
Under review as a conference paper at ICLR 2017

TRAINING LONG SHORT-TERM MEMORY WITH SPAR-
SIFIED STOCHASTIC GRADIENT DESCENT

Maohua Zhu, Yuan Xie
Department of Electrical and Computer Engineering
University of California, Santa Barbara
Santa Barbara, CA 93106, USA
{maohuazhu, yuanxie}@ece.ucsb.edu

Minsoo Rhu, Jason Clemons, Stephen W. Keckler
NVIDIA Research
Austin, TX 78717, USA
{mrhu, jclemons, skeckler}@nvidia.com

ABSTRACT

Prior work has demonstrated that exploiting the sparsity can dramatically improve
the energy efficiency and reduce the memory footprint of Convolutional Neu-
ral Networks (CNNs). However, these sparsity-centric optimization techniques
might be less effective for Long Short-Term Memory (LSTM) based Recurrent
Neural Networks (RNNs), especially for the training phase, because of the signif-
icant structural difference between the neurons. To investigate if there is possible
sparsity-centric optimization for training LSTM-based RNNs, we studied several
applications and observed that there is potential sparsity in the gradients gener-
ated in the backward propagation. In this paper, we investigate why the sparsity
exists and propose a simple yet effective thresholding technique to induce further
more sparsity during the LSTM-based RNN training. The experimental results
show that the proposed technique can increase the sparsity of linear gate gradi-
ents to more than 80% without loss of performance, which makes more than 50%
multiply-accumulate (MAC) operations redundant for the entire LSTM training
process. These redundant MAC operations can be eliminated by hardware tech-
niques to improve the energy efficiency and the training speed of LSTM-based
RNNs.

1 INTRODUCTION

Deep neural networks have achieved state-of-the-art performance in many different tasks, such as
computer vision (Krizhevsky et al., 2012) (Simonyan & Zisserman, 2015), speech recognition, and
natural language processing (Karpathy et al., 2016). The underlying representational power of these
neural networks comes from the huge parameter space, which results in an extremely large amount of
computation operations and memory footprint. To reduce the memory usage and accelerate the train-
ing process, the research community has strived to eliminate the redundancy in the deep neural net-
works (Han et al., 2016b). Exploiting the sparsity in both weights and activations of Convolutional
Neural Networks (CNNs), sparsity-centric optimization techniques (Han et al., 2016a) (Albericio
et al., 2016) have been proposed to improve the speed and energy efficiency of CNN accelerators.

These sparsity-centric approaches can be classified into two categories: (1) pruning unimportant
weight parameters and (2) skipping zero values in activations to eliminate multiply-accumulate
(MAC) operations with zero operands. Although both categories have achieved promising results
for CNNs, it remains unclear if they are applicable to training other neural networks, such as LSTM-
based RNNs. The network pruning approach is not suitable for training because it only benefits the
inference phase of neural networks by iteratively pruning and re-training. The approach that exploits
the sparsity in the activations can be used for training because the activations are involved in both

1

Under review as a conference paper at ICLR 2017

the forward propagation and the backward propagation. But there are still some issues if we directly
apply it to LSTM-based RNNs.

The sparsity in CNN activations mostly comes from the Rectified Linear Unit (ReLU) activation
function, which sets all negative values to zero. However, Long Short-Term Memory, one of the
most popular RNN cells, does not adopt the ReLU function. Therefore, LSTM should exhibit much
less sparsity in activations than CNNs, intuitively. Furthermore, the structure of an LSTM cell is
much more complicated than neurons in convolutional layers or fully connected layers of a CNN.

To explore additional opportunities to apply sparsity-centric optimization to LSTM-based RNNs,
we conducted an application characterization on several LSTM-based RNN applications, including
character-based language model, image captioning, and machine translation. Although the experi-
mental results of the application characterization show that there is little sparsity in the activations,
we observed potential sparsity in backward propagation of the LSTM training process. The acti-
vation values of the gates (input gate, forget gate, and output gate) and the new cell state exhibit
a skewed distribution due to their functionality. That is, a large fraction of the activation values of
these Sigmoid-based gates are either close to 1 or close to 0 (for the Tanh-based new cell activations,
values are close to -1 or 1). This skewed distribution will lead to a considerable amount of very small
values in the LSTM backward propagation since there is a term σ(x)(1− σ(x)) in the gradients of
the Sigmoid-based gates (tanh(x)(1− tanh(x)) for the gradients of the new cell gradients), which
will be zero given σ(x) = 0 or σ(x) = 1 (tanh(x) = −1 or tanh(x) = 1 for the new cell gradi-
ents). In real-world implementations, these very small values might be clamped to zero as they are
in the form of floating-point numbers, of which the precision is limited. Therefore, there is potential
sparsity in the gradients of the backward propagation of LSTM training.

To ensure that there is non-trivial amount of sparsity for hardware designers to exploit, we pro-
pose “sparsified” SGD, a rounding to zero technique to induce more sparsity in the gradients. This
approach can be seen as a stochastic gradient descent (SGD) learning algorithm with sparsifying,
which strips the precision of floating point numbers for unimportant small gradients. Experiment
results show that with proper thresholds, we can make 80% of the gradients of the gate inputs to
zero without performance loss for all applications and datasets we tested so far. As the sparse gradi-
ents of the gate inputs are involved in 67% matrix multiplications, more than 50% MAC operations
are redundant in the entire LSTM training process. Eliminating these ineffectual MAC operations
with hardware techniques, the energy efficiency and training speed of LSTM-based RNNs will be
improved significantly.

2 BACKGROUND AND MOTIVATION

In this section, we first review some of the prior work on sparsity-centric optimization techniques
for neural networks, and then illustrate the application characterization example as the motivation
for our research.

2.1 SPARSITY-CENTRIC OPTIMIZATION FOR NEURAL NETWORKS

It has been demonstrated that there is significant redundancy in the parameterization of deep neural
networks (Denil et al., 2013). Consequently, the over-sized parameter space results in sparsity in
the weight parameters of a neural network. Besides the parameters, there is also sparsity in the
activations of each layer in a network, which comes from two sources: (1) the sparsity in weight
parameters and (2) the activation function of neurons, such as ReLU.

As the sparsity in weight parameters do not depend on the input data, it is often referred to as static
sparsity. On the other hand, the sparsity in the activations depend on not only the weight values but
also the input data. Therefore, we refer to the sparsity in the activations as dynamic sparsity.

Exploiting sparsity can dramatically reduce the network size and thus improve the computing perfor-
mance and energy efficiency. For example, Deep Compression (Han et al., 2016b) applied network
pruning to CNNs to significantly reduce the footprint of the weights, which enables us to store all
the weights on SRAM. However, the static sparsity can only help the inference phase but not train-
ing because weight parameters are adjusted during training. Fortunately, leveraging the dynamic
sparsity can benefit both inference and training of neural networks. Recent publications (Han et al.,

2

Under review as a conference paper at ICLR 2017

Figure 1: Basic LSTM cell

2016a) (Albericio et al., 2016) have proposed various approaches to eliminate ineffectual MAC op-
erations with zero operands. Although these sparsity-centric optimization approaches have achieved
promising results on CNNs, much less attention has been paid to LSTM-based RNNs, because there
is a common belief that the major source of sparsity is the ReLU function, which is widely used
in the convolutional layers but not in LSTM-based RNNs. To accelerate LSTM-based RNNs and
improve the energy efficiency, we investigate opportunities to exploit sparsity in the LSTM-based
RNN training process. As an initial step, in this paper we focus on the basic LSTM cell without
peephole or other advanced features, as shown in Figure 1.

2.2 APPLICATION CHARACTERIZATION

To reveal if there is sparsity in LSTM training, we conduct an application characterization study. We
start with a character-based language model as described in (Karpathy et al., 2016). This character-
based language model takes a sequence of characters as input and predicts the next character of this
sequence. The characters are represented in one-hot vectors, which are transformed into distributed
vectors by a word2vec layer. Then the distributed vectors feed into an RNN model based on LSTM
cells, followed by a linear classifier.

The LSTM cells used in this character-based language model are all basic LSTM cells. For each
cell, the forward propagation flow is as below:

it = σ(W ixt + U iht−1 + bi)

ft = σ(W fxt + Ufht−1 + bf)

ot = σ(W oxt + Uoht−1 + bo)

gt = tanh(W gxt + Ught−1 + bg)

ct = ft ◦ ct−1 + it ◦ gt
ht = ot ◦ tanh(ct)

As shown in Figure 1, it, ft, and ot stand for input gate, forget gate, and output gate, respectively.
These sigmoid-based gates (σ stands for sigmoid) are used to prevent irrelevant input from affecting
the memory cell (ct). The new cell state (gt) is a preliminary summary of the current input from the
previous layer and the previous status of current layer. The final hidden status ht is the output of the
LSTM cell if it is seen as a black box.

Since the gates are introduced to prevent irrelevant inputs from affecting the memory cell ct, we
have a hypothesis that a large fraction of the activations of these gates should be either close to 1 or
close to 0, representing the control signal on or off, respectively. Similarly, the tanh-based new cell
status is active if its activation is 1 or inactive if it is -1. There should also be a considerable portion
of the activations close to 1 or -1.

To validate our hypothesis, we extracted the activations of the sigmoid-based gates and tanh-based
new cell state from several model snapshots during training the character-based language model.
Figure 2 shows the histogram of the activation values of the gates and the new cell. The red curves
represent the activation values generated by a snapshot model which is 0.5% trained (in terms of
total number of iterations) while the bars represent the activation values generated by a fully trained

3

Under review as a conference paper at ICLR 2017

F
re

q
u

en
cy

Input Gate

F
re

q
u

e
n

cy

Forget Gate

F
re

q
u

en
cy

Output Gate

F
re

q
u

en
cy

New Cell

Figure 2: Values of gates and new cell activations of LSTM. For the three sigmoid-based gates, the
range of x-axis is from 0 to 1. For the tanh-based new cell activation, the range is from -1 to 1.

model. We can observe skewed distributions from each gate (and new cell) for both the 0.5% trained
snapshot model and the fully trained model. Furthermore, the fully trained model shows a distribu-
tion that is more skewed to the leftmost and the rightmost. Additionally, other un-shown snapshots
demonstrate that the distribution becomes consistently more skewed as the training process goes on.
We also observed that after 10% of the training process, the distribution becomes steady, almost the
same as the fully trained model.

Besides the character-based language model, we also conducted the same characterization to the
image captioning task described in (Karpathy & Li, 2015). The activation values of the RNN layer
in the image captioning task exhibit the skewed distribution too. Even though we did not observe
sparsity in the gate activations, the skewed distribution indicates potential sparsity in the LSTM-
based RNN backward propagation, which will be shown in the next section.

3 SPARSIFIED STOCHASTIC GRADIENT DESCENT FOR LSTM

In this section, we first show how the skewed distribution of gate values leads to potential sparsity in
the LSTM backward propagation, and then we propose the “sparsified” SGD to induce more sparsity
in LSTM training.

3.1 POTENTIAL SPARSITY IN LSTM BACKWARD PROPAGATION

To show how the skewed distribution in the gate activations results in potential sparsity in the LSTM-
based RNN backward propagation, we need to review the forward and backward propagation at first.
We can re-write the forward propagation equations as

net(i)t =W ixt + U iht−1 + bi

net(f)t =W fxt + Ufht−1 + bf

net(o)t =W oxt + Uoht−1 + bo

net(g)t =W gxt + Ught−1 + bg

it = σ(net(i)t)

ft = σ(net(f)t)

ot = σ(net(o)t)

gt = tanh(net(g)t)

4

Under review as a conference paper at ICLR 2017

ct = ft ◦ ct−1 + it ◦ gt
ht = ot ◦ tanh(ct)

Here we introduce variables net(i), net(f), net(o) and net(g) to represent the linear part of the
gates and the new cell state. In GPU implementations such as cuDNN v5 (Appleyard et al., 2016),
these linear gates (including new cell state from now on) are usually calculated in one step since
they share the same input vectors xt and ht−1. Therefore we can use a uniform representation for
the four linear gates, that is

nett =Wxt + Uht−1 + b

The matrix W here stands for the combination of the matrices W i, W f , W o and W g and the matrix
U stands for the combination of the matrices U i, Uf , Uo and Ug .

With these denotations, we can express the backward propagation as

dot = dht ◦ tanh(ct)

dct = dht ◦ (1− tanh2(ct)) ◦ ot + ft ◦ ct+1

dnet(g)t = dct ◦ it ◦ (1− g2t)
dnet(o)t = dht ◦ tanh(ct) ◦ (1− ot) ◦ ot
dnet(f)t = dct ◦ ct−1 ◦ (1− ft) ◦ ft
dnet(i)t = dct ◦ gt ◦ (1− it) ◦ it

dxt = dnettW
T

dht−1 = dnettU
T

dW+ = xtdnett

dU+ = ht−1dnett

In the equations of the backward propagation, we use dnet to denote the gradient of the linear gates.

From these equations we can see that for each linear gate gradient there is one term introduced by
the sigmoid function or the tanh function, e.g. (1−g2t) in dnet(g)t and (1−ot)◦ot in dnet(o)t. As
we observed in the application characterization results, the activation values of these gates exhibit
skewed distribution, which means a large fraction of ot, ft and it are close to 0 or 1 (gt close to -1 or
1). The skewed distribution makes a large fraction of the linear gate gradients close to zero because
(1 − g2t), (1 − ot) ◦ ot, (1 − ft) ◦ ft and (1 − it) ◦ it are mostly close to zero given the skewed
distribution of the gate activations.

When implementing the LSTM-based RNNs, we usually use 32-bit floating point numbers to rep-
resent the gradients. Due to the precision limit, floating point numbers will round extremely small
values to zero. Therefore, there is potential sparsity in dnet since a large fraction of the linear gate
gradients are close to zero.

3.2 INDUCING MORE SPARSITY

In the previous section we showed how the skewed distribution in gate activations results in potential
sparsity in linear gate gradients theoretically. However, from mathematical perspective, there will be
no sparsity in linear gate gradients if the floating point numbers in computers have infinite precision
since they are only close to zero rather than be zero. Even the precision of 32-bit floating point
numbers is not infinite, the 8-bit exponential part can still accommodate an extremely large dynamic
range, which makes the sparsity less interesting to hardware accelerator designers. Fortunately,
recent attempts to train neural networks with 16-bit floating points (Gupta et al., 2015) and fixed
points (Lin et al., 2015) have shown acceptable performance with smaller dynamic range. This
inspires us to induce more sparsity by rounding very small linear gate gradients to zero, which is
similar to replace 32-bit floating points with 16-bit floating points or fixed points.

The intuition behind this “rounding to zero” approach is that pruning CNNs will not affect the
overall training performance. Similarly, thresholding very small gradient (dnet) values to zero is
likely not to affect the overall training accuracy. Therefore, we propose a simple static thresholding
approach which sets small dnet values below a threshold t to zero. By doing this, we can increase the
sparsity in dnet even further than the original sparsity caused by limited dynamic range of floating

5

Under review as a conference paper at ICLR 2017

point numbers. With our static thresholding technique, the backward propagation of LSTM training
becomes as below:

dot = dht ◦ tanh(ct)
dct = dht ◦ (1− tanh2(ct)) ◦ ot + ft ◦ ct+1

dnet(g)t = dct ◦ it ◦ (1− g2t)
dnet(o)t = dht ◦ tanh(ct) ◦ (1− ot) ◦ ot
dnet(f)t = dct ◦ ct−1 ◦ (1− ft) ◦ ft
dnet(i)t = dct ◦ gt ◦ (1− it) ◦ it
dnett = (dnett > t)?dnett : 0

dxt = dnettW
T

dht−1 = dnettU
T

dW+ = xtdnett

dU+ = ht−1dnett

In this “sparsified” SGD backward propagation, a new hyper-parameter t is introduced to control the
sparsity we would like to induce in dnet. Clearly, the optimal threshold t is the highest one that has
no impact on the training performance since it can induce the highest sparsity in dnet. Therefore,
to select the threshold, we need to monitor the impact on the gradients. As the SGD only uses the
gradients of the weights (dW) to update the weights, dW is the only gradients we need to care about.
From the equations of the backward propagation we can see that dW is computed based on dnet,
which is sparsified by our approach. Although sparsifying dnet affects dW , we can control the
change of dW by setting the threshold. To determine the largest acceptable threshold, we conducted
an evaluation of the impact caused by different thresholds on one single step in LSTM training. The
application here is the same as the one in the application characterization.

0.98

0.985

0.99

0.995

1

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Baseline 1.00E-08 1.00E-07 1.00E-06

C
o

rr
e

la
ti

o
n

 t
o

 b
as

e
lin

e
 d

W

Fr
ac

ti
o

n
 o

f
ze

ro
s

in
 d

n
e

t

Threshold

Layer 1 Layer 2 Layer 3 Correlation to Baseline dW

Figure 3: Impact of Training with Sparsified SGD

Figure 3 shows the evaluation result. We measure the change of dW by the normalized inner product
of sparsified dW and the original dW without sparisifying (the baseline shown in Figure 3). If we
denote the original weight gradient as dW0, the correlation between sparsified dW and dW0 can be
measured by normalized inner product

correlation =
dW · dW0

||dW || · ||dW0||

6

Under review as a conference paper at ICLR 2017

If the correlation is 1, it means dW is exactly the same to dW0. If the correlation is 0, it means
dW is orthogonal to dW0. The higher the correlation is, the less impact the sparsification has on
this single step backward propagation. From Figure 3 we can see that even without our thresholding
technique, the dnet still exhibits approximately 10% sparsity. These zero values are resulted from
the limited dynamic range of floating point numbers, in which extremely small values are rounded
to zero. By applying the thresholds to dnet, we can induce more sparsity shown by the bars. Even
with a low threshold (10−8), the sparsity in dnet is increased to about 45%. With a relatively high
threshold (10−6), the sparsity can be increased to around 80%. Although the sparsity is high, the
correlation between the sparsified dW and dW0 is close to 1 even with the high threshold. Therefore,
we can hypothesize that we can safely induce a considerable amount of sparsity with an appropriate
threshold. It is straightforward to understand that the threshold cannot be arbitrarily large since
we need to contain the information of the gradients. For example, if we increase the threshold
even further to 10−5, the correlation will drop to 0.26, which is far from the original dW0 and not
acceptable.

We have demonstrated that we can induce more sparsity by rounding small dnet to zero while
maintaining the information in dW . However, this is only an evaluation on one single iteration of
training. To show the generality of our static thresholding approach, we applied the thresholds to
the entire training process.

4 AN ENTIRE LSTM TRAINING WITH SPARSIFIED SGD

In this section, we first present the sparsity induced by applying our sprsified SGD to an entire
training process, and then discuss the generality of our approach.

4.1 CHARACTER-BASED LANGUAGE MODEL

To validate our proposed static thresholding approach, we apply it to the entire LSTM-based RNN
training process. We first conducted an experiment on training a character-based language model.
The language model consists of one word2vec layer, three LSTM-based RNN layers, and one linear
classifier layer. The number of LSTM cells per RNN layer is 256. We feed the network with
sequences of 100 characters each. The training dataset is a truncated Wikipedia dataset. We apply a
fixed threshold to all dnet gradients for every iteration during the whole training process.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

Fr
ac

ti
o

n
 o

f
ze

ro
s

in
 d

n
e

t

Baseline threshold=1e-7 threshold=1e-6 threshold=1e-5

Time

Figure 4: Sparsity in dnet with different thresholds

Figure 4 shows the sparsity of the linear gate gradients (dnet) of each layer during the whole training
process. In the baseline configuration, the training method is standard SGD without sparsifying (zero

7

Under review as a conference paper at ICLR 2017

threshold). The baseline configuration exhibits about 20% sparsity in dnet. By applying only a low
threshold (10−7), the sparsity is increased to around 70%. And we can consistently increase the
sparsity further by raising the threshold. However, we have to monitor the impact of the threshold
on the overall training performance to check if the threshold is too large to use.

1.40000

1.50000

1.60000

1.70000

1.80000

1.90000

2.00000

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 36000 38000 40000

V
al

id
at

io
n

 L
o

ss

Training iterations

Baseline Low (1e-7) Medium (1e-6) High (1e-5)

Figure 5: Validation Loss with different thresholds

Figure 5 shows the validation loss of each iteration. We observe that up to the medium threshold
(10−6), the validation loss of the model trained with sparsified SGD keeps close to the baseline.
However, if we continues raising the threshold to 10−5, the validation loss becomes unacceptably
higher than the baseline. Although the validation loss with the 10−5 threshold is consistently de-
creasing as the training goes on, we conservatively do not pick this configuration to train the LSTM
network. So combining Figure 4 with Figure 5, we can choose the threshold 10−6 to train the
character-based language model to achieve about 80% sparsity in dnet.

Since the linear gate gradients dnet are involved in all the four matrix multiplications in the
backward propagation, there are 80% MAC operations in these matrix multiplications have zero
operands. Furthermore, there are six matrix multiplications (all of them are of the same amount of
computation) in one LSTM training iteration and four out of them (67%) are sparse. So there are
more than 50% MAC operations will have zero operands introduced by our sparsified SGD in one
LSTM training iteration. The MAC operations with zero operands produce zero output and thus
make no contribution to the final results. These redundant MAC operations can be eliminated by
hardware techniques similar to (Han et al., 2016a) (Albericio et al., 2016) to improve the energy
efficiency of LSTM training.

4.2 SENSITIVITY TEST

Our static thresholding approach can induce more than 80% sparsity in linear gate gradients of
the character-based language model training. To demonstrate the generality of our approach, we
then changed the topology of the RNN layers in the character-based language model with several
different LSTM-based RNNs for a sensitivity test. The network topologies used in the sensitivity
test are shown below.

• Number of layers: 2, 3, 6, 9;
• Number of LSTM cells per layer: 128, 256, 512;
• Sequence length: 25, 50, 100.

We also trained the network with other datasets, such as the tiny-Shakespear dataset and the novel
War and Peace. For all the data points we collected from the sensitivity test, we can always achieve

8

Under review as a conference paper at ICLR 2017

more than 80% sparsity in dnet with less than 1% loss of performance in terms of validation loss
with respect to the baseline.

Moreover, we also validated our approach by training an image captioning application (Karpathy
& Li, 2015) with MSCOCO dataset (Lin et al., 2014) and a machine translation application known
as Seq2Seq (Sutskever et al., 2014) with WMT15 dataset. As both the two applications are imple-
mented based on graph model (Torch and TensorFlow, respectively), we plugged a custom operation
in the automatically generated backward propagation subgraph to implement our proposed sparsi-
fied SGD. The experiment results show that the conclusion for the character-based language model
still holds for the two applications.

4.3 DISCUSSION

So far all our experiment results show promising results and we believe our sparsified SGD is a
general approach to induce sparsity for LSTM-based RNN training. From the computer hardware
perspective, the sparsified SGD is similar to reduced precision implementation while the impact of
sparsified SGD is much less since we still use full 32-bit floating point numbers. From the theory
perspective, SGD itself is a gradient descent with noise and thresholding very small gradients to
zero is nothing more than an additional noise source. Since training with SGD is robust to noise,
the thresholding approach will likely not affect the overall training performance. Additionally, the
weight gradients dW are aggregated through many time steps, which makes the LSTM more robust
to the noise introduce by sparsifying the linear gate gradients.

5 CONCLUSION AND FUTURE WORK

In this paper, we conducted an application characterization to an LSTM-based RNN application and
observe skewed distribution in the sigmoid-based gates and the tanh-based new cell state, which
indicates potential sparsity in the linear gate gradients during backward propagation with SGD. The
linear gate gradients are involved with 67% MAC operations in an entire LSTM training process so
that we can improve the energy efficiency of hardware implementations if the linear gate gradients
are sparse. We propose a simple yet effective rounding to zero technique, which can make the
sparsity of the linear gate gradients higher than 80% without loss of performance. Therefore, more
than 50% MAC operations are redundant in an entire sparsified LSTM training.

Obviously, the static-threshold approach is not optimal. In future, we will design a dynamic-
threshold approach based on the learning rate, L2-norm of the gradients and the network topology.
Hardware techniques will also be introduced to exploit the sparsity to improve the energy efficiency
and training speed of LSTM-based RNNs for GPU and other hardware accelerators.

REFERENCES

Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and An-
dreas Moshovos. Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing. 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), pp. 1–13,
2016. doi: 10.1109/ISCA.2016.11. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7551378.

Jeremy Appleyard, Tomas Kocisky, and Phil Blunsom. Optimizing Performance of Recurrent Neural
Networks on GPUs. arXiv, pp. 1–9, 2016. URL http://arxiv.org/abs/1604.01946.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando de Freitas. Predicting
Parameters in Deep Learning. Nips, pp. 2148–2156, 2013. URL http://papers.nips.cc/
paper/5025-predicting-parameters-in-deep-learning.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep Learning with
Limited Numerical Precision. Proceedings of the 32nd International Conference on Machine
Learning (ICML-15), pp. 1737–1746, 2015. ISSN 19410093. doi: 10.1109/72.80206. URL
http://jmlr.org/proceedings/papers/v37/gupta15.pdf.

9

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7551378
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7551378
http://arxiv.org/abs/1604.01946
http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning
http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning
http://jmlr.org/proceedings/papers/v37/gupta15.pdf

Under review as a conference paper at ICLR 2017

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.
Dally. EIE: Efficient Inference Engine on Compressed Deep Neural Network. 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), 16:243–254, 2016a. doi:
10.1109/ISCA.2016.30. URL http://arxiv.org/abs/1602.01528{%}5Cnhttp://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7551397.

Song Han, Huizi Mao, and William J. Dally. Deep Compression - Compressing Deep Neural Net-
works with Pruning, Trained Quantization and Huffman Coding. International Conference on
Learning Representations (ICLR), pp. 1–13, 2016b. URL http://arxiv.org/abs/1510.
00149{%}5Cnhttp://www.arxiv.org/pdf/1510.00149.pdf.

Andrej Karpathy and Fei Fei Li. Deep visual-semantic alignments for generating image descrip-
tions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 07-12-June:3128–3137, 2015. ISSN 10636919. doi: 10.1109/CVPR.2015.7298932.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and Understanding Recurrent Net-
works. International Conference on Learning Representations (ICLR), pp. 1–13, 2016. ISSN
978-3-319-10589-5. doi: 10.1007/978-3-319-10590-1 53.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep Con-
volutional Neural Networks. Advances In Neural Information Processing Systems, pp. 1–9, 2012.
ISSN 10495258. doi: http://dx.doi.org/10.1016/j.protcy.2014.09.007.

Darryl D Lin, Sachin S Talathi, and V. Sreekanth Annapureddy. Fixed Point Quantization of Deep
Convolutional Networks. 48:1–12, 2015. URL http://arxiv.org/abs/1511.06393.

Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 8693 LNCS(PART 5):740–755, 2014. ISSN 16113349. doi: 10.1007/
978-3-319-10602-1 48.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. International Conference on Learning Representations (ICLR), pp. 1–14, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural net-
works. Advances in Neural Information Processing Systems (NIPS), pp. 3104–3112, 2014. ISSN
09205691. doi: 10.1007/s10107-014-0839-0. URL http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural.

10

http://arxiv.org/abs/1602.01528{%}5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7551397
http://arxiv.org/abs/1602.01528{%}5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7551397
http://arxiv.org/abs/1510.00149{%}5Cnhttp://www.arxiv.org/pdf/1510.00149.pdf
http://arxiv.org/abs/1510.00149{%}5Cnhttp://www.arxiv.org/pdf/1510.00149.pdf
http://arxiv.org/abs/1511.06393
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural

	Introduction
	Background and Motivation
	Sparsity-Centric Optimization for Neural Networks
	Application Characterization

	Sparsified Stochastic Gradient Descent for LSTM
	Potential Sparsity in LSTM backward propagation
	Inducing More Sparsity

	An Entire LSTM Training with Sparsified SGD
	Character-Based Language Model
	Sensitivity Test
	Discussion

	Conclusion and Future Work

