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ABSTRACT

Deep generative models provide a powerful and flexible means to learn com-
plex distributions over data by incorporating neural networks into latent-variable
models. Variational approaches to training such models introduce a probabilistic
encoder that casts data, typically unsupervised, into an entangled representation
space. While unsupervised learning is often desirable, sometimes even necessary,
when we lack prior knowledge about what to represent, being able to incorporate
domain knowledge in characterising certain aspects of variation in the data can
often help learn better disentangled representations. Here, we introduce a new
formulation of semi-supervised learning in variational autoencoders that allows
precisely this. It permits flexible specification of probabilistic encoders as directed
graphical models via a stochastic computation graph, containing both continuous
and discrete latent variables, with conditional distributions parametrised by neural
networks. We demonstrate how the provision of dependency structures, along with
a few labelled examples indicating plausible values for some components of the
latent space, can help quickly learn disentangled representations. We then evalu-
ate its ability to do so, both qualitatively by exploring its generative capacity, and
quantitatively by using the disentangled representation to perform classification,
on a variety of models and datasets.

1 INTRODUCTION

Reasoning in complex perceptual domains such as vision often requires the ability to effectively
learn flexible representations of high-dimensional data, interpret the representations in some form,
and understand how the representations can be used to reconstruct the data. The ability to learn
representations is a measure of how well one can capture relevant information in the data. Being
able to interpret the learned representations is a measure of extracting consistent meaning in an
effort to make sense of them. Having the ability to reliably reconstruct the data, a tool for predictive
synthesis, can aid in model diagnosis, enable successful transfer learning, and improve generality.
Such tasks are typically best addressed by generative models, as they exhibit the flexibility required
to satisfy all three facets. Discriminative models primarily attend to the first two, learning flexible
representations and conforming to some interpretable space (e.g. classification domain) but don’t
perform the predictive synthesis task.

Probabilistic graphical models (Koller & Friedman, 2009; Murphy, 2012) are a framework for gen-
erative modelling that enables specifying a joint probability distribution on a richly semantic repre-
sentation space. As good a fit as they are for specification and representation, the learning process
for both the analysis and synthesis tasks typically suffers in complex perceptual domains such as
vision. This is because constructing a generative model requires explicitly specifying the condi-
tional distribution of the observed data given latent variables of interest. In practice, designing such

1



Under review as a conference paper at ICLR 2017

likelihood functions by hand is incredibly challenging, and applying generative models to vision
data often requires extensive and significant feature engineering to be successful. One approach
to alleviate some of this hardship involves the development of deep generative models: generative
models that employ neural networks to learn, automatically from data, the unknown conditional dis-
tribution in the model. They function as flexible feature learners, where the features are encoded in
the posterior distribution over the latent variables in the model. Recent work exploring the effec-
tiveness of such models (e.g. Kingma & Welling (2014); Kulkarni et al. (2015b); Goodfellow et al.
(2014)) has shown considerable promise in being able to address the fundamental issues in per-
forming this task. These models however are typically unsupervised, learning representations that
are not directly amenable to human interpretation. Any interpretability or disentanglement of the
learned representation is observed or extracted after learning has been performed, by exploring the
latent space along its non-specific axes of variation. A more recent approach by Chen et al. (2016)
involves imposition of information-theoretic constraints to better separate factors of variation, but
here too, any interpretability is only established post facto.

Figure 1: Variation along (top) light-
ing and (bottom) identity axes.

While such approaches have considerable merit, particu-
larly when faced with the absence of any information about
the data, when there are aspects of variation in the data that
can be characterised effectively, using and being able to
express these can often be desirable. For example, when
learning representations for images of house numbers, hav-
ing an explicit “digit” latent variable helps capture a mean-
ingful axis of variation, independent of other aspects. We
also often want to interpret the same data in different ways
depending on context: for a given image of a person, do we
care about the identity, lighting, or indeed any other facets
of the scene (c.f. Figure 1). In these situations, not being
able to enforce context is something of a handicap.

In this paper, we seek to combine the best of both worlds: providing the facility to describe the struc-
tural constraints under which we would like to interpret the data, while using neural nets to capture
variation for aspects we cannot, or choose not to, explicitly model. By structural constraints, we re-
fer to the (arbitrary) dependencies one would like to employ in the recognition model, particularly in
regard to there being consistent interpretable semantics of what the variables in the model represent.
In particular, we set up our framework in the context of variational autoencoders (VAE Kingma &
Welling (2014); Rezende et al. (2014)), as a means for semi-supervised learning in deep generative
models (Kingma et al., 2014). We provide an alternate formulation of the variational objective and a
modified training procedure which permits us to explore a wide space of recognition networks to use
as probabilistic encoders. In particular we make no mean-field assumptions for our recognition net-
works, allowing arbitrary hierarchical and structured-graphical-model representations, employing
both continuous and discrete latent variables that can be alternately observed, or left unobserved.

2 BACKGROUND AND RELATED WORK

Variational autoencoders (Kingma & Welling, 2014; Rezende et al., 2014) simultaneously train both
a probabilistic encoder and decoder for a dataset x. The central idea is that an encoding z can be
considered a latent variable which allows describing a decoder as a conditional probability density
pθ(x|z). This is typically a distribution with parameters defined as the output of a determinis-
tic multi-layer neural network (itself with parameters θ) which takes z as input. Placing a weak
prior over z, the corresponding probabilistic encoder can be interpreted as the posterior distribution
pθ(z | x) ∝ pθ(x | z)p(z). Estimating parameters θ in this model is challenging, as is performing
the posterior inference necessary to encode data. The variational Bayes approach learns an approx-
imate encoder qφ(z | x), called an “inference network” or a “recognition network”, which aims to
approximate the posterior distribution pθ(z | x). Then, rather than fitting parameters θ by maxi-
mizing the marginal likelihood pθ(x), the variational approach maximizes an evidence lower bound
(ELBO) L(φ, θ;x) ≤ log pθ(x), defined with respect to both decoder θ and encoder φ parameters.

L(φ, θ;x) = Eqφ(z|x)[log pθ(x, z)− log qφ(z | x)], (1)

One line of work to embed structure into the latent space z such that it exhibits disentangled fea-
tures, is through partial supervision. This is either in terms of labelled data (Sohn et al., 2015),
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or curriculum-learning schemes (Kulkarni et al., 2015b) which explicitly disentangle different fac-
tors. Kingma et al. (2014) explore semi-supervised learning in the VAE setting by factoring the
latent space to learn a joint classification model qφ(y | x) and recognition model qφ(z | x). This
is done by separating the latent space into structured, interpretable components y and unstructured
components z, analytically marginalising variables out where discrete. Sohn et al. (2015) perform
fully-supervised learning in VAEs by transforming an unconditional objective into one where the
data conditions both the (unstructured) latent and the (structured) labels. In contrast to Kingma et al.
(2014), the learning objective is a lower bound on the conditional marginal likelihood pθ(x | y),
conditioning the learned VAE on the values of the labelled data. Both of these approaches effec-
tively require the label space y to be discrete and finite. Kulkarni et al. (2015b) attend to weakly-
supervised learning with VAEs through a novel training procedure that uses data clustered into
equivalence classes along different axes of variation. They then constrain different parts of the latent
space to account for changes along a single axis, by training with data from a particular equivalence
class. An advantage of this approach is not requiring any explicit labels on the latent space, though it
does require independence assumptions on structured components, as well as carefully curated data.

An alternative approach biases towards interpretable representations by introducing structure in the
prior distribution over the latent space p(z). Johnson et al. (2016) explore the combination of graph-
ical models and VAEs using classical conjugate exponential family statistical models as structured
priors over the latent space. They consider relaxation of conjugacy constraints in the likelihood
model using neural network approximations, with a training scheme resembling traditional mean-
field coordinate ascent algorithms. The recognition network, rather than proposing values outright,
proposes parameters of a conjugate-likelihood approximation to the true non-conjugate likelihood.

From a specific-instance perspective, Eslami et al. (2016) use a recurrent neural network (RNN)
coupled with a spatial transformer network (STN, Jaderberg et al. (2015)) inducing a particular
state-space representation with the approximation distribution of a VAE to parse images into scene
constituents. Kulkarni et al. (2015a) also explore a specific instance related to a 3D graphics engine
by having a programmatic description provide structure using neural networks as surrogates for the
perceptual-matching problem. Andreas et al. (2016) explore a more general formulation of structure
with compositional neural network models derived from linguistic dependency parses.

3 FRAMEWORK AND FORMULATION

Our method synthesises the semi-supervised and structured-graphical-model approaches. Like John-
son et al. (2016), we incorporate graphical model structures, however rather than placing them within
the generative model pθ(z,x), we incorporate them into the encoder model qφ(z | x). For many
perceptual problems in domains such as vision, complex dependencies arise in the posterior due to
deterministic interactions during rendering. A mean-field approximation in qφ(z | x) is a poor fit,
even in situations where all the interpretable latent variables are a priori independent. This is an
important reason for our choice of where we embed structure. The use of a structured, multilevel
probabilistic model to define the encoder can also be interpreted as a hierarchical variational model
(Ranganath et al., 2015). Interpretability is enforced by occasionally supplying labels to latent vari-
ables expected to have a interpretable meaning in the final encoded representation.

x

l
n

function labelNoise()
-- create the node connecting to input
local x = nn.Identity()()
-- connect a discrete RV to input
local l = pp.Discrete({torch.Tensor(1,10)})({x})
-- connect a std Gaussian RV to input
local n = pp.Gaussian({zeros(1,2), zeros(1,2)})

({pp.r(x), pp.r(x)})
nngraph.annotateNodes()
-- return stochastic computation graph
return pp.gModule({x}, {l, n})

end

Figure 2: Example graphical model and its ex-
pression in our framework. Further details in
the Appendix.

Our framework provides an embedded domain-
specific language (EDSL) in Torch (Collobert
et al., 2011), that can be used to specify a wide va-
riety of graphical models in the form of a stochas-
tic computation graph (Schulman et al., 2015). An
example is shown in Figure 2. These graphical
models describe the structure of latent, observable,
and partially observable random variables which
exist in an idealized representation space. Specif-
ically, we assume a model structure of the form
pθ(x, z,y) = pθ(x | z,y)p(z,y) where the like-
lihood pθ(x | z,y) of the data x is conditioned on
a set of structured variables y and unstructured
variables z, for which we define some appropri-
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ately structured prior p(z,y). The likelihood itself is typically unstructured (e.g. a multivariate
normal distribution). This model structure allows us to optimize the parameters θ learning a likeli-
hood function constrained by the structured latents, but crucially does not require that these latents
completely explain the data. The approximation to the true posterior is nominally taken to be of the
form of the prior distribution qφ(z,y | x), with parameters φ but can often include additional struc-
ture and alternate factorisations as appropriate. Models with such factoring are useful for situations
where interpretability is required, or informative, for some axes of variation in the data. It is also
useful when we wish to interpret the same data from different contexts and when we cannot con-
ceivable capture all the variation in the data due to its complexity, settling for particular restrictions,
as is often the case with real world data.

A particular challenge here lies in choosing a manner for incorporating labelled data for some of
the y into a training scheme. For example, choosing qφ(z,y | x) = qφz (z | y,x)qφy (y | x), de-
composes the problem into simultaneously learning a classifier qφy (y | x) alongside the generative
model parameters θ and encoder qφz (z|x,y). In the fully unsupervised setting, the contribution of
a particular data point xi to the ELBO can be expressed, with minor adjustments of Equation (1), as

L
(
θ, φ;xi

)
= Eqφ(z,y|xi)

[
log

pθ
(
xi | z,y

)
p(z,y)

qφz (z,y | xi)

]
. (2)

a Monte Carlo approximation of which samples y ∼ qφy (y | x) and z ∼ qφz (z | y,x).
By contrast, in the fully supervised setting the values y are treated as observed and become fixed
inputs into the computation graph, instead of being sampled from qφ. When the label y is ob-
served along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal
likelihood log pθ(x | y) is

Lx|y
(
θ, φz;x

i,yi
)
= Eqφz (z|xi,yi)

[
log

pθ
(
xi | z,yi

)
p
(
z | yi

)
qφz (z | xi,yi)

]
. (3)

This quantity can be optimized directly to learn model parameters θ and φz simultaneously via
SGD. However, it does not contain the encoder parameters φy . This difficulty was also encountered
in a related context by Kingma et al. (2014). Their solution was to augment the loss function by
including an explicit additional term for learning a classifier directly on the supervised points.

An alternative approach involves extending the model using an auxiliary variable ỹ. Defining
p(ỹ,y, z | x) = p(ỹ | y)p(x,y, z) and q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x), with likelihood
p(ỹ | y) = δỹ(y), we obtain a model for which marginalization over ỹ reproduces the ELBO
in Equation (2), and treating ỹ as observed gives the supervised objective

L
(
θ, φ;xi

)∣∣
ỹ=yi

= Eqφy

[
δyi(y)Eqφz

[
log

pθ
(
xi | z,y

)
p(z,y)

qφy (y | xi)qφz (z | y,xi)

]]

= qφy

(
yi | xi

)
Eqφz

[
log

pθ
(
xi | z,yi

)
p
(
z,yi

)
qφy (y

i | xi)qφz (z | yi,xi)

]

= qφy

(
yi | xi

)[
Lx|y

(
θ, φz ;x

i,yi
)
+ log p

(
yi
)
− log qφy

(
yi | xi

)]
. (4)

This formulation enables a range of capabilities for semi-supervised learning in deep generative
models. To begin with, it extends the ability to partially-supervise latent variables to those that
have continuous support. This effectively learns a regressor instead of a classifier in the same for-
mulation. Next, it automatically balances the trade-off between learning a classifier/regressor and
learning the parameters of the generative model and the remainder of the recognition network. This
is due to the fact that the classifier qφy (y | x) is always present and learned, and is contrast to the
hyperparameter-driven approach in Kingma et al. (2014). Finally, it allows for easy automatic im-
plementation of a wide variety of models, separating out the labelled and unlabelled variables, to
derive a unified objective over both the supervised and unsupervised cases. When unsupervised, the
value of the label yi is sampled from qφy (y | x) and scored in that distribution, and when super-
vised, it is set to the given value, and scored in the same distribution. This is in the same spirit as a
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number of approaches such as Automatic Differentiation (AD) and Probabilistic Program inference,
where the choice of representation enables ease of automation for a great variety of different cases.

Supervision rate. While learning with this objective, we observe data in batches that are either
wholly supervised, or wholly unsupervised. This typically obviates the need to construct compli-
cated estimators for the partially observed cases, while also helping reduce variance in general over
the learning and gradient computation (details of which are provided in the Appendix). Doing so
also presents a choice relating to how often we observe labelled data in a complete sweep through
the dataset, referred to as the supervision rate r. Practically, the rate represents a clear trade-off in
learning the generative and recognition-network parameters under interpretability constraints. If the
rate is too low, the supervision can be insufficient to help with disentangling representation in the
recognition network, and if too high, the generative model can overfit to just the (few) supervised
data points. The rate also has a natural relation to the variance of the objective function and its gra-
dients. As can be seen from Equation (4), an evaluation of the objective for a given yi involves the
unsupervised estimation of the conditional ELBO Lx|y . The rate implicitly affects the number of
such estimations for any given yi and thus the variance of the objective with respect to that label yi.
The same argument applies for the gradients of the objective.

Plug-in estimation for discrete variables. In targeting a general class of models, another par-
ticular difficulty is the ubiquity of discrete latent variables. To obtain a differentiable objective,
one can either marginalize over discrete variables directly (as done by Kingma et al. (2014) and
in the STAN probabilistic programming system (Stan Development Team, 2013)), which doesn’t
scale over numbers of variables, or use a REINFORCE-style estimator (Williams, 1992; Mnih &
Gregor, 2014), which tends to have high variance. A third approach, related to Bengio et al. (2013),
is to represent discrete latent variables defined on a finite domain using a one-hot encoding, then
relaxing them to a continuous probability simplex when used as an input to a recognition network.
For example, when y is a one-hot encoding of a discrete value used in a recognition network which
factors as qφ(y | x)qφ(z | y,x), then qφ(y | x) is itself a discrete distribution with a probability
vector ρ = gφ(x) for some deterministic function gφ. The value y is itself an input to a second
function hφ(x,y) producing the parameters for qφ(z | y,x). Instead of evaluating hφ(x,y) at a
sampled value y (or enumerating over the entire domain), we simply evaluate it at the single point ρ,
noting that ρ = Eqφ(y|x)[y]. This may seem a crude approximation, replacing integration with a
single evaluation, claiming Eqφ(y|x)[hφ(x,y)] ≈ hφ(x,Eqφ(y|x)[y]), which is not true in general
for hφ(·). However, if ρ is actually a one-hot encoding, i.e., when Eqφ(y|x)[y] has a single non-zero
value, they are in fact equal. For our experiments we employ this plug-in estimator where applicable,
although our framwork can express any of the above methods.

4 EXPERIMENTS

We evaluate our framework on along a number of different axes, pertaining to its ability to (i) learn
disentangled representation from a little supervision, (ii) demonstrate capability at a relevant clas-
sification/regression task, (iii) successfully also learn the generative model, and (iv) admit the use
of latent spaces of varying dimensionality Note that we do not set out to build the best possible
classifier in these tasks. Instead, the classification task is a means to the end of demonstrating that
the learned representation is indeed disentangled, often with minimal supervision. Also, details of
neural network architectures, graphical models for the recognition networks, dataset characteristics,
and hyper-parameter settings are provided in the Appendix.

4.1 MNIST AND SVHN

x

n d

x

n d

Figure 3: (left) Generative and
(right) recognition model with
digit d and style n.

To begin with, we explore the facets of our model in the
standard MNIST and Google Street-View House Numbers
(SVHN) datasets. We use this example to highlight how the
provision of even the slightest structure, coupled with minimal
supervision, in often sufficient to induce the emergence of dis-
entangled representations in the recognition network. Figure 3
shows the structure of the generative and recognition models
for this experiment.

5



Under review as a conference paper at ICLR 2017

(a) (b) (c) (d)

Figure 4: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) supervised with just 100 labels/digit.

MNIST SVHN

l Ours Kingma et al. (2014) Ours Kingma et al. (2014)

10 12.2 (± 1.38) 11.97 (± 1.71) - -
60 5.28 (± 0.76) 4.94 (± 0.13) - -

100 4.23 (± 0.68) 3.60 (± 0.56) 30.32 (± 2.74) 36.02 (± 0.10)
300 3.94 (± 0.77) 3.92 (± 0.63) 23.98 (± 1.83) -

Figure 5: (Top) Classification error graphs over different labelled set (per class) sizes and supervision
rates for MNIST (left) and SVHN (right). Note the steep drop in error rate with just a handful of
labels per class (l), seen just a few times (r). (Bottom) Classification error rates for different (per-
class) labelled-set sizes l over different runs.

Figure 4(a) and (c) show the effect of first transforming a given input (leftmost column) into the
disentangled latent space, and with the style latent variable fixed, manipulating the digit through the
generative model to produce appropriately modified reconstructions. These were both derived with
full supervision over a 50 and 100 dimensional Gaussian latent space for the styles, respectively.
Figure 4(b) shows the transformation for a fixed digit, when the style latent is varied. This was
derived with a simple 2D Gaussian latent space for the style. The last part, Figure 4(d) shows the
ability of the network to begin disentangling the latent space with just 100 labelled samples per digit
(training dataset size is 73000 points). Separation between style and class is clearly evident even
with such little supervision.

We compute the classification accuracy of the label-prediction task with this model for both datasets,
and the results are reported in the bottom of Figure 5. The results are compared to those reported
in Kingma et al. (2014). For the MNIST dataset, we compare against model M2 as we run directly
on the data, without performing a preliminary feature-extraction step. For the SVHN dataset, we
compare against model M1+M2 even though we run directly on the data, using a CNN to simultane-
ously learn to extract features. Confidence estimates for both were computed off of 10 runs. We note
that we fare comparably with these models, and in particular, when employing a CNN for feature
extraction for the SVHN dataset, comfortably exceed them.
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Ours (Full Supervision) Ours (Semi-Supervised) Jampani et al. (2015)

Identity 4.2 (± 0.84) 10.3 (± 2.36) ≈ 30
Lighting 14.2 (± 1.12) 28.4 (± 4.12) ≈ 10

Figure 7: (Top) Exploring the generative capacity of the model. Column 1: input image. Col-
umn 2: reconstruction. Columns 3-7: reconstructions with fixed (inferred) lighting and varying
identities. (Bottom) Classification and regression error rates for the identity and lighting latent vari-
ables, fully-supervised, and semi-supervised with 20 distinct labelled example per variation axis (60
total). Classification is a direct 1-out-of-38 choice, whereas for the comparison, error is a nearest-
neighbour loss based on the inferred reflectance. Regression loss for lighting is measured as cosine
angle distance. Results for Jampani et al. (2015) are estimated from plot asymptotes.

Figure 5 shows the effect of the supervision rate r on the error rate. As evident from the graph, the
rate has a strong affect on how quickly one learns an effective classifier. This indicates that when
labels are sparse or hard to come by, a training regime that runs largely unsupervised, even only oc-
casionally looking at the supervised data, still learns to disentangle the latent-space representations.

4.2 INTRINSIC FACES

We next move to a harder problem involving a generative model of faces, attempting to highlight
how the introduction of stronger dependency structures in the recognition model helps disentangle
latents, particularly when the generative model assumes conditional independence between the la-
tents. Here, we use the “Yale B” dataset as processed by Jampani et al. (2015) to train the models
shown in Figure 6. The primary tasks we are interested in here are (i) the ability to manipulate the
inferred latents to evaluate if they qualitatively achieve semantically meaningful disentangled repre-
sentations, (ii) the classification of person identity, and (iii) the regression for lighting direction.

x

i `s r

x

i`

r

s

Figure 6: (Top) Generative and (Bottom)
recognition model with identity i, light-
ing l, reflectance r, and shading s.

Figure 7 presents both qualitative and quantitative eval-
uation of the framework to jointly learn both the struc-
tured recognition model, and the generative model pa-
rameters. A particular point of note is that we explic-
itly encode “identity” as a categorical random variable
since we have knowledge about the domain and the rel-
evant axis to explore. Since we also learn the generative
model, which in the domain of the actual dataset is sim-
ply the expression (n.l)× r+ ε, we can afford to weakly
specify the structure allowing for some neural-network
component to take up the requisite slack in order to re-
construct the input. This allows us to directly address
the task of predicting identity, instead of approaching
it through surrogate evaluation methods (e.g. nearest-
neighbour classification based on inferred reflectance).

While this formulation allows us to to perform the identity classification task, the fact that our
recognition model never supervises the reflectance means that the variable can typically absorb
some of the representational power of other, semi-supervised nodes. This is particularly the case
when dealing with high-dimensional latent spaces as for reflectance and shading.
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x

ck

nk dk

K

Kmax

x K

dknk

ck

K

size rate (%) error rate (%)

Unsup 0 32.25 (± 12.97)
500 1 6.42 (± 2.15)
500 10 4.21 (± 1.29)
1000 1 4.72 (± 1.60)
1000 10 2.98 (± 0.93)

Figure 8: Generative (l) and recognition (m) model with digit d, style n, canvas c, and count K.

4.3 MULTI-MNIST

Finally, we run an experiment to test the ability of our framework to handle models that induce latent
representations of variable dimension. We extend the simple model from the MNIST experiment by
composing it with a stochastic sequence generator, to test its ability to count the number of digits in
a given input image, given its ability to encode and reconstruct the digits in isolation. The graphical
models employed are depicted in Figure 8.

We observe that we are indeed able to reliable learn to count, at least within the limits of upto 3
digits in the multi-mnist dataset. The dataset was generated directly from the MNIST dataset by ma-
nipulating the scale and positioning of the standard digits into a combined canvas, evenly balanced
across the counts and digits. The results across different supervised set sizes and supervision rates
are shown in the table in Figure 8.

5 DISCUSSION AND CONCLUSION

In this paper, we introduce a general framework for semi-supervised learning in the VAE setting that
allows incorporation of graphical models to specify a wide variety of structural constraints on the
recognition network. We demonstrate its flexibility by applying it to a variety of different tasks in the
visual domain, and evaluate its efficacy at learning disentangled representations in a semi-supervised
manner, showing strong performance.

This framework ensures that the recognition network learns to make predictions in an interpretable
and disentangled space, constrained by the structure provided by the graphical model. The structured
form of the recognition network also is typically a better fit for vision models, as it helps better
capture complexities in the likelihood (usually the renderer). Given that we encode graphical models
in the recognition network, and Johnson et al. (2016) encode it in the generative model in concert
with VAEs, a natural extension would be the exploration of the ability to learn effectively when
specifying structure in both by means of graphical models. This is a direction of future work we are
interested in, particularly in context of semi-supervised learning.

The framework is implemented as a Torch library (Collobert et al., 2011), enabling the construction
of stochastic computation graphs which encode the requisite structure and computation. This pro-
vides another direction to explore in the future – the extension of the stochastic computation graph
framework to probabilistic programming (Goodman et al., 2008; Wingate et al., 2011; Wood et al.,
2014). Probabilistic programs go beyond the presented framework to include stochastic inference
and the ability to specify arbitrary models of computation. The combination of such frameworks
with neural networks has recently been studied in Ritchie et al. (2016); Le et al. (2016), and indi-
cates a promising avenue for further exploration.
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APPENDIX

FORMULATION

Gradients of the Variational Objective: We consider the gradients of the form in Equation (4)
with respect to θ, φz , and φy . In particular, note that for both θ and φz the gradient is the same
as the gradient with respect to the conditional ELBO Lx|y , up to a per-datapoint scaling factor
q
(
yi | xi

)
. For continuous latent variables, as well as for many discrete random variables, the

expectations over z can be reparameterized into a form where the gradients can be approximated
with a single sampled value. Evaluating Equation (4) at this point yields estimators for the ELBO L̂
and conditional ELBO L̂x|y , as well as corresponding single-sample gradient estimates ∇̂L and
∇̂Lx|y for each set of parameters.

Gradient estimates for θ and φz are proportional to the gradients of the conditional ELBO as

∇̂θ L(θ, φ;xi)
∣∣
y=yi

= qφy

(
yi | xi

)
∇̂θ Lx|y ,

∇̂φz L(θ, φ;xi)
∣∣
y=yi

= qφy

(
yi | xi

)
∇̂φz Lx|y ,

while the gradient with respect to the “classifier” parameters φy takes a different form. Applying
the product rule to Equation (4) we have

∇̂φy L(θ, φ;xi)
∣∣
y=yi

=
[
L̂x|y + log p

(
yi
)
− log qφy

(
yi | xi

)]
∇φy qφy

(
yi | xi

)
− qφy

(
yi | xi

)
∇φy log qφy

(
yi | xi

)
=
[
L̂x|y + log p

(
yi
)
− log qφy

(
yi | xi

)
− 1
]
∇φy qφy

(
yi | xi

)
= qφy

(
yi | xi

)[
L̂ − 1

]
∇φy log qφy

(
yi | xi

)
.
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MODEL AND NETWORK PARAMETERS

We note for that all the experiments, save the one involving Street-View House Numbers (SVHN),
were run using a 2-3 layer MLP with 512 nodes and using a Bernoulli loss function. For SVHN, we
additionally employed a two stage convolutional and a 2 stage deconvolutional network to effectively
extract features for the standard MLP model for the recognition network and the generative model
respectively; training the entire network end-to-end. For learning, we used AdaM (Kingma & Ba,
2014) with a learning rate of 0.001 (0.0003 for SVHN) and momentum-correction terms set to their
default values. As for the minibatch sizes, they varied from 80-500 depending on the dataset being
used and its size.

MODELS

The syntax of our computation graph construction is such that the first call instantiates the compu-
tation, and the second instantiates the node and its connections. For specified random variables, the
first set of parameters defines the prior and second set the parameters for the proposal distributions.
In all our models, we extract the common, feature-extraction portions of the recognition model qφ
into a simple pre-encoder. Parameters and structure for this are specified above.

The class-conditional model for MNIST and SVHN.

local ndim = 50

local program = {}

function program:getNetwork()
local input = nn.Identity()() -- required to make nngraph play nice
-- the actual program
local d = pp.DiscreteR({torch.Tensor(1,10):fill(1/10)})({input})
local mu = nn.Sequential()
:add(nn.JoinTable(2))
:add(nn.FluidLinear(ndim))
:add(nn.SoftPlus())

local sig = nn.Sequential()
:add(nn.JoinTable(2))
:add(nn.FluidLinear(ndim))
:add(nn.SoftPlus())

local n = pp.Gaussian({
torch.zeros(1,ndim),
torch.zeros(1,ndim)

})({mu({d, input}), sig({d, input})})
-- end program
nngraph.annotateNodes() -- necessary to annotate nodes with local varnames
return pp.gModule({input}, {d, n})

end

return program

The model used for the faces dataset.

local program = {}

function program:getNetwork()
local input = nn.Identity()() -- required to make nngraph play nice
-- the actual program
local id = pp.DiscreteR({torch.Tensor(1,38):fill(1/38)})({input})
local light = pp.Gaussian({

torch.zeros(1,3),
torch.zeros(1,3)

})({pp.r(input), pp.r(input)})
local factorQ = nn.Sequential()

:add(nn.JoinTable(2))
:add(nn.FluidLinear(20))
:add(nn.SoftPlus())

local shading = pp.Gaussian({
torch.zeros(1,20),
torch.zeros(1,20)

})({pp.r(factorQ({id,light})), pp.r(factorQ({id,light}))})
local reflectance = pp.Gaussian({

torch.zeros(1,20),
torch.zeros(1,20)

})({pp.r(input), pp.r(input)})
-- end program
nngraph.annotateNodes() -- necessary to annotate nodes with local varnames
return pp.gModule({input}, {shading, reflectance})

end

return program
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The model used for the multi-mnist dataset.

local program = {}

local function mnist()
local input = nn.Identity()() -- required to make nngraph play nice
local d = pp.DiscreteR({torch.Tensor(1,10):fill(0.1)})({input})
local n = pp.Gaussian({

torch.zeros(1,50),
torch.zeros(1,50)

})({pp.r(input), pp.r(input)})
-- end program
nngraph.annotateNodes() -- necessary to annotate nodes with local varnames
return pp.gModule({input}, {d, n})

end

function program:getNetwork()
local input = nn.Identity()() -- required to make nngraph play nice
-- the actual program
local c = pp.Discrete(({torch.Tensor(1,5):fill(0.2)})({input}))
-- needswork: have to handle number of inputs and inter-repeat-state
local ds = pp.Repeat(mnist())({input, c})
-- end program
nngraph.annotateNodes() -- necessary to annotate nodes with local varnames
return pp.gModule({input}, {ds})

end

return program
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