
Published as a conference paper at ICLR 2017

DIALOGUE LEARNING WITH HUMAN-IN-THE-LOOP

Jiwei Li, Alexander H. Miller, Sumit Chopra, Marc’Aurelio Ranzato, Jason Weston
Facebook AI Research,
New York, USA
{jiwel,ahm,spchopra,ranzato,jase}@fb.com

ABSTRACT

An important aspect of developing conversational agents is to give a bot the ability
to improve through communicating with humans and to learn from the mistakes
that it makes. Most research has focused on learning from fixed training sets of
labeled data rather than interacting with a dialogue partner in an online fashion.
In this paper we explore this direction in a reinforcement learning setting where
the bot improves its question-answering ability from feedback a teacher gives fol-
lowing its generated responses. We build a simulator that tests various aspects of
such learning in a synthetic environment, and introduce models that work in this
regime. Finally, real experiments with Mechanical Turk validate the approach.

1 INTRODUCTION

A good conversational agent (which we sometimes refer to as a learner or bot1) should have the
ability to learn from the online feedback from a teacher: adapting its model when making mistakes
and reinforcing the model when the teacher’s feedback is positive. This is particularly important
in the situation where the bot is initially trained in a supervised way on a fixed synthetic, domain-
specific or pre-built dataset before release, but will be exposed to a different environment after
release (e.g., more diverse natural language utterance usage when talking with real humans, different
distributions, special cases, etc.). Most recent research has focused on training a bot from fixed
training sets of labeled data but seldom on how the bot can improve through online interaction with
humans. Human (rather than machine) language learning happens during communication (Bassiri,
2011; Werts et al., 1995), and not from labeled datasets, hence making this an important subject to
study.

In this work, we explore this direction by training a bot through interaction with teachers in an
online fashion. The task is formalized under the general framework of reinforcement learning via
the teacher’s (dialogue partner’s) feedback to the dialogue actions from the bot. The dialogue takes
place in the context of question-answering tasks and the bot has to, given either a short story or a
set of facts, answer a set of questions from the teacher. We consider two types of feedback: explicit
numerical rewards as in conventional reinforcement learning, and textual feedback which is more
natural in human dialogue, following (Weston, 2016). We consider two online training scenarios:
(i) where the task is built with a dialogue simulator allowing for easy analysis and repeatability of
experiments; and (ii) where the teachers are real humans using Amazon Mechanical Turk.

We explore important issues involved in online learning such as how a bot can be most efficiently
trained using a minimal amount of teacher’s feedback, how a bot can harness different types of
feedback signal, how to avoid pitfalls such as instability during online learing with different types
of feedback via data balancing and exploration, and how to make learning with real humans feasible
via data batching. Our findings indicate that it is feasible to build a pipeline that starts from a model
trained with fixed data and then learns from interactions with humans to improve itself.

1In this paper, we refer to a learner (either a human or a bot/dialogue agent which is a machine learning
algorithm) as the student, and their more knowledgeable dialogue partner as the teacher.

1

Published as a conference paper at ICLR 2017

2 RELATED WORK

Reinforcement learning has been widely applied to dialogue, especially in slot filling to solve
domain-specific tasks (Walker, 2000; Schatzmann et al., 2006; Singh et al., 2000; 2002). Efforts
include Markov Decision Processes (MDPs) (Levin et al., 1997; 2000; Walker et al., 2003; Pierac-
cini et al., 2009), POMDP models (Young et al., 2010; 2013; Gašic et al., 2013; 2014) and policy
learning (Su et al., 2016). Such a line of research focuses mainly on frames with slots to fill, where
the bot will use reinforcement learning to model a state transition pattern, generating dialogue ut-
terances to prompt the appropriate user responses to put in the desired slots. This goal is different
from ours, where we study end-to-end learning systems and also consider non-reward based setups
via textual feedback.

Our work is related to the line of research that focuses on supervised learning for question answering
(QA) from dialogues (Dodge et al., 2015; Weston, 2016), either given a database of knowledge
(Bordes et al., 2015; Miller et al., 2016) or short texts (Weston et al., 2015; Hermann et al., 2015;
Rajpurkar et al., 2016). In our work, the discourse includes the statements made in the past, the
question and answer, and crucially the response from the teacher. The latter is what makes the
setting different from the standard QA setting, i.e. we use methods that leverage this response also,
not just answering questions. Further, QA works only consider fixed datasets with gold annotations,
i.e. they do not consider a reinforcement learning setting.

Our work is closely related to a recent work from Weston (2016) that learns through conducting
conversations where supervision is given naturally in the response during the conversation. That
work introduced the use of forward prediction that learns by predicting the teacher’s feedback, in
addition to using reward-based learning of correct answers. However, two important issues were
not addressed: (i) it did not use a reinforcement learning setting, but instead used pre-built datasets
with fixed policies given in advance; and (ii) experiments used only simulated and no real language
data. Hence, models that can learn policies from real online communication were not investigated.
To make the differences with our work clear, we will now detail these points further.

The experiments in (Weston, 2016) involve constructing pre-built fixed datasets, rather than training
the learner within a simulator, as in our work. Pre-built datasets can only be made by fixing a prior
in advance. They achieve this by choosing an omniscient (but deliberately imperfect) labeler that
gets πacc examples always correct (the paper looked at values 50%, 10% and 1%). Again, this was
not learned, and was fixed to generate the datasets. Note that the paper refers to these answers as
coming from “the learner” (which should be the model), but since the policy is fixed it actually does
not depend on the model. In a realistic setting one does not have access to an omniscient labeler,
one has to learn a policy completely from scratch, online, starting with a random policy, so their
setting was not practically viable. In our work, when policy training is viewed as batch learning
over iterations of the dataset, updating the policy on each iteration, (Weston, 2016) can be viewed
as training only one iteration, whereas we perform multiple iterations. This is explained further in
Sections 4.2 and 5.1. We show in our experiments that performance improves over the iterations,
i.e. it is better than the first iteration. We show that such online learning works for both reward-
based numerical feedback and for forward prediction methods using textual feedback (under certain
conditions which are detailed). This is a key contribution of our work.

Finally, (Weston, 2016) only conducted experiments on synthetic or templated language, and not
real language, especially the feedback from the teacher was scripted. While we believe that synthetic
datasets are very important for developing understanding (hence we develop a simulator and conduct
experiments also with synthetic data), for a new method to gain traction it must be shown to work
on real data. We hence employ Mechanical Turk to collect real language data for the questions and
importantly for the teacher feedback and construct experiments in this real setting.

3 DATASET AND TASKS

We begin by describing the data setup we use. In our first set of experiments we build a simulator
as a testbed for learning algorithms. In our second set of experiments we use Mechanical Turk to
provide real human teachers giving feedback.

2

Published as a conference paper at ICLR 2017

3.1 SIMULATOR

The simulator adapts two existing fixed datasets to our online setting. Following Weston (2016), we
use (i) the single supporting fact problem from the bAbI datasets (Weston et al., 2015) which consists
of 1000 short stories from a simulated world interspersed with questions; and (ii) the WikiMovies
dataset (Weston et al., 2015) which consists of roughly 100k (templated) questions over 75k entities
based on questions with answers in the open movie database (OMDb). Each dialogue takes place
between a teacher, scripted by the simulation, and a bot. The communication protocol is as follows:
(1) the teacher first asks a question from the fixed set of questions existing in the dataset, (2) the bot
answers the question, and finally (3) the teacher gives feedback on the bot’s answer.

We follow the paradigm defined in (Weston, 2016) where the teacher’s feedback takes the form of
either textual feedback, a numerical reward, or both, depending on the task. For each dataset, there
are ten tasks, which are further described in Sec. A and illustrated in Figure 5 of the appendix. We
also refer the readers to (Weston, 2016) for more detailed descriptions and the motivation behind
these tasks. In the main text of this paper we only consider Task 6 (“partial feedback”): the teacher
replies with positive textual feedback (6 possible templates) when the bot answers correctly, and
positive reward is given only 50% of the time. When the bot is wrong, the teacher gives textual
feedback containing the answer. Descriptions and experiments on the other tasks are detailed in the
appendix. Example dialogues are given in Figure 1.

The difference between our simulation and the original fixed tasks of Weston (2016) is that models
are trained on-the-fly. After receiving feedback and/or rewards, we update the model (policy) and
then deploy it to collect teacher’s feedback in the next episode or batch. This means the model’s
policy affects the data which is used to train it, which was not the case in the previous work.

Figure 1: Simulator sample dialogues for the bAbI task (left) and WikiMovies (right). We
consider 10 different tasks following Weston (2016) but here describe only Task 6; other tasks are
detailed in the appendix. The teacher’s dialogue is in black and the bot is in red. (+) indicates
receiving positive reward, given only 50% of the time even when correct.

bAbI Task 6: Partial Rewards WikiMovies Task 6: Partial Rewards
Mary went to the hallway. What films are about Hawaii? 50 First Dates
John moved to the bathroom. Correct!
Mary travelled to the kitchen. Who acted in Licence to Kill? Billy Madison
Where is Mary? kitchen No, the answer is Timothy Dalton.
Yes, that’s right! What genre is Saratoga Trunk in? Drama
Where is John? bathroom Yes! (+)
Yes, that’s correct! (+) . . .

Figure 2: Human Dialogue from Mechanical Turk (based on WikiMovies) The human teacher’s
dialogue is in black and the bot is in red. We show examples where the bot answers correctly (left)
and incorrectly (right). Real humans provide more variability of language in both questions and
textual feedback than in the simulator setup (cf. Figure 1).

Sample dialogues with correct answers from the bot:
Who wrote the Linguini Incident ? richard shepard
Richard Shepard is one of the right answers here.
What year did The World Before Her premiere? 2012
Yep! That’s when it came out.
Which are the movie genres of Mystery of the 13th Guest? crime
Right, it can also be categorized as a mystery.
Sample dialogues with incorrect answers from the bot:
What are some movies about a supermarket ? supermarket
There were many options and this one was not among them.
Which are the genres of the film Juwanna Mann ? kevin pollak
That is incorrect. Remember the question asked for a genre not name.
Who wrote the story of movie Coraline ? fantasy
That’s a movie genre and not the name of the writer. A better answer would of been Henry Selick
or Neil Gaiman.

3

Published as a conference paper at ICLR 2017

3.2 MECHANICAL TURK EXPERIMENTS

Finally, we extended WikiMovies using Mechanical Turk so that real human teachers are giving
feedback rather than using a simulation. As both the questions and feedback are templated in the
simulation, they are now both replaced with natural human utterances. Rather than having a set of
simulated tasks, we have only one task, and we gave instructions to the teachers that they could
give feedback as they see fit. The exact instructions given to the Turkers is given in Appendix B. In
general, each independent response contains feedback like (i) positive or negative sentences; or (ii)
a phrase containing the answer or (iii) a hint, which are similar to setups defined in the simulator.
However, some human responses cannot be so easily categorized, and the lexical variability is much
larger in human responses. Some examples of the collected data are given in Figure 2.

4 METHODS

4.1 MODEL ARCHITECTURE

In our experiments, we used variants of the End-to-End Memory Network (MemN2N) model
(Sukhbaatar et al., 2015) as our underlying architecture for learning from dialogue.

The input to MemN2N is the last utterance of the dialogue history x as well as a set of memories
(context) C=c1, c2, ..., cN . The memory C encodes both short-term memory, e.g., dialogue histories
between the bot and the teacher, and long-term memories, e.g., the knowledge base facts that the bot
has access to. Given the input x and C, the goal is to produce an output/label a.

In the first step, the query x is transformed to a vector representation u0 by summing up its con-
stituent word embeddings: u0 = Ax. The input x is a bag-of-words vector and A is the d× V word
embedding matrix where d denotes the emebbding dimension and V denotes the vocabulary size.
Each memory ci is similarly transformed to a vector mi. The model will read information from the
memory by comparing input representation u0 with memory vectors mi using softmax weights:

o1 =
∑
i

p1imi p1i = softmax(uT0mi) (1)

This process selects memories relevant to the last utterance x, i.e., the memories with large values
of p1i . The returned memory vector o1 is the weighted sum of memory vectors. This process can
be repeated to query the memory N times (so called “hops”) by adding on to the original input,
u1 = o1 + u0, or to the previous state, un = on + un−1, and then using un to query the memories
again.

In the end, uN is input to a softmax function for the final prediction:

a = softmax(uTNy1, u
T
Ny2, ..., u

T
NyL) (2)

where y1, . . . , yL denote the set of candidate answers. If the answer is a word, yi is the corresponding
word embedding. If the answer is a sentence, yi is the embedding for the sentence achieved in the
same way that we obtain embeddings for query x and memory C.

The standard way MemN2N is trained is via a cross entropy criterion on known input-output pairs,
which we refer to as supervised or imitation learning. As our work is in a reinforcement learning
setup where our model must make predictions to learn, this procedure will not work, so we instead
consider reinforcement learning algorithms which we describe next.

4.2 REINFORCEMENT LEARNING

In this section, we present the algorithms we used to train MemN2N in an online fashion. Our learn-
ing setup can be cast as a particular form of Reinforcement Learning. The policy is implemented by
the MemN2N model. The state is the dialogue history. The action space corresponds to the set of
answers the MemN2N has to choose from to answer the teacher’s question. In our setting, the policy
chooses only one action for each episode. The reward is either 1 (a reward from the teacher when
the bot answers correctly) or 0 otherwise. Note that in our experiments, a reward equal to 0 might
mean that the answer is incorrect or that the positive reward is simply missing. The overall setup is
closest to standard contextual bandits, except that the reward is binary.

4

Published as a conference paper at ICLR 2017

When working with real human dialogues, e.g. collecting data via Mechanical Turk, it is easier to
set up a task whereby a bot is deployed to respond to a large batch of utterances, as opposed to a
single one. The latter would be more difficult to manage and scale up since it would require some
form of synchronization between the model replicas interacting with each human.

This is comparable to the real world situation where a teacher can either ask a student a single
question and give feedback right away, or set up a test that contains many questions and grade all of
them at once. Only after the learner completes all questions, it can hear feedback from the teacher.

We use batch size to refer to how many dialogue episodes the current model is used to collect
feedback before updating its parameters. In the Reinforcement Learning literature, batch size is
related to off-policy learning since the MemN2N policy is trained using episodes collected with a
stale version of the model. Our experiments show that our model and base algorithms are very robust
to the choice of batch size, alleviating the need for correction terms in the learning algorithm (Bottou
et al., 2013).

We consider two strategies: (i) online batch size, whereby the target policy is updated after doing a
single pass over each batch (a batch size of 1 reverts to the usual on-policy online learning); and (ii)
dataset-sized batch, whereby training is continued to convergence on the batch which is the size of
the dataset, and then the target policy is updated with the new model, and a new batch is drawn and
the procedure iterates. These strategies can be applied to all the methods we use, described below.

Next, we discuss the learning algorithms we considered in this work.

4.2.1 REWARD-BASED IMITATION (RBI)

The simplest algorithm we first consider is the one employed in Weston (2016). RBI relies on
positive rewards provided by the teacher. It is trained to imitate the correct behavior of the learner,
i.e., learning to predict the correct answers (with reward 1) at training time and disregarding the
other ones. This is implemented by using a MemN2N that maps a dialogue input to a prediction, i.e.
using the cross entropy criterion on the positively rewarded subset of the data.

In order to make this work in the online setting which requires exploration to find the correct answer,
we employ an ε-greedy strategy: the learner makes a prediction using its own model (the answer
assigned the highest probability) with probability 1 − ε, otherwise it picks a random answer with
probability ε. The teacher will then give a reward of +1 if the answer is correct, otherwise 0. The
bot will then learn to imitate the correct answers: predicting the correct answers while ignoring the
incorrect ones.

4.2.2 REINFORCE

The second algorithm we use is the REINFORCE algorithm (Williams, 1992), which maximizes
the expected cumulative reward of the episode, in our case the expected reward provided by the
teacher. The expectation is approximated by sampling an answer from the model distribution. Let a
denote the answer that the learner gives, p(a) denote the probability that current model assigns to a,
r denote the teacher’s reward, and J(θ) denote the expectation of the reward. We have:

∇J(θ) ≈ ∇ log p(a)[r − b] (3)

where b is the baseline value, which is estimated using a linear regression model that takes as input
the output of the memory network after the last hop, and outputs a scalar b denoting the estimation
of the future reward. The baseline model is trained by minimizing the mean squared loss between
the estimated reward b and actual reward r, ||r − b||2. We refer the readers to (Ranzato et al., 2015;
Zaremba & Sutskever, 2015) for more details. The baseline estimator model is independent from
the policy model, and its error is not backpropagated through the policy model.

The major difference between RBI and REINFORCE is that (i) the learner only tries to imitate
correct behavior in RBI while in REINFORCE it also leverages the incorrect behavior, and (ii) the
learner explores using an ε-greedy strategy in RBI while in REINFORCE it uses the distribution
over actions produced by the model itself.

5

Published as a conference paper at ICLR 2017

4.2.3 FORWARD PREDICTION (FP)

FP (Weston, 2016) handles the situation where a numerical reward for a bot’s answer is not available,
meaning that there are no +1 or 0 labels available after a student’s utterance. Instead, the model
assumes the teacher gives textual feedback t to the bot’s answer, taking the form of a dialogue
utterance, and the model tries to predict this instead. Suppose that x denotes the teacher’s question
andC=c1, c2, ..., cN denotes the dialogue history as before. In FP, the model first maps the teacher’s
initial question x and dialogue history C to a vector representation u using a memory network with
multiple hops. Then the model will perform another hop of attention over all possible student’s
answers in A, with an additional part that incorporates the information of which candidate (i.e., a)
was actually selected in the dialogue:

pâ = softmax(uT yâ) o =
∑
â∈A

pâ(yâ + β · 1[â = a]) (4)

where yâ denotes the vector representation for the student’s answer candidate â. β is a (learned)
d-dimensional vector to signify the actual action a that the student chooses. o is then combined with
u to predict the teacher’s feedback t using a softmax:

u1 = o+ u t = softmax(uT1 xr1 , u
T
1 xr2 , ..., u

T
1 xrN) (5)

where xri denotes the embedding for the ith response. In the online setting, the teacher will give
textual feedback, and the learner needs to update its model using the feedback. It was shown in
Weston (2016) that in an off-line setting this procedure can work either on its own, or in conjunction
with a method that uses numerical rewards as well for improved performance. In the online setting,
we consider two simple extensions:

• ε-greedy exploration: with probability ε the student will give a random answer, and with
probability 1− ε it will give the answer that its model assigns the largest probability. This
method enables the model to explore the space of actions and to potentially discover correct
answers.

• data balancing: cluster the set of teacher responses t and then balance training across the
clusters equally.2 This is a type of experience replay (Mnih et al., 2013) but sampling with
an evened distribution. Balancing stops part of the distribution dominating the learning. For
example, if the model is not exposed to sufficient positive and negative feedback, and one
class overly dominates, the learning process degenerates to a model that always predicts
the same output regardless of its input.

5 EXPERIMENTS

Experiments are first conducted using our simulator, and then using Amazon Mechanical Turk with
real human subjects taking the role of the teacher3.

5.1 SIMULATOR

Online Experiments In our first experiments, we considered both the bAbI and WikiMovies tasks
and varied batch size, random exploration rate ε, and type of model. Figure 3 and Figure 4 shows
(Task 6) results on bAbI and WikiMovies. Other tasks yield similar conclusions and are reported in
the appendix.

Overall, we obtain the following conclusions:

• In general RBI and FP do work in a reinforcement learning setting, but can perform better
with random exploration.

• In particular RBI can fail without exploration. RBI needs random noise for exploring labels
otherwise it can get stuck predicting a subset of labels and fail.

2In the simulated data, because the responses are templates, this can be implemented by first randomly
sampling the response, and then randomly sampling a story with that response; we keep the history of all
stories seen from which we sample. For real data slightly more sophisticated clustering should be used.

3 Code and data are available at https://github.com/facebook/MemNN/tree/master/HITL.

6

https://github.com/facebook/MemNN/tree/master/HITL

Published as a conference paper at ICLR 2017

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Random Exploration for RBI

ε=0

ε=0.2

ε=0.4

ε=0.6

ε=0.8
ε=1

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Random Exploration for FP

ε=0

ε=0.2

ε=0.4

ε=0.6

ε=0.8
ε=1

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Random Exploration for FP with Balancing

ε=0

ε=0.2

ε=0.4

ε=0.6

ε=0.8
ε=1

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Comparing RBI, FP and REINFORCE

REINFORCE

RBI

FP

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

RBI (eps=0.6) Varying Batch Size

batch 20

batch 80

batch 320

batch 1000

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

FP (eps=0.6) Varying Batch Size

batch 20

batch 80

batch 320

batch 1000

Figure 3: Training epoch vs. test accuracy for bAbI (Task 6) varying exploration ε and batch
size. Random exploration is important for both reward-based (RBI) and forward prediction (FP).
Performance is largely independent of batch size, and RBI performs similarly to REINFORCE.
Note that supervised, rather than reinforcement learning, with gold standard labels achieves 100%
accuracy on this task.

• REINFORCE obtains similar performance to RBI with optimal ε.

• FP with balancing or with exploration via ε both outperform FP alone.

• For both RBI and FP, performance is largely independent of online batch size.

Dataset Batch Size Experiments Given that larger online batch sizes appear to work well, and
that this could be important in a real-world data collection setup where the same model is deployed to
gather a large amount of feedback from humans, we conducted further experiments where the batch
size is exactly equal to the dataset size and for each batch training is completed to convergence.

7

Published as a conference paper at ICLR 2017

0 5 10 15 20

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Random Exploration for RBI

ε=0

ε=0.1

ε=0.2

ε=0.3

ε=0.4

ε=0.5
ε=1

0 5 10 15 20

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Random Exploration for FP

ε=0

ε=0.1

ε=0.2

ε=0.3

ε=0.4

ε=0.5
ε=1

0 5 10 15 20
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

RBI (eps=0.5) Varying Batch Size

batch 32

batch 320

batch 3200

batch 32000

full dataset

0 5 10 15 20

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Comparing RBI, FP and REINFORCE

REINFORCE

RBI

FP

Figure 4: WikiMovies: Training epoch vs. test accuracy on Task 6 varying (top left panel) explo-
ration rate ε while setting batch size to 32 for RBI, (top right panel) for FP, (bottom left) batch size
for RBI, and (bottom right) comparing RBI, REINFORCE and FP with ε = 0.5. The model is robust
to the choice of batch size. RBI and REINFORCE perform comparably. Note that supervised, rather
than reinforcement learning, with gold standard labels achieves 80% accuracy on this task (Weston,
2016).

After the model has been trained on the dataset, it is deployed to collect a new dataset of questions
and answers, and the process is repeated. Table 1 reports test error at each iteration of training,
using the bAbI Task 6 as the case study (see the appendix for results on other tasks). The following
conclusions can be made for this setting:

• RBI improves in performance as we iterate. Unlike in the online case, RBI does not need
random exploration. We believe this is because the first batch, which is collected with a
randomly initialized model, contains enough variety of examples with positive rewards that
the model does not get stuck predicting a subset of labels.

• FP is not stable in this setting. This is because once the model gets very good at making
predictions (at the third iteration), it is not exposed to a sufficient number of negative re-
sponses anymore. From that point on, learning degenerates and performance drops as the
model always predicts the same responses. At the next iteration, it will recover again since
it has a more balanced training set, but then it will collapse again in an oscillating behavior.

• FP does work if extended with balancing or random exploration with sufficiently large ε.

• RBI+FP also works well and helps with the instability of FP, alleviating the need for random
exploration and data balancing.

Overall, our simulation results indicate that while a bot can be effectively trained fully online from
bot-teacher interactions, collecting real dialogue data in batches (which is easier to collect and iterate
experiments over) is also a viable approach. We hence pursue the latter approach in our next set of
experiments.

8

Published as a conference paper at ICLR 2017

Iteration 1 2 3 4 5 6
Imitation Learning 0.24 0.23 0.23 0.22 0.23 0.23
Reward Based Imitation (RBI) 0.74 0.87 0.90 0.96 0.96 0.98
Forward Pred. (FP) 0.99 0.96 1.00 0.30 1.00 0.29
RBI+FP 0.99 0.96 0.97 0.95 0.94 0.97
FP (balanced) 0.99 0.97 0.97 0.97 0.97 0.97
FP (rand. exploration ε = 0.25) 0.96 0.88 0.94 0.26 0.64 0.99
FP (rand. exploration ε = 0.5) 0.98 0.98 0.99 0.98 0.95 0.99

Table 1: Test accuracy of various models per iteration in the dataset batch size case (using batch size
equal to the size of the full training set) for bAbI, Task 6. Results > 0.95 are in bold.

Relation to experiments in Weston (2016) As described in detail in Section 2 the datasets we
use in our experiments were introduced in (Weston et al., 2015). However, that work involved
constructing pre-built fixed policies (and hence, datasets), rather than training the learner in a rein-
forcement/interactive learning using a simulator, as in our work. They achieved this by choosing
an omniscient (but deliberately imperfect) labeler that gets πacc examples always correct (the paper
looked at values 1%, 10% and 50%). In a realistic setting one does not have access to an omniscient
labeler, one has to learn a policy completely from scratch, online, starting with a random policy, as
we do here. Nevertheless, it is possible to compare our learnt policies to those results because we
use the same train/valid/test splits.

The clearest comparison comparison is via Table 1, where the policy is learnt using batch iterations
of the dataset, updating the policy on each iteration. Weston et al. (2015) can be viewed as training
only one iteration, with a pre-built policy, as explained above, where 59%, 81% and 99% accuracy
was obtained for RBI for πacc with 1%, 10% and 50% respectively4. While πacc of 50% is good
enough to solve the task, lower values are not. In this work a random policy begins with 74%
accuracy on the first iteration, but importantly on each iteration the policy is updated and improves,
with values of 87%, 90% on iterations 2 and 3 respectively, and 98% on iteration 6. This is a key
differentiator to the work of (Weston et al., 2015) where such improvement was not shown. We
show that such online learning works for both reward-based numerical feedback and for forward
prediction methods using textual feedback (as long as balancing or random exploration is performed
sufficiently). The final performance outperforms most values of πacc from Weston et al. (2015)
unless π is so large that the task is already solved. This is a key contribution of our work.

Similar conclusions can be made for Figures 3 and 4. Despite our initial random policy starting at
close to 0% accuracy, if random exploration ε ≥ 0.2 is employed then after a number of epochs
the performance is better than most values of πacc from Weston et al. (2015), e.g. compare the
accuracies given in the previous paragraph (59%, 81% and 99%) to Figure 3, top left.

5.2 HUMAN FEEDBACK

We employed Turkers to both ask questions and then give textual feedback on the bot’s answers, as
described in Section 3.2. Our experimental protocol was as follows. We first trained a MemN2N
using supervised (i.e., imitation) learning on a training set of 1000 questions produced by Turkers
and using the known correct answers provided by the original dataset (and no textual feedback).
Next, using the trained policy, we collected textual feedback for the responses of the bot for an
additional 10,000 questions. Examples from the collected dataset are given in Figure 2. Given this
dataset, we compare various models: RBI, FP and FP+RBI. As we know the correct answers to
the additional questions, we can assign a positive reward to questions the bot got correct. We hence
measure the impact of the sparseness of this reward signal, where a fraction r of additional examples
have rewards. The models are tested on a test set of ∼8,000 questions (produced by Turkers), and
hyperparameters are tuned on a similarly sized validation set. Note this is a harder task than the
WikiMovies task in the simulator due to the use natural language from Turkers, hence lower test
performance is expected.

4Note, this is not the same as a randomly initialized neural network policy, because due to the synthetic
construction with an omniscient labeler the labels will be balanced. In our work, we learn the policy from
randomly initialized weights which are updated as we learn the policy.

9

Published as a conference paper at ICLR 2017

Results are given in Table 2. They indicate that both RBI and FP are useful. When rewards are
sparse, FP still works via the textual feedback while RBI can only use the initial 1000 examples
when r = 0. As FP does not use numericalrewards at all, it is invariant to the parameter r. The
combination of FP and RBI outperforms either alone.

Model r = 0 r = 0.1 r = 0.5 r = 1
Reward Based Imitation (RBI) 0.333 0.340 0.365 0.375
Forward Prediction (FP) 0.358 0.358 0.358 0.358
RBI+FP 0.431 0.438 0.443 0.441

Table 2: Incorporating Feedback From Humans via Mechanical Turk. Textual feedback is
provided for 10,000 model predictions (from a model trained with 1k labeled training examples),
and additional sparse binary rewards (fraction r of examples have rewards). Forward Prediction and
Reward-based Imitation are both useful, with their combination performing best.

We also conducted additional experiments comparing with (i) synthetic feedback and (ii) the fully
supervised case which are given in Appendix C.1. They show that the results with human feedback
are competitive with these approaches.

6 CONCLUSION

We studied dialogue learning of end-to-end models using textual feedback and numerical rewards.
Both fully online and iterative batch settings are viable approaches to policy learning, as long as
possible instabilities in the learning algorithms are taken into account. Secondly, we showed for
the first time that the recently introduced FP method can work in both an online setting and on
real human feedback. Overall, our results indicate that it is feasible to build a practical pipeline
that starts with a model trained on an initial fixed dataset, which then learns from interactions with
humans in a (semi-)online fashion to improve itself. Future research should work towards doing this
in a never-ending learning setup.

REFERENCES

Mohammad Amin Bassiri. Interactional feedback and the impact of attitude and motivation on
noticing l2 form. English Language and Literature Studies, 1(2):61, 2011.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale simple question
answering with memory networks. arXiv preprint arXiv:1506.02075, 2015.

Leon Bottou, Jonas Peters, Denis X. Quionero-Candela, Joaquin amd Charles, D. Max Chicker-
ing, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning
and learning systems: The example of computational advertising. Journal of Machine Learning
Research, 14:3207–3260, 2013.

Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine Bordes, Sumit Chopra, Alexander Miller, Arthur
Szlam, and Jason Weston. Evaluating prerequisite qualities for learning end-to-end dialog sys-
tems. arXiv preprint arXiv:1511.06931, 2015.

Milica Gašic, Catherine Breslin, Matthew Henderson, Dongho Kim, Martin Szummer, Blaise Thom-
son, Pirros Tsiakoulis, and Steve Young. Pomdp-based dialogue manager adaptation to extended
domains. In Proceedings of SIGDIAL, 2013.

Milica Gašic, Dongho Kim, Pirros Tsiakoulis, Catherine Breslin, Matthew Henderson, Martin
Szummer, Blaise Thomson, and Steve Young. Incremental on-line adaptation of pomdp-based
dialogue managers to extended domains. In Proceedings on InterSpeech, 2014.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Advances in
Neural Information Processing Systems, pp. 1693–1701, 2015.

10

Published as a conference paper at ICLR 2017

Esther Levin, Roberto Pieraccini, and Wieland Eckert. Learning dialogue strategies within the
markov decision process framework. In Automatic Speech Recognition and Understanding, 1997.
Proceedings., 1997 IEEE Workshop on, pp. 72–79. IEEE, 1997.

Esther Levin, Roberto Pieraccini, and Wieland Eckert. A stochastic model of human-machine in-
teraction for learning dialog strategies. IEEE Transactions on speech and audio processing, 8(1):
11–23, 2000.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Ja-
son Weston. Key-value memory networks for directly reading documents. arXiv preprint
arXiv:1606.03126, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Roberto Pieraccini, David Suendermann, Krishna Dayanidhi, and Jackson Liscombe. Are we there
yet? research in commercial spoken dialog systems. In International Conference on Text, Speech
and Dialogue, pp. 3–13. Springer, 2009.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level train-
ing with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

Jost Schatzmann, Karl Weilhammer, Matt Stuttle, and Steve Young. A survey of statistical user sim-
ulation techniques for reinforcement-learning of dialogue management strategies. The knowledge
engineering review, 21(02):97–126, 2006.

Satinder Singh, Michael Kearns, Diane J Litman, Marilyn A Walker, et al. Empirical evaluation of
a reinforcement learning spoken dialogue system. In AAAI/IAAI, pp. 645–651, 2000.

Satinder Singh, Diane Litman, Michael Kearns, and Marilyn Walker. Optimizing dialogue man-
agement with reinforcement learning: Experiments with the njfun system. Journal of Artificial
Intelligence Research, 16:105–133, 2002.

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-Barahona, Stefan Ultes, David Vandyke,
Tsung-Hsien Wen, and Steve Young. Continuously learning neural dialogue management. arXiv
preprint arXiv:1606.02689, 2016.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In Advances
in neural information processing systems, pp. 2440–2448, 2015.

Marilyn A. Walker. An application of reinforcement learning to dialogue strategy selection in a
spoken dialogue system for email. Journal of Artificial Intelligence Research, 12:387–416, 2000.

Marilyn A Walker, Rashmi Prasad, and Amanda Stent. A trainable generator for recommendations
in multimodal dialog. In INTERSPEECH, 2003.

Margaret G Werts, Mark Wolery, Ariane Holcombe, and David L Gast. Instructive feedback: Review
of parameters and effects. Journal of Behavioral Education, 5(1):55–75, 1995.

Jason Weston. Dialog-based language learning. arXiv preprint arXiv:1604.06045, 2016.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriënboer, Armand
Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698, 2015.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Steve Young, Milica Gašić, Simon Keizer, François Mairesse, Jost Schatzmann, Blaise Thomson,
and Kai Yu. The hidden information state model: A practical framework for pomdp-based spoken
dialogue management. Computer Speech & Language, 24(2):150–174, 2010.

11

Published as a conference paper at ICLR 2017

Steve Young, Milica Gašić, Blaise Thomson, and Jason D Williams. Pomdp-based statistical spoken
dialog systems: A review. Proceedings of the IEEE, 101(5):1160–1179, 2013.

Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines. arXiv
preprint arXiv:1505.00521, 362, 2015.

12

Published as a conference paper at ICLR 2017

A FURTHER SIMULATOR TASK DETAILS

The tasks in Weston (2016) were specifically:
- Task 1: The teacher tells the student exactly what they should have said (supervised baseline).
- Task 2: The teacher replies with positive textual feedback and reward, or negative textual feedback.
- Task 3: The teacher gives textual feedback containing the answer when the bot is wrong.
- Task 4: The teacher provides a hint by providing the class of the correct answer, e.g., “No it’s a
movie” for the question “which movie did Forest Gump star in?”.
- Task 5: The teacher provides a reason why the student’s answer is wrong by pointing out the
relevant supporting fact from the knowledge base.
- Task 6: The teacher gives positive reward only 50% of the time.
- Task 7: Rewards are missing and the teacher only gives natural language feedback.
- Task 8: Combines Tasks 1 and 2 to see whether a learner can learn successfully from both forms
of supervision at once.
- Task 9: The bot asks questions of the teacher about what it has done wrong.
- Task 10: The bot will receive a hint rather than the correct answer after asking for help.

We refer the readers to (Weston, 2016) for more detailed descriptions and the motivation behind
these tasks. The difference in our system is that the model can be trained on-the-fly via the simulator:
after receiving feedback and/or rewards, the model can update itself and apply its learning to the next
episode. We present results on Tasks 2, 3 and 4 in this appendix

B INSTRUCTIONS GIVEN TO TURKERS

These are the instructions given for the textual feedback mechanical turk task (we also constructed
a separate task to collect the initial questions, not described here):

Title: Write brief responses to given dialogue exchanges (about 15 min)

Description: Write a brief response to a student’s answer to a teacher’s question, providing feedback
to the student on their answer.

Instructions:

Each task consists of the following triplets:

1. a question by the teacher
2. the correct answer(s) to the question (separated by “OR”)
3. a proposed answer in reply to the question from the student

Consider the scenario where you are the teacher and have already asked the question, and received
the reply from the student. Please compose a brief response giving feedback to the student about
their answer. The correct answers are provided so that you know whether the student was correct or
not.

For example, given 1) question: “what is a color in the united states flag?”; 2) correct answer:
“white, blue, red”; 3) student reply: “red”, your response could be something like “that’s right!”; for
3) reply: “green”, you might say “no that’s not right” or “nope, a correct answer is actually white”.

Please vary responses and try to minimize spelling mistakes. If the same responses are copied/pasted
or overused, we’ll reject the HIT.

Avoid naming the student or addressing “the class” directly.

We will consider bonuses for higher quality responses during review.

13

Published as a conference paper at ICLR 2017

T : Which movie did Tom Hanks star in ? T : Which movie did Tom Hanks star in ?
S : Forrest Gump S : Brad Pitt.

Task 1: Imitating an Expert Student Task 1: Imitating an Expert Student
S: Forrest Gump S: Forrest Gump
T: (no response) T: (no response)

Task 2: Positive and Negative Feedback Task 2: Positive and Negative Feedback
T: Yes, that’s right! (+) T: No, that’s incorrect!

Task 3: Answers Supplied by Teacher Task 3: Answers Supplied by Teacher
T: Yes, that is correct. (+) T: No, the answer is Forrest Gump !

Task 4: Hints Supplied by Teacher Task 4: Hints Supplied by Teacher
T: Correct! (+) T: No, it’s a movie !

Task 5: Supporting Facts Supplied by Teacher Task 5: Supporting Facts Supplied by Teacher
T: That’s right. (+) T: No, because Forrest Gump starred actors

Tom Hanks, Robin Wright, Gary Sinise !

Task 6: Partial Feedback Task 6: Partial Feedback
if random(0,1)<0.5 then T: Sorry, wrong.

T: That’s correct. (+)
else T: That’s correct.

Task 7: No Feedback Task 7: No Feedback
T: Yes. T: No.

Task 8: Imitation and Feedback Mixture Task 8: Imitation and Feedback Mixture
if random(0,1)<0.5 then if random(0,1)<0.5 then

T: Yes, that’s right! (+) T: Wrong.
else T: (no response) else S: Forrest Gump

Task 9: Asking For Corrections Task 9: Asking For Corrections
T: Correct! (+) T: No, that’s wrong.

S: Can you help me?
T: Forrest Gump !

Task 10: Asking For Supporting Facts Task 10: Asking For Supporting Facts
T: Yes, that’s right! (+) T: Sorry, that’s not it.

S: Can you help me?
T: A relevant fact is that Forrest Gump starred actors
Tom Hanks, Robin Wright, Gary Sinise !

Figure 5: The ten tasks our simulator implements, which evaluate different forms of teacher response
and binary feedback. In each case the same example from WikiMovies is given for simplicity, where
the student answered correctly for all tasks (left) or incorrectly (right). Red text denotes responses
by the bot with S denoting the bot. Blue text is spoken by the teacher with T denoting the teacher’s
response. For imitation learning the teacher provides the response the student should say denoted
with S in Tasks 1 and 8. A (+) denotes a positive reward.

C ADDITIONAL EXPERIMENTS

Iteration 1 2 3 4 5 6
Imitation Learning 0.24 0.23 0.23 0.23 0.25 0.25

Reward Based Imitation (RBI) 0.95 0.99 0.99 0.99 1.00 1.00
Forward Pred. (FP) 1.00 0.19 0.86 0.30 99 0.22

RBI+FP 0.99 0.99 0.99 0.99 99 0.99
FP (balanced) 0.99 0.97 0.98 0.98 0.96 0.97

FP (rand. exploration ε = 0.25) 0.99 0.91 0.93 0.88 0.94 0.94
FP (rand. exploration ε = 0.5) 0.98 0.93 0.97 0.96 0.95 0.97

Table 3: Test accuracy of various models in the dataset batch size case (using batch size equal to the
size of the full training set) for bAbI, task 3. Results > 0.95 are in bold.

14

Published as a conference paper at ICLR 2017

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Random Exploration for RBI

ε=0

ε=0.2

ε=0.4

ε=0.6

ε=0.8
ε=1

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Random Exploration for FP

ε=0

ε=0.2

ε=0.4

ε=0.6

ε=0.8
ε=1

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Random Exploration for FP with Balancing

ε=0

ε=0.2

ε=0.4

ε=0.6

ε=0.8
ε=1

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Comparing RBI, FP and REINFORCE

REINFORCE

RBI

FP

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

RBI (eps=0.6) Varying Batch Size

batch 20

batch 80

batch 320

batch 1000

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

FP (eps=0.6) Varying Batch Size

batch 20

batch 80

batch 320

batch 1000

Figure 6: Training epoch vs. test accuracy for bAbI (Task 2) varying exploration ε and batch
size.

15

Published as a conference paper at ICLR 2017

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Random Exploration for RBI

ε=0

ε=0.2

ε=0.4

ε=0.6

ε=0.8
ε=1

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Random Exploration for FP

ε=0

ε=0.2

ε=0.4

ε=0.6

ε=0.8
ε=1

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Random Exploration for FP with Balancing

ε=0

ε=0.2

ε=0.4

ε=0.6

ε=0.8
ε=1

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Comparing RBI, FP and REINFORCE

REINFORCE

RBI

FP

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

RBI (eps=0.6) Varying Batch Size

batch 20

batch 80

batch 320

batch 1000

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

FP (eps=0.6) Varying Batch Size

batch 20

batch 80

batch 320

batch 1000

Figure 7: Training epoch vs. test accuracy for bAbI (Task 3) varying exploration ε and batch
size. Random exploration is important for both reward-based (RBI) and forward prediction (FP).

16

Published as a conference paper at ICLR 2017

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Random Exploration for RBI

ε=0

ε=0.2

ε=0.4

ε=0.6

ε=0.8
ε=1

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Random Exploration for FP

ε=0

ε=0.2

ε=0.4

ε=0.6

ε=0.8
ε=1

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Random Exploration for FP with Balancing

ε=0

ε=0.2

ε=0.4

ε=0.6

ε=0.8
ε=1

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Comparing RBI, FP and REINFORCE

REINFORCE

RBI

FP

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

RBI (eps=0.6) Varying Batch Size

batch 20

batch 80

batch 320

batch 1000

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

FP (eps=0.6) Varying Batch Size

batch 20

batch 80

batch 320

batch 1000

Figure 8: Training epoch vs. test accuracy for bAbI (Task 4) varying exploration ε and batch
size. Random exploration is important for both reward-based (RBI) and forward prediction (FP).

17

Published as a conference paper at ICLR 2017

0 5 10 15 20

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Random Exploration for RBI

ε=0

ε=0.1

ε=0.2

ε=0.3

ε=0.4

ε=0.5
ε=1

0 5 10 15 20

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Random Exploration for FP

ε=0

ε=0.1

ε=0.2

ε=0.3

ε=0.4

ε=0.5
ε=1

0 5 10 15 20
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

RBI (eps=0.5) Varying Batch Size

batch 32

batch 320

batch 3200

batch 32000

full dataset

0 5 10 15 20

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Comparing RBI, FP and REINFORCE

REINFORCE

RBI

FP

Figure 9: WikiMovies: Training epoch vs. test accuracy on Task 2 varying (top left panel) explo-
ration rate ε while setting batch size to 32 for RBI, (top right panel) for FP, (bottom left) batch size
for RBI, and (bottom right) comparing RBI, REINFORCE and FP setting ε = 0.5. The model is
robust to the choice of batch size. RBI and REINFORCE perform comparably.

18

Published as a conference paper at ICLR 2017

0 5 10 15 20

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Random Exploration for RBI

ε=0

ε=0.1

ε=0.2

ε=0.3

ε=0.4

ε=0.5
ε=1

0 5 10 15 20

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Random Exploration for FP

ε=0

ε=0.1

ε=0.2

ε=0.3

ε=0.4

ε=0.5
ε=1

0 5 10 15 20
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

RBI (eps=0.5) Varying Batch Size

batch 32

batch 320

batch 3200

batch 32000

full dataset

0 5 10 15 20

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Comparing RBI, FP and REINFORCE

REINFORCE

RBI

FP

Figure 10: WikiMovies: Training epoch vs. test accuracy on Task 3 varying (top left panel) explo-
ration rate ε while setting batch size to 32 for RBI, (top right panel) for FP, (bottom left) batch size
for RBI, and (bottom right) comparing RBI, REINFORCE and FP setting ε = 0.5. The model is
robust to the choice of batch size. RBI and REINFORCE perform comparably.

19

Published as a conference paper at ICLR 2017

0 5 10 15 20

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Random Exploration for RBI

ε=0

ε=0.1

ε=0.2

ε=0.3

ε=0.4

ε=0.5
ε=1

0 5 10 15 20

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Random Exploration for FP

ε=0

ε=0.1

ε=0.2

ε=0.3

ε=0.4

ε=0.5
ε=1

0 5 10 15 20
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

RBI (eps=0.5) Varying Batch Size

batch 32

batch 320

batch 3200

batch 32000

full dataset

0 5 10 15 20

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Comparing RBI, FP and REINFORCE

REINFORCE

RBI

FP

Figure 11: WikiMovies: Training epoch vs. test accuracy on Task 4 varying (top left panel) explo-
ration rate ε while setting batch size to 32 for RBI, (top right panel) for FP, (bottom left) batch size
for RBI, and (bottom right) comparing RBI, REINFORCE and FP setting ε = 0.5. The model is
robust to the choice of batch size. RBI and REINFORCE perform comparably.

20

Published as a conference paper at ICLR 2017

0 5 10 15 20
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

FP (eps=0.5) Varying Batch Size

batch 32

batch 320

batch 3200

batch 32000

full dataset

0 5 10 15 20
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

FP (eps=0.5) Varying Batch Size

batch 32

batch 320

batch 3200

batch 32000

full dataset

0 5 10 15 20
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

FP (eps=0.5) Varying Batch Size

batch 32

batch 320

batch 3200

batch 32000

full dataset

0 5 10 15 20
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

FP (eps=0.5) Varying Batch Size

batch 32

batch 320

batch 3200

batch 32000

full dataset

Figure 12: WikiMovies: Training epoch vs. test accuracy with varying batch size for FP on Task 2
(top left panel), 3 (top right panel), 4 (bottom left panel) and 6 (top right panel) setting ε = 0.5. The
model is robust to the choice of batch size.

21

Published as a conference paper at ICLR 2017

C.1 ADDITIONAL EXPERIMENTS FOR MECHANICAL TURK SETUP

In the experiment in Section 5.2 we conducted experiments with real human feedback. Here, we
compare this to a form of synthetic feedback, mostly as a sanity check, but also to see how much
improvement we can get if the signal is simpler and cleaner (as it is synthetic). We hence constructed
synthetic feedback for the 10,000 responses, using either Task 2 (positive or negative feedback), Task
3 (answers provided by teacher) or a mix (Task 2+3) where we use one or the other for each example
(50% chance of each). The latter makes the synthetic data have a mixed setup of responses, which
more closely mimics the real data case. The results are given in Table 4. The RBI+FP combination is
better using the synthetic data than the real data with Task 2+3 or Task 3, which is to be expected, but
the real data is competitive, despite the difficulty of dealing with its lexical and semantic variability.
The real data is better than using Task 2 synthetic data.

For comparison purposes, we also ran a supervised (imitation learning) MemN2N on different sized
training sets of turker authored questions with gold annotated labels (so, there are no numerical
rewards or textual feedback, this is a pure supervised setting). The results are given in Table 5. They
indicate that RBI+FP and even FP alone get close to the performance of fully supervised learning.

Model r = 0 r = 0.1 r = 0.5 r = 1
Reward Based Imitation (RBI) 0.333 0.340 0.365 0.375
Forward Prediction (FP) [real] 0.358 0.358 0.358 0.358
RBI+FP [real] 0.431 0.438 0.443 0.441
Forward Prediction (FP) [synthetic Task 2] 0.188 0.188 0.188 0.188
Forward Prediction (FP) [synthetic Task 2+3] 0.328 0.328 0.328 0.328
Forward Prediction (FP) [synthetic Task 3] 0.361 0.361 0.361 0.361
RBI+FP [synthetic Task 2] 0.382 0.383 0.407 0.408
RBI+FP [synthetic Task 2+3] 0.459 0.465 0.464 0.478
RBI+FP [synthetic Task 3] 0.473 0.486 0.490 0.494

Table 4: Incorporating Feedback From Humans via Mechanical Turk: comparing real human
feedback to synthetic feedback. Textual feedback is provided for 10,000 model predictions (from
a model trained with 1k labeled training examples), and additional sparse binary rewards (fraction r
of examples have rewards). We compare real feedback (rows 2 and 3) to synthetic feedback when
using FP or RBI+FP (rows 4 and 5).

Train data size 1k 5k 10k 20k 60k
Supervised MemN2N 0.333 0.429 0.476 0.526 0.599

Table 5: Fully Supervised (Imitation Learning) Results on Human Questions

r = 0 r = 0.1 r = 0.5 r = 1
ε = 0 0.499 0.502 0.501 0.502
ε = 0.1 0.494 0.496 0.501 0.502
ε = 0.25 0.493 0.495 0.496 0.499
ε = 0.5 0.501 0.499 0.501 0.504
ε = 1 0.497 0.497 0.498 0.497

Table 6: Second Iteration of Feedback Using synthetic textual feedback of synthetic Task2+3 with
the RBI+FP method, an additional iteration of data collection of 10k examples, varying sparse binary
reward fraction r and exploration ε. The performance of the first iteration model was 0.478.

C.2 SECOND ITERATION OF FEEDBACK

We conducted experiments with an additional iteration of data collection for the case of binary
rewards and textual feedback using the synthetic Task 2+3 mix. We selected the best model from
the previous training, using RBI+FP with r = 1 which previously gave a test accuracy of 0.478
(see Table 4). Using that model as a predictor, we collected an additional 10,000 training examples.

22

Published as a conference paper at ICLR 2017

We then continue to train our model using the original 1k+10k training set, plus the additional 10k.
As before, we report the test accuracy varying r on the additional collected set. We also report the
performance from varying ε, the proportion of random exploration of predictions on the new set.
The results are reported in Table 6. Overall, performance is improved in the second iteration, with
slightly better performance for large r and ε = 0.5. However, the improvement is mostly invariant
to those parameters, likely because FP takes advantage of feedback from incorrect predictions in any
case.

23

	Introduction
	Related Work
	Dataset and Tasks
	Simulator
	Mechanical Turk Experiments

	Methods
	Model Architecture
	Reinforcement Learning
	Reward-Based Imitation (RBI)
	REINFORCE
	Forward Prediction (FP)

	Experiments
	Simulator
	Human Feedback

	Conclusion
	Further Simulator Task Details
	Instructions given to Turkers
	Additional Experiments
	Additional Experiments For Mechanical Turk Setup
	Second Iteration of Feedback

