P,Q)√
Vm(P,Q)

D→ N (0, 1), (3)

where Vm(P,Q) denotes the asymptotic variance of the M̂MD
2

U estimator for samples of size m from
P and Q (Serfling, 1980). The power of our test is thus, using Pr1 to denote probability under H1,

Pr1

(
m M̂MD

2

U(X,Y ) > ĉα

)
= Pr1

(
M̂MD

2

U(X,Y )− MMD2(P,Q)√
Vm(P,Q)

>
ĉα/m− MMD2(P,Q)√

Vm(P,Q)

)

→ Φ

(
MMD2(P,Q)√
Vm(P,Q)

− cα

m
√
Vm(P,Q)

)
(4)

where Φ is the CDF of the standard normal distribution. The second step follows by (3) and the
convergence of ĉα → cα (Alba Fernández et al., 2008). Test power is therefore maximized by

2We assume for simplicity that the number of samples from the two distributions is equal.
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maximizing the argument of Φ: i.e. increasing the ratio of MMD2(P,Q) to
√
Vm(P,Q), and

reducing the ratio of cα to m
√
Vm(P,Q).

For a given kernel k, Vm is O(m−1), while both cα and MMD2 are constants. Thus the first term is
O
(√
m
)
, and the second is O

(
1/
√
m
)
. Two situations therefore arise: when m is small relative to

the difference in P and Q (i.e., we are close to the null), both terms need to be taken into acccount
to maximize test power. Here, we propose to maximize (4) using the efficient computation of ĉα
in Section 3. As m grows, however, we can asymptotically maximize the power of the test by

choosing a kernel k that maximizes the t-statistic tk(P,Q) := MMD2
k(P,Q)/

√
V

(k)
m (P,Q). In

practice, we maximize an estimator of tk(P,Q) given by t̂k(X,Y ) := M̂MD
2

U(X,Y )/

√
V̂m(X,Y ),

with V̂m(X,Y ) discussed shortly.

To maintain the validity of the hypothesis test, we will need to divide the observed data X and Y
into a “training sample,” used to choose the kernel, and a “testing sample,” used to perform the final
hypothesis test with the learned kernel.

We next consider families of kernels over which to optimize. The most common kernels used for
MMD tests are standard kernels from the literature, e.g. the Gaussian RBF, Matérn, or Laplacian
kernels. It is the case, however, that for any function z : X1 → X2 and any kernel κ : X2 ×X2 → R,
the composition κ ◦ z is also a kernel on X1.3 We can thus choose a function z to extract meaningful
features of the inputs, and use a standard kernel κ to compare those features. We can select such a
function z (as well as κ) by performing kernel selection on the family of kernels κ ◦ z. To do so, we
merely need to maximize t̂κ◦z(X,Y ) through standard optimization techniques based on the gradient
of t̂κ◦z with respect to the parameterizations of z and κ.

We now give an expression for an empirical estimate V̂m of the variance Vm(P,Q) that appears in
our test power. This estimate is similar to that given by Bounliphone et al. (2016, Appendix A.1), but
incorporates second-order terms and corrects some small sources of bias. Though the expression is
somewhat unwieldy, it is defined by various sums of the kernel matrices and is differentiable with
respect to the kernel k.

Vm(P,Q) is given in terms of expectations of k under P and Q in Appendix A. We replace these
expectations with finite-sample averages, giving us the required estimator. Define matrices KXY ,
K̃XX , and K̃Y Y by (KXY )i,j = k(Xi, Yj), (K̃XX)ii = 0, (K̃XX)ij = k(Xi, Xj) for i 6= j,
and K̃Y Y similarly to K̃XX . Let e be an m-vector of ones, and use the falling factorial notation
(m)r := m(m− 1) · · · (m− r + 1). Then an unbiased estimator for Vm(P,Q) is:

V̂m :=
4

(m)4

[∥∥∥K̃XXe
∥∥∥2 +

∥∥∥K̃Y Y e
∥∥∥2]+

4(m2 −m− 1)

m3(m− 1)2

[
‖KXY e‖2 + ‖KT

XY e‖2
]

− 8

m2(m2 − 3m+ 2)

[
eTK̃XXKXY e+ eTK̃Y YK

T
XY e

]
+

8

m2(m)3

[(
eTK̃XXe+ eTK̃Y Y e

) (
eTKXY e

)]
− 2(2m− 3)

(m)2(m)4

[(
eTK̃XXe

)2
+
(
eTK̃Y Y e

)2]
− 4(2m− 3)

m3(m− 1)3

[(
eTKXY e

)2]
− 2

m(m3 − 6m2 + 11m− 6)

[∥∥∥K̃XX

∥∥∥2
F

+
∥∥∥K̃Y Y

∥∥∥2
F

]
+

4(m− 2)

m2(m− 1)3
‖KXY ‖2F .

(5)

2.2 OTHER APPROACHES TO MMD KERNEL SELECTION

The most common practice in performing two-sample tests with MMD is to use a Gaussian RBF
kernel, with bandwidth set to the median pairwise distance among the joint data. This heuristic often
works well, but fails when the scale on which P and Q vary differs from the scale of their overall
variation (as in the synthetic experiment of Section 4). Ramdas et al. (2015a;b) study the power of

3If z is injective and κ characteristic, then κ ◦ z is characteristic. Whether any fixed κ ◦ z is consistent,
however, is less relevant than the power of the κ ◦ z we choose — which is what we maximize.
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the median heuristic in high-dimensional problems, and justify its use for the case where the means
of P and Q differ.

An early heuristic for improving test power was to simply maximize M̂MD
2

U. Sriperumbudur et al.
(2009) proved that, for certain classes of kernels, this yields a consistent test. As further shown by
Sriperumbudur et al., however, maximizing MMD amounts to minimizing training classification error
under linear loss. Comparing with (4), this is plainly not an optimal approach for maximizing test
power, since variance is ignored.4 One can also consider maximizing criteria based on cross validation
(Sugiyama et al., 2011; Gretton et al., 2012b; Strathmann, 2012). This approach is not differentiable,
and thus difficult to maximize among more than a fixed set of candidate kernels. Moreover, where
this cross-validation is used to maximize the MMD on a validation set (as in Sugiyama et al., 2011),
it again amounts to maximizing classification performance rather than test performance, and is
suboptimal in the latter setting (Gretton et al., 2012b, Figure 1). Finally, Gretton et al. (2012b)
previously studied direct optimization of the power of an MMD test for a streaming estimator of the
MMD, for which optimizing the ratio of the empirical statistic to its variance also optimizes test power.
This streaming estimator uses data very inefficiently, however, often requiring m2 samples to achieve
power comparable to tests based on M̂MD

2

U with m samples (Ramdas et al., 2015a).

3 EFFICIENT IMPLEMENTATION OF PERMUTATION TESTS FOR M̂MD
2

U

Practical implementations of tests based on M̂MD
2

U require efficient estimates of the test threshold
ĉα. There are two known test threshold estimates that lead to a consistent test: the permutation test
mentioned above, and a more sophisticated null distribution estimate based on approximating the
eigenspectrum of the kernel, previously reported to be faster than the permutation test (Gretton et al.,
2009). In fact, the relatively slow reported performance of the permutation approach was due to
the naive Matlab implementation of the permutation test in the code accompanying Gretton et al.
(2012a), which creates a new copy of the kernel matrix for every permutation. We show here that, by
careful design, permutation thresholds can be computed substantially faster – even when compared to
parallelized state-of-the-art spectral solvers (not used by Gretton et al.).

First, we observe that we can avoid copying the kernel matrix simply by generating permutation
indices for each null sample and accessing the precomputed kernel matrix in permuted order. In
practice, however, this does not give much performance gain due to the random nature of memory-
access which conflicts with how modern CPUs implement caching. Second, if we rather maintain an
inverse map of the permutation indices, we can easily traverse the matrix in a sequential fashion. This
approach exploits the hardware prefetchers and reduces the number of CPU cache misses from almost
100% to less than 10%. Furthermore, the sequential access pattern of the kernel matrix enables us
to invoke multiple threads for computing the null samples, each traversing the matrix sequentially,
without compromising the locality of reference in the CPU cache.

We consider an example problem of computing the test using 200 null distribution samples on
m = 2000 two-dimensional samples, comparing a Gaussian to a Laplace distribution with matched
moments. We compare our optimized permutation test against a spectral test using the highly-
optimized (and proprietary) state-of-the-art spectral solver of Intel’s MKL library (Intel, 2003–17).
All results are averaged over 30 runs; the variance across runs was negligible.

Figure 1 (left) shows the obtained speedups as the number of computing threads grow for m = 2000.
Our implementation is not only faster on a single thread, but also saturates more slowly as the number
of threads increases. Figure 1 (right) shows timings for increasing problem sizes (i.e. m) when using
all available system threads (here 24). For larger problems, our permutation implementation (scaling
as O(m2)) is an order of magnitude faster than the spectral test (scaling as O(m3)). For smaller

4With regards to classification vs testing: there has been initial work by Ramdas et al. (2016), who study the
simplest setting of the two multivariate Gaussians with known covariance matrices. Here, one can use linear
classifiers, and the two sample test boils down to testing for differences in means. In this setting, when the
classifier is chosen to be Fisher’s LDA, then using the classifier accuracy on held-out data as a test statistic
turns out to be minimax optimal in “rate” (dependence on dimensionality and sample size) but not in constants,
meaning that there do exist tests which achieve the same power with fewer samples. The result has been proved
only for this statistic and setting, however, and generalization to other statistics and settings is an open question.
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Figure 1: Runtime comparison for sampling the null distribution. We compare our optimized permuta-
tion approach to the spectral method using Intel’s MKL spectral solver. Time spent precomputing the
kernel matrix is not included. Left: Increasing number of threads for fixed problem size m = 2000.
Single-threaded times of other implementations: Matlab reference spectral 381s, Python permutation
182s, Shogun spectral (eigen3) 87s. Right: Increasing problem sizes using the maximum number of
24 system threads.

problems (for which Gretton et al. suggested the spectral test), there is still a significant performance
increase.

For further reference, we also report timings of available non-parallelized implementations for
m = 2000, compared to our version’s 12s in Figure 1 (left): 87s for an open-sourced spectral test
in Shogun using eigen3 (Sonnenburg et al., 2016; Guennebaud et al., 2010), 381s for the reference
Matlab spectral implementation (Gretton et al., 2012a), and 182s for a naive Python permutation test
that partly avoids copying via masking. (All of these times also exclude kernel computation.)

4 EXPERIMENTS

Code for these experiments is available at github.com/djsutherland/opt-mmd.

Synthetic data We consider the problem of bandwidth selection for Gaussian RBF kernels on the
Blobs dataset of Gretton et al. (2012b). P here is a 5× 5 grid of two-dimensional standard normals,
with spacing 10 between the centers. Q is laid out identically, but with covariance ε−1

ε+1 between the
coordinates (so that the ratio of eigenvalues in the variance is ε.) Figure 2a shows two samples from
X and Y with ε = 6. Note that when ε = 1, P = Q.

For ε ∈ {1, 2, 4, 6, 8, 10}, we take m = 500 samples from each distribution and compute
M̂MD

2

U(X,Y ), V̂m(X,Y ), and ĉ0.1 using 1 000 permutations, for Gaussian RBF kernels with each of
30 bandwidths. We repeat this process 100 times. Figure 2b shows that the median heuristic always
chooses too large a bandwidth. When maximizing MMD alone, we see a bimodal distribution of
bandwidths, with a significant number of samples falling into the region with low test power. The
variance of M̂MD

2

U is much higher in this region, however, hence optimizing the ratio t̂ never returns
these bandwidths. Figure 2c shows that maximizing t̂ outperforms maximizing the MMD across a
variety of problem parameters, and performs near-optimally.

Model criticism As an example of a real-world two-sample testing problem, we will consider
distinguishing the output of a generative model from the reference distribution it attempts to reproduce.
We will use the semi-supervised GAN model of Salimans et al. (2016), trained on the MNIST dataset of
handwritten images.5 True samples from the dataset are shown in Figure 3a; samples from the learned
model are in Figure 3b. Salimans et al. (2016) called their results “completely indistinguishable from
dataset images,” and reported that annotators on Mechanical Turk were able to distinguish samples

5We used their code for a minibatch discrimination GAN, with 1000 labels, and chose the best of several runs.

6
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(a) Samples of size 500
with ε = 6 from P
(top) and Q (bottom).
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(red), for ε = 6. Gray lines show the
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rate as ε increases. “Best choice” shows the
mean power of the bandwidth with highest
rejection rate for each problem.

Figure 2: Results for the Blobs problem. Maximizing t̂ performs near-optimally.

only in 52.4% of cases. Comparing the results, however, there are several pixel-level artifacts that
make distinguishing the datasets trivial; our methods can pick up on these quickly.

To make the problem more interesting, we discretized the sampled pixels into black or white (which
barely changes the images visually). The samples are then in {0, 1}28×28. We trained an automatic
relevance determination (ARD)-type kernel: in the notation of Section 2.1, z scales each pixel by
some learned value, and k is a Gaussian RBF kernel with a learned global bandwidth. We optimized t̂
on 2 000 samples in batches of size 500 using the Adam optimizer (Kingma & Ba, 2015), where the
learned weights are visualized in Figure 3c. This network has essentially perfect discriminative power:
testing it on 100 different samples with 1000 permutations for each test, in 98 cases we obtained
p-values of 0.000 and twice got 0.001. By contrast, using an RBF kernel with a bandwidth optimized
by maximizing the t statistic gave a less powerful test: the worst p-value in 100 repetitions was 0.135,
with power 57% at the α = 0.01 threshold. An RBF kernel based on the median heuristic, which here
found a bandwidth five times the size of the t-statistic-optimized bandwidth, performed worse still:
three out of 100 repetitions found a p-value of exactly 1.000, and power at the .01 threshold was 42%.
The learned weights show that the model differs from the true dataset along the outsides of images,
as well as along a vertical line in the center.

We can investigate these results in further detail using the approach of Lloyd & Ghahramani (2015),
considering the witness function associated with the MMD, which has largest amplitude where the
probability mass of the two samples is most different. Thus, samples falling at maxima and minima
of the witness function best represent the difference in the distributions. The value of the witness
function on each sample is plotted in Figure 3d, along with some images with different values of the
witness function. Apparently, the GAN is slightly overproducing images resembling the /-like digits
on the left, while underproducing vertical 1s. It is not the case that the GAN is simply underproducing
1s in general: the p-values of a χ2 contingency test between the outputs of digit classifiers on the two
distributions are uniform. This subtle difference in proportions among types of digits would be quite
difficult for human observers to detect. Our testing framework allows the model developer to find
such differences and decide whether to act on them. One could use a more complex representation
function z to detect even more subtle differences between distributions.

GAN criterion We now demonstrate the use of MMD as a training criterion in GANs. We consider
two basic approaches, and train on MNIST.6 First, the generative moment matching network (GMMN;
Figure 4a) approach (Li et al., 2015; Dziugaite et al., 2015) uses an MMD statistic computed with an

6Implementation details: We used the architecture of Li et al. (2015): the generator consists of fully
connected layers with sizes 10, 64, 256, 256, 1024, 784, each with ReLU activations except the last, which
uses sigmoids. The kernel function for GMMNs is a sum of Gaussian RBF kernels with fixed bandwidths
2, 5, 10, 20, 40, 80. For the feature matching GAN, we use a discriminator with fully connected layers of size
512, 256, 256, 128, 64, each with sigmoid activation. We then concatenate the raw image and each layer of
features as input to the same mixture of RBF kernels as for GMMNs. We optimize with SGD. Initialization for all
parameters are Gaussian with standard deviation 0.1 for the GMMNs and 0.2 for feature matching. Learning rates
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(a) Dataset samples.

(b) GAN samples.

(c) ARD weights.
(d) The witness function Ex∼P k(x, ·) − Ey∼Q k(y, ·) evaluated on a test
set. Images are shown with ARD weights highlighted. Vertical lines show
distribution means; the distance between them is small but highly consistent.

Figure 3: Model criticism of Salimans et al. (2016)’s semi-supervised GAN on MNIST.

RBF kernel directly on the images as the discriminator of a GAN model. The t-GMMN (Figure 4b)
has the generator minimize the t̂k statistic for a fixed kernel.7 Compared to standard GMMNs, the
t-GMMN more directly attempts to make the distributions indistinguishable under the kernel function;
it avoids a situation like that of Figure 3d, where although the MMD value is quite small, the two
distributions are perfectly distinguishable due to the small variance.

Next, feature matching GANs (Figure 4c) train the discriminator as a classifier like a normal GAN,
but train the generator to minimize the MMD between generator samples and reference samples with
a kernel computed on intermediate features of the discriminator. Salimans et al. (2016) proposed
feature matching using the mean features at the top of the discriminator (effectively using an MMD
with a linear kernel); we instead use MMD with a mixture of RBF kernels, ensuring that the full feature
distributions match, rather than just their means. This helps avoid the common failure mode of GANs
where the generator collapses to outputting a small number of samples considered highly realistic by
the discriminator. Using the MMD-based approach, however, no single point can approximate the
feature distribution. The minibatch discrimination approach of Salimans et al. (2016) attempts to
solve the same problem, by introducing features measuring the similarity of each sample to a selection
of other samples, but we were unable to get it to work without labels to force the discriminator in
a reasonable direction; Figure 4d demonstrates some of those failures, with each row showing six
samples from each of six representative runs of the model.
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are 2, 0.02, 0.5, respectively. Learning rate for the feature matching discriminator is set to 0.01. All experiments
are run for 50 000 iterations and use a momentum optimizer with with momentum 0.9.

7One could additionally update the kernel adversarially, by maximizing the t̂k statistic based on generator
samples, but we had difficulty in optimizing this model: the interplay between generator and discriminator adds
some difficulty to this task.
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(a) generative MMD (b) generative MMD var ridge (c) d(gan) g(MMD)(a) GMMN
(a) generative MMD (b) generative MMD var ridge (c) d(gan) g(MMD)(b) t-GMMN(a) generative MMD (b) generative MMD var ridge (c) d(gan) g(MMD)(c) Feature matching (d) Improved GAN

Figure 4: MNIST digits from various models. Part d shows six runs of the minibatch discrimination
model of Salimans et al. (2016), trained without labels — the same model that, with labels, generated
Figure 3b. (The third row is the closest we got the model to generating digits without any labels.)
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A VARIANCE OF THE PAIRWISE MMD ESTIMATOR

The publication version of this appendix contained some small mistakes. Please refer instead to
Sutherland (2019); in particular, the estimator (5) is equivalent to (4) of that document.
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