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ABSTRACT

We investigate deep generative models that can exchange multiple modalities bi-
directionally, e.g., generating images from corresponding texts and vice versa. Re-
cently, some studies handle multiple modalities on deep generative models, such
as variational autoencoders (VAEs). However, these models typically assume that
modalities are forced to have a conditioned relation, i.e., we can only generate
modalities in one direction. To achieve our objective, we should extract a joint
representation that captures high-level concepts among all modalities and through
which we can exchange them bi-directionally. As described herein, we propose a
joint multimodal variational autoencoder (JMVAE), in which all modalities are in-
dependently conditioned on joint representation. In other words, it models a joint
distribution of modalities. Furthermore, to be able to generate missing modal-
ities from the remaining modalities properly, we develop an additional method,
JMVAE-kl, that is trained by reducing the divergence between JMVAE’s encoder
and prepared networks of respective modalities. Our experiments show that our
proposed method can obtain appropriate joint representation from multiple modal-
ities and that it can generate and reconstruct them more properly than conventional
VAEs. We further demonstrate that JMVAE can generate multiple modalities bi-
directionally.

1 INTRODUCTION

In our world, information is represented through various modalities. While images are represented
by pixel information, these can also be described with text or tag information. People often exchange
such information bi-directionally. For instance, we can not only imagine what “a young female with
a smile who does not wear glasses” looks like, but also add this caption to a corresponding photo-
graph. To do so, it is important to extract a joint representation that captures high-level concepts
among all modalities. Then we can bi-directionally generate modalities through the joint repre-
sentations. However, each modality typically has a different kind of dimension and structure, e.g.,
images (real-valued and dense) and texts (discrete and sparse). Therefore, the relations between each
modality and the joint representations might become high nonlinearity. To discover such relations,
deep neural network architectures have been used widely for multimodal learning (Ngiam et al.,
2011; Srivastava & Salakhutdinov, 2012). The common approach with these models to learn joint
representations is to share the top of hidden layers in modality specific networks. Among them,
generative approaches using deep Boltzmann machines (DBMs) (Srivastava & Salakhutdinov, 2012;
Sohn et al., 2014) offer the important advantage that these can generate modalities bi-directionally.

Recently, variational autoencoders (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014) have
been proposed to estimate flexible deep generative models by variational inference methods. These
models use back-propagation during training, so that it can be trained on large-scale and high-
dimensional dataset compared with DBMs with MCMC training. Some studies have addressed to
handle such large-scale and high-dimensional modalities on VAEs, but they are forced to model con-
ditional distribution (Kingma et al., 2014; Sohn et al., 2015; Pandey & Dukkipati, 2016). Therefore,
it can only generate modalities in one direction. For example, we cannot obtain generated images
from texts if we train the likelihood of texts given images. To generate modalities bi-directionally,
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Figure 1: Various images and attributes generated from an input image. We used the CelebA dataset (Liu et al.,
2015) to train and test models in this example. Each yellow box corresponds to different processes. All
processes are estimated from a single generative model: the joint multimodal variational autoencoder (JMVAE),
which is our proposed model.

all modalities should be treated equally under the learned joint representations, which is the same as
previous multimodal learning models before VAEs.

As described in this paper, we develop a novel multimodal learning model with VAEs, which we
call a joint multimodal variational autoencoder (JMVAE). The most significant feature of our model
is that all modalities, x and w (e.g., images and texts), are conditioned independently on a latent
variable z corresponding to joint representation, i.e., the JMVAE models a joint distribution of all
modalities, p(x,w). Therefore, we can extract a high-level representation that contains all informa-
tion of modalities. Moreover, since it models a joint distribution, we can draw samples from both
p(x|w) and p(w|x). Because, at this time, modalities that we want to generate are usually missing,
the inferred latent variable becomes incomplete and generated samples might be collapsed in the
testing time when missing modalities are high-dimensional and complicated. To prevent this issue,
we propose a method of preparing the new encoders for each modality, p(z|x) and p(z|w), and
reducing the divergence between the multimodal encoder p(z|x,w), which we call JMVAE-kl. This
contributes to more effective bi-directional generation of modalities, e.g., from face images to texts
(attributes) and vice versa (see Figure 1).

The main contributions of this paper are as follows:

• We introduce a joint multimodal variational autoencoder (JMVAE), which is the first study
to train joint distribution of modalities with VAEs.

• We propose an additional method (JMVAE-kl), which prevents generated samples from
being collapsed when some modalities are missing. We experimentally confirm that this
method solves this issue.

• We show qualitatively and quantitatively that JMVAE can extract appropriate joint distri-
bution and that it can generate and reconstruct modalities similarly or more properly than
conventional VAEs.

• We demonstrate that the JMVAE can generate multiple modalities bi-directionally even if
these modalities have completely different kinds of dimensions and structures, e.g., high-
dimentional color face images and low-dimentional binary attributes.

2 RELATED WORK

The common approach of multimodal learning with deep neural networks is to share the top of
hidden layers in modality specific networks. Ngiam et al. (2011) proposed this approach with deep
autoencoders (AEs) and found that it can extract better representations than single modality settings.
Srivastava & Salakhutdinov (2012) also took this idea but used deep Boltzmann machines (DBMs)
(Salakhutdinov & Hinton, 2009). DBMs are generative models with undirected connections based
on maximum joint likelihood learning of all modalities. Therefore, this model can generate modali-
ties bi-directionally. Sohn et al. (2014) improved this model to exchange multiple modalities effec-
tively, which are based on minimizing the variation of information and JMVAE-kl in ours can be
regarded as minimizing it with variational learning on parameterized distributions (see Section 3.3
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and Appendix A). However, it is computationally difficult for DBMs to train high-dimensional data
such as natural images because of MCMC training.

Recently, VAEs (Kingma & Welling, 2013; Rezende et al., 2014) are used to train such high-
dimensional modalities. Kingma et al. (2014); Sohn et al. (2015) propose conditional VAEs
(CVAEs), which maximize a conditional log-likelihood by variational methods. Many studies
are based on CVAEs to train various multiple modalities such as handwriting digits and labels
(Kingma et al., 2014; Sohn et al., 2015), object images and degrees of rotation (Kulkarni et al.,
2015), face images and attributes (Larsen et al., 2015; Yan et al., 2015), and natural images and
captions (Mansimov et al., 2015). The main features of CVAEs are that the relation between modal-
ities is one-way and a latent variable does not contain the information of a conditioned modality1,
which are unsuitable for our objective.

Pandey & Dukkipati (2016) proposed a conditional multimodal autoencoder (CMMA), which also
maximizes the conditional log-likelihood. The difference between CVAEs is that a latent variable is
connected directly from a conditional variable, i.e., these variables are not independent. Moreover,
this model forces the latent representation from an input to be close to the joint representation from
multiple inputs, which is similar to JMVAE-kl. However, the CMMA still considers that modalities
are generated in fixed direction. This is the most different part from ours.

3 METHODS

This section first introduces the algorithm of VAEs briefly and then proposes a novel multimodal
learning model with VAEs, which we call the joint multimodal variational autoencoder (JMVAE).

3.1 VARIATIONAL AUTOENCODERS

Given observation variables x and corresponding latent variables z, their generating processes are
definable as z ∼ p(z) = N (0, I) and x ∼ pθ(x|z), where θ is the model parameter of p. The
objective of VAEs is maximization of the marginal distribution p(x) =

∫
pθ(x|z)p(z)dx. Because

this distribution is intractable, we instead train the model to maximize the following lower bound of
the marginal distribution LV AE(x) as

log p(x) ≥ −DKL(qφ(z|x)||p(z)) + Eqφ(z|x)[log pθ(x|z)] = LV AE(x), (1)

where qφ(z|x) is an approximate distribution of posterior p(z|x) and φ is the model parameter of q.
We designate qφ(z|x) as encoder and pθ(x|z) as decoder. Moreover, in Equation 1, the first term
represents a regularization. The second one represents a negative reconstruction error.

To optimize the lower bound L(x) with respect to parameters θ, φ, we estimate gradients of Equa-
tion 1 using stochastic gradient variational Bayes (SGVB). If we consider qφ(z|x) as Gaussian

distribution N (z;µ, diag(σ2)), where φ = {µ,σ2}, then we can reparameterize z ∼ qφ(z|x)
to z = µ + σ ⊙ ǫ, where ǫ ∼ N (0, I). Therefore, we can estimate the gradients of the neg-
ative reconstruction term in Equation 1 with respect to θ and φ as ∇θ,φEqφ(z|x)[log pθ(x|z)] =
EN (ǫ;0,I)[∇θ,φ log pθ(z|µ + σ ⊙ ǫ)]. Because the gradients of the regularization term are solvable
analytically, we can optimize Equation 1 with standard stochastic optimization methods.

3.2 JOINT MULTIMODAL VARIATIONAL AUTOENCODERS

Next, we consider i.i.d. dataset (X,W) = {(x1,w1), ..., (xN ,wN )}, where two modalities x and
w have different kinds of dimensions and structures2. Our objective is to generate two modalities
bi-directionally. For that reason, we assume that these are conditioned independently on the same
latent concept z: joint representation. Therefore, we assume their generating processes as z ∼ p(z)
and x,w ∼ p(x,w|z) = pθx(x|z)pθw (w|z), where θx and θw represent the model parameters of
each independent p. Figure 2(a) shows a graphical model that represents generative processes. One
can see that this models joint distribution of all modalities, p(x,w). Therefore, we designate this
model as a joint multimodal variational autoencoder (JMVAE).

1According to Louizos et al. (2015), this independence might not be satisfied strictly because the encoder
in CVAEs still has the dependence.

2In our experiment, these depend on dataset, see Section 4.2.
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Figure 2: (a) Graphical model of the JMVAE. Gray circles represent observed variables. The white one denotes
a latent variable. (b) Two approaches to estimate encoders with a single input, q(z|x) and q(z|w), on the
JMVAE: left, make modalities except an input modality missing (JMVAE-zero); right, prepare encoders that
have a single input and make them close to the JMVAE encoder (JMVAE-kl).

Considering an approximate posterior distribution as qφ(z|x,w), we can estimate a lower bound of
the log-likelihood log p(x,w) as follows:

LJM (x,w) = Eqφ(z|x,w)[log
pθ(x,w, z)

qφ(z|x,w)
] (2)

= −DKL(qφ(z|x,w)||p(z))

+Eqφ(z|x,w)[log pθx(x|z)] + Eqφ(z|x,w)[log pθw(w|z)]. (3)

Equation 3 has two negative reconstruction terms which are correspondent to each modality. As
with VAEs, we designate qφ(z|x,w) as the encoder and both pθx(x|z) and pθw(w|z) as decoders.

We can apply the SGVB to Equation 3 just as Equation 1, so that we can parameterize the encoder
and decoder as deterministic deep neural networks and optimize them with respect to their param-
eters, θx, θw, and φ. Because each modality has different feature representation, we should set
different networks for each decoder, pθx(x|z) and pθw(w|z). The type of distribution and corre-
sponding network architecture depends on the representation of each modality, e.g., Gaussian when
the representation of modality is continuous, and a Bernoulli when it is a binary value.

Unlike original VAEs and CVAEs, the JMVAE models joint distribution of all modalities. In this
model, modalities are conditioned independently on a joint latent variable. Therefore, we can extract
better representation that includes all information of modalities. Moreover, we can estimate both
marginal distribution and conditional distribution in bi-directional, so that we can not only obtain
images reconstructed themselves but also draw texts from corresponding images and vice versa.
Additionally, we can extend JMVAEs to handle more than two modalities such as p(x,w1,w2, ...)
in the same learning framework.

3.3 INFERENCE MISSING MODALITIES

In the JMVAE, we can extract joint latent features by sampling from the encoder qφ(z|x,w) at
testing time. Our objective is to exchange modalities bi-directionally, e.g., images to texts and vice
versa. In this setting, modalities that we want to sample are missing, so that inputs of such modalities
are set to zero (the left panel of Figure 2(b)). The same is true of reconstructing a modality only
from itself. This is a natural way in discriminative multimodal settings to estimate samples from
unimodal information (Ngiam et al., 2011). However, if missing modalities are high-dimensional
and complicated such as natural images, then the inferred latent variable becomes incomplete and
generated samples might collapse.

We propose a method to solve this issue, which we designate as JMVAE-kl. Moreover, we describe
the former way as JMVAE-zero to distinguish it. Suppose that we have encoders with a single input,
qφx

(z|x) and qφw
(z|w), where φx and φw are parameters. We would like to train them by bringing

their encoders close to an encoder qφ(z|x,w) (the right panel of Figure 2(b)). Therefore, the object
function of JMVAE-kl becomes

LJMkl(α)(x,w) = LJM (x,w) − α · [DKL(qφ(z|x,w)||qφx
(z|x)) +DKL(qφ(z|x,w)||qφw

(z|w))], (4)

where α is a factor that regulates the KL divergence terms.

From another viewpoint, maximizing Equation 4 can be regarded as minimizing the variation of in-
formation with variational learning on parameterized distributions (proven and derived in Appendix
A). The variation of information, a measure of the distance between two variables, is written as
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−EpD(x,w)[log p(x|w) + log p(w|x)], where pD is the data distribution. It is apparent that the
variation of information is the sum of two negative conditional log-likelihoods. Therefore, mini-
mizing the variation of information contributes to appropriate bi-directional exchange of modalities.
Sohn et al. (2014) also train their model to minimize the VI for the same objective as ours. However,
they use DBMs with MCMC training.

4 EXPERIMENTS

This section presents evaluation of the qualitative and quantitative performance and confirms the
JMVAE functionality in practice.

4.1 DATASETS

As described herein, we used two datasets: MNIST and CelebA (Liu et al., 2015).

MNIST is not a dataset for multimodal setting. In this work, we used this dataset for toy problem
of multimodal learning. We consider handwriting images and corresponding digit labels as two
different modalities. We used 50,000 as training set and the remaining 10,000 as a test set.

CelebA consists of 202,599 color face images and corresponding 40 binary attributes such as male,
eyeglasses, and mustache. In this work, we regard them as two modalities. This dataset is challeng-
ing because these have completely different kinds of dimensions and structures. Beforehand, we
cropped the images to squares and resized to 64 × 64 and normalized. From the dataset, we chose
191,899 images that are identifiable face by OpenCV and used them for our experiment. We used
90% out of all the dataset contains as training set and the remaining 10% of them as test set.

4.2 MODEL ARCHITECTURES

For MNIST, we considered images as x ∈ R
28×28 and corresponding labels as w ∈ {0, 1}10. We

prepared two networks each with two dense layers of 512 hidden units and using leaky rectifiers
and shared the top of each layers and mapped them into 64 hidden units. Moreover, we prepared
two networks each with three dense layers of 512 units and set p(x|z) as Bernoulli and p(w|z) as
categorical distribution whose output layer is softmax. We used warm-up (Bowman et al., 2015;
Sønderby et al., 2016), which first forces training only of the term of the negative reconstruction
error and then gradually increases the effect of the regularization term to prevent local minima during
early training. We increased this term linearly during the first Nt epochs as with Sønderby et al.
(2016). We set Nt = 200 and trained for 500 epochs on MNIST. Moreover, same as Burda et al.
(2015); Sønderby et al. (2016), we resampled the binarized training values randomly from MNIST
for each epoch to prevent over-fitting.

For CelebA, we considered face images as x ∈ R
32×32×3 and corresponding attributes as w ∈

{−1, 1}40. We prepared two networks with layers (four convolutional and a flattened layers for x
and two dense layers for w) with ReLU and shared the top of each layers and mapped them into 128
units. For the decoder, we prepared two networks, with a dense and four deconvolutional layers for
x and three dense layers for w, and set Gaussian distribution for decoder of both modalities, where
the variance of Gaussian was fixed to 1 for the decoder of w. In CelebA settings, we combined
JMVAE with generative adversarial networks (GANs) (Goodfellow et al., 2014) to generate clearer
images. We considered the network of p(x|z) as generator in GAN, then we optimized the GAN loss
with the lower bound of the JMVAE, which is the same way as a VAE-GAN model (Larsen et al.,
2015). As presented herein, we describe this model as JMVAE-GAN. We set Nt = 20 and trained
for 100 epochs on CelebA.

We used the Adam optimization algorithm (Kingma & Ba, 2014) with a learning rate of 10−3 on
MNIST and 10−4 on CelebA. The models were implemented using Theano (Team et al., 2016) and
Lasagne (Dieleman et al., 2015).
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Table 1: Evaluation of test log-likelihood. All models are trained and tested on MNIST. α is a coefficient of
regularization term in JMVAE-kl (Equation 4): left, marginal log-likelihood; right, conditional log-likelihood.

≤ log p(x)
multiple single

VAE -86.91

JMVAE-zero -86.89 -86.89
JMVAE-kl, α = 0.01 -86.89 -86.55
JMVAE-kl, α = 0.1 -86.86 -86.73
JMVAE-kl, α = 1 -89.20 -89.20

≤ log p(x|w)
multiple single

CVAE -83.80
CMMA -86.12

JMVAE-zero -84.64 -4838
JMVAE-kl, α = 0.01 -84.61 -129.6
JMVAE-kl, α = 0.1 -84.72 -126.0
JMVAE-kl, α = 1 -86.97 -112.7

Table 2: Evaluation of log-likelihood. Models are trained and tested on CelebA. We trained JMVAE-kl and set
α = 0.1: left, marginal log-likelihood; right, conditional log-likelihood (with the multiple lower bound).

≤ log p(x)
multiple single

VAE-GAN -4439

JMVAE-GAN -4141 -4144

≤ log p(x|w)
CVAE-GAN -4152
CMMA-GAN -4147

JMVAE-GAN -4130

4.3 QUANTITATIVE EVALUATION

4.3.1 EVALUATION METHOD

For this experiment, we estimated test log-likelihood to evaluate the performance of model. This
estimate roughly corresponds to negative reconstruction error. Therefore, higher is better. From
this performance, we can find that not only whether the JMVAE can generate samples properly but
also whether it can obtain joint representation properly. If the log-likelihood of a modality is low,
representation for this modality might be hurt by other modalities. By contrast, if it is the same
or higher than model trained on a single modality, then other modalities contribute to obtaining
appropriate representation.

We estimate the test marginal log-likelihood and test conditional log-likelihood on JMVAE. We
compare the test marginal log-likelihood against VAEs (Kingma & Welling, 2013; Rezende et al.,
2014) and the test conditional log-likelihood against CVAEs (Kingma et al., 2014; Sohn et al., 2015)
and CMMAs (Pandey & Dukkipati, 2016). On CelebA, we combine all competitive models with
GAN and describe them as VAE-GAN, CVAE-GAN, and CMMA-GAN. For fairness, architectures
and parameters of these competitive models were set to be as close as possible to those of JMVAE.

We calculate the importance weighted estimator (Burda et al., 2015) from lower bounds at testing
time because we would like to estimate the true test log-likelihood from lower bounds. To es-
timate the test marginal log-likelihood p(w) of the JMVAE, we use two possible lower bounds:
sampling from qφ(z|x,w) or qφx

(z|x). We describe the former lower bound as the multiple lower
bound and the latter one as the single lower bound. When we estimate the test conditional log-
likelihood log p(x|w), we also use two lower bounds, each of which is estimated by sampling from
qφ(z|x,w) (multiple) or qφw

(z|w) (single) (see Appendix B for more details). To estimate the single
lower bound, we should approximate the single encoder (qφx

(z|x) or qφw
(z|w)) by JMVAE-zero

or JMVAE-kl. When the value of log-likelihood with the single lower bound is the same or larger
than that with the multiple lower bound, the approximation of the single encoder is good. Note that
original VAEs use a single lower bound and that CVAEs and CMMAs use a multiple lower bound.

4.3.2 MNIST

Our first experiment evaluated the test marginal log-likelihood and compared it with that of the VAE
on MNIST dataset. We trained the model with both JMVAE-zero and JMVAE-kl and confirmed
these differences. As described in Section 4.3.1, we have two possible ways of estimating the
marginal log-likelihood of the JMVAE, i.e., multiple and single lower bounds. The left of Table
1 shows the test marginal log-likelihoods of the VAE and JMVAE. It is apparent that log-likelihood
of the JMVAE-zero is the same or slightly better than that of the VAE. In the case of the log-
likelihood of JMVAE-kl, the log-likelihood becomes better as α is small. Especially, JMVAE-kl
with α = 0.01 and single lower bound archives the highest log-likelihood in Table 1. If α is
1, however, then the test log-likelihood on JMVAE-kl becomes much lower. This is because the
influence of the regularization term becomes strong as α is large.
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Figure 3: Visualizations of 2-D latent representation. The network architectures are the same as those in Section
4.3, except that the dimension of the top hidden layer is forced into 2. Points with different colors correspond
to the digit labels. These were sampled from q(z|x) in the VAE and q(z|x,w) in both the CVAE and JMVAE.
We used JMVAE-zero as the JMVAE.

Next, we evaluated the test conditional log-likelihood and compared it with that of the CVAE and
CMMA conditioned on w. As in the case of the marginal log-likelihood, we can estimate the
JMVAE’s conditional log-likelihood by both the single and multiple lower bound. The single bound
can be estimated using JMVAE-zero or JMVAE-kl. The right of Table 1 shows the test conditional
log-likelihoods of the JMVAE, CVAE, and CMMA. It is apparent that the CVAE achieves the highest
log-likelihood. Even so, in the case of multiple bound, log-likelihoods with both JMVAE-zero and
JMVAE-kl (except α = 1) outperform that of the CMMA.

It should be noted that the log-likelihood with JMVAE-zero and single bound is significantly low.
As described in Section 3.3, this is because a modality w is missing as input. By contrast, it is
apparent that the log-likelihood with JMVAE-kl is improved significantly from that with JMVAE-
zero. It shows that JMVAE-kl solves the issue of missing modalities (we can also find this result in
generated images, see Appendix E). Moreover, we find that this log-likelihood becomes better as α
is large, which is opposite to the other results. Therefore, there is a trade-off between whether each
modality can be reconstructed properly and whether multiple modalities can be exchanged properly
and it can be regulated by α.

4.3.3 CELEBA

In this section, we used CelebA dataset to evaluate the JMVAE. Table 2 presents the evaluations of
marginal and conditional log-likelihood. From this table, it is apparent that values of both marginal
and conditional log-likelihood with JMVAEs are larger than those with other competitive methods.
Moreover, comparison with Table 1 shows that the improvement on CelebA is greater than that on
MNIST, which suggests that joint representation with multiple modalities contributes to improve-
ment of the quality of the reconstruction and generation in the case in which an input modality is
large-dimensioned and complicated.

4.4 QUALITATIVE EVALUATION

4.4.1 JOINT REPRESENTATION ON MNIST

In this section, we first evaluated that the JMVAE can obtain joint representation that includes the
information of modalities. Figure 3 shows the visualization of latent representation with the VAE,
CVAE, and JMVAE on MNIST. It is apparent that the JMVAE obtains more discriminable latent
representation by adding digit label information. Figure 3(b) shows that, in spite of using multi-
modal information as with the JMVAE, points in CVAE are distributed irrespective of labels because
CVAEs force latent representation to be independent of label information, i.e., it is not objective for
CVAEs to obtain joint representation.

4.4.2 GENERATING FACES FROM ATTRIBUTES AND JOINT REPRESENTATION ON CELEBA

Next, we confirm that JMVAE-GAN on CelebA can generate images from attributes. Figure 4(a)
portrays generated faces conditioned on various attributes. We find that we can generate an average
face of each attribute and various random faces conditioned on a certain attributes. Figure 4(b)
shows that samples are gathered for each attribute and that locations of each variation are the same
irrespective of attributes. From these results, we find that manifold learning of joint representation
with images and attributes works well.
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Figure 4: (a) Generation of average faces and corresponding random faces. We first set all values of attributes
{−1, 1} randomly and designate them as Base. Then, we choose an attribute that we want to set (e.g., Male,
Bald, Smiling) and change this value in Base to 2 (or −2 if we want to set ”Not”). Each column corresponds
to same attribute according to legend. Average faces are generated from p(x|zmean), where zmean is a mean
of q(z|w). Moreover, we can obtain various images conditioned on the same values of attributes such as
x ∼ p(x|z), where z = zmean + σ ⊙ ǫ, ǫ ∼ N (0, ζ), and ζ is the parameter which determines the range of
variance. In this figure, we set ζ = 0.6. Each row in random faces has the same ǫ. (b) PCA visualizations of
latent representation. Colors indicate which attribute each sample is conditioned on.
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Figure 5: Portraits of the Mona Lisa3(upper) and Mozart4(lower), generated their attributes, and reconstructed
images conditioned on varied attributes, according to the legend. We cropped and resized it in the same way
as CelebA. The procedure is as follows: generate the corresponding attributes w from an unlabeled image x;
generate an average face xmean from the attributes w; select attributes which we want to vary and change the
values of these attributes; generate the changed average face x

′

mean
from the changed attributes; and obtain a

changed reconstruction image x
′ by x+ x

′

mean
− xmean.

4.4.3 BI-DIRECTIONAL GENERATION BETWEEN FACES AND ATTRIBUTES ON CELEBA

Finally, we demonstrate that JMVAE-GAN can generate bi-directionally between faces and at-
tributes. Figure 5 shows that MVAE-GAN can generate both attributes and changed images condi-
tioned on various attributes from images which had no attribute information. This way of generating
an image by varying attributes is similar to the way of the CMMA (Pandey & Dukkipati, 2016).
However, the CMMA cannot generate attributes from an image because it only generates images
from attributes in one direction.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel multimodal learning model with VAEs, the joint multimodal
variational autoencoders (JMVAE). In this model, modalities are conditioned independently on joint
representation, i.e., it models a joint distribution of all modalities. We further proposed the method
(JMVAE-kl) of reducing the divergence between JMVAE’s encoder and a prepared encoder of each
modality to prevent generated samples from collapsing when modalities are missing. We confirmed
that the JMVAE can obtain appropriate joint representations and high log-likelihoods on MNIST

4https://en.wikipedia.org/wiki/Mona Lisa
4https://en.wikipedia.org/wiki/Wolfgang Amadeus Mozart
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and CelebA datasets. Moreover, we demonstrated that the JMVAE can generate multiple modalities
bi-directionally on the CelebA dataset.

In future work, we would like to evaluate the multimodal learning performance of JMVAEs using
various multimodal datasets such as containing three or more modalities.
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A RELATION BETWEEN THE OBJECTIVE OF JMVAE-KL AND THE VARIATION

OF INFORMATION

The variation of information can be expressed as −EpD(x,w)[log p(x|w) + log p(w|x)], where pD
is the data distribution. In this equation, we specifically examine the sum of two negative log-
likelihoods and do not consider the expectation in this derivation. We can calculate the lower bounds
of these log-likelihoods as follows:

log p(x|w) + log p(w|x) ≥ Eq(z|x,w)[log
p(x|z)p(z|w)

q(z|x,w)
] + Eq(z|x,w)[log

p(w|z)p(z|x)

q(z|x,w)
]

= Eq(z|x,w)[log p(x|z)] + Eq(z|x,w)[log p(w|z)]

−DKL(q(z|x,w)||p(z|x)) −DKL(q(z|x,w)||p(z|w))

= LJM (x,w)− [DKL(q(z|x,w)||p(z|x)) +DKL(q(z|x,w)||p(z|w))]

+DKL(q(z|x,w)||p(z)). (5)

If all the probability distributions are parameterized in neural networks, we can consider each p(z|x)
and p(z|w) as q(z|x) and q(z|w), respectively. This is because both p(z|x) and q(z|x) (or both
p(z|w) and q(z|w)) can be expressed as same network architectures. Therefore, the replaced Equa-
tion 5 can be calculated as follows:

LJM (x,w) − [DKL(q(z|x,w)||q(z|x)) +DKL(q(z|x,w)||q(z|w))] +DKL(q(z|x,w)||p(z))

= LJMkl(1)(x,w) +DKL(q(z|x,w)||p(z)) ≥ LJMkl(1)(x,w), (6)

where LJMkl(1) is Equation 4 with α = 1. Therefore, maximizing Equation 4 is regarded as min-
imizing the variation of information with variational learning on parameterized distributions, i.e.,
maximizing the lower bounds of the negative variation of information.

B TEST LOWER BOUNDS

Two lower bounds used to estimate test marginal log-likelihood p(x) of the JMVAE are as follows:

Lsingle(x) = Eqφx (z|x)[log
pθx(x|z)p(z)

qφx
(z|x)

], (7)

Lmultiple(x) = Eqφ(z|x,w)[log
pθx(x|z)p(z)

qφ(z|x,w)
]. (8)
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Reconstuction (multiple)

Input

Reconstuction (single)

(a)

Reconstuction (multiple)

Input

Reconstuction (single)

(b)

Figure 6: Comparison of the original images and reconstructed images by the JMVAE (α = 0.1). We used (a)
MNIST and (b) CelebA datasets.

We can also estimate test conditional log-likelihood p(x|w) from these two lower bounds as

Lsingle(x|w) = Eqφw (z|w)[log
p(x, z|w)

qφw
(z|w)

] = Eqφw (z|w)[log
pθx(x|z)pθw (w|z)p(z)

qφw
(z|w)

]− log p(w), (9)

Lmultiple(x|w) = Eqφ(z|x,w)[log
pθx(x|z)pθw (w|z)p(z)

qφ(z|x,w)
]− log p(w), (10)

where log p(w) = logEp(z)[pθw(w|z)] = log 1
Nw

∑Nw

i pθw(w|z(i)) and z
(i) ∼ p(z). In this paper,

we set Nw = 5, 000 on MNIST and Nw = 10 on CelebA.

We can obtain a tighter bound on the log-likelihood by k-fold importance weighted sampling. For
example, we obtain an importance weighted bound on log p(x) from Equation 11 as follows:

log p(x) ≥ Ez1,...,zk∼qφx (z|x)
[log

1

k

k∑

i=1

pθx(x|z)p(z)

qφx
(z|x)

] = Lk
single(x). (11)

Strictly speaking, these two lower bounds are not equal. However, if the number of importance
samples is extremely large, the difference of these two lower bounds converges to 0.

Proof. Let the multiple and single k-hold importance weighted lower bounds as Lk
single and Lk

single.

From the theorem of the importance weighted bound, both Lk
single and Lk

multiple converge to

log p(x) as k → ∞.

Therefore,

limk→∞|Lk
multiple − Lk

single| ≤ |limk→∞Lk
multiple − limk→∞Lk

single| = 0

C RECONSTRUCTED IMAGES

Figure 6 presents a comparison of the original image and reconstructed image by the JMVAE on
both MNIST and CelebA datasets. It is apparent that the JMVAE can reconstruct the original image
properly with either a multiple or single encoder.
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Table 3: Evaluation of test log-likelihood. All models are trained on the MNIST dataset: left, marginal log-
likelihood; right, conditional log-likelihood.

≤ log p(x,w)
JMVAE-zero -86.96
JMVAE-kl, α = 0.01 -86.94
JMVAE-kl, α = 0.1 -86.93
JMVAE-kl, α = 1 -89.28

JMVAE-zero

JMVAE-kl, ! " #$%

0       1      2      3       4      5      6      7       8      9

Figure 7: Image generation from conditional distribution p(x|w). We used a single encoder p(z|w) for both
generations.

D TEST JOINT LOG-LIKELIHOOD ON MNIST

Table 3 shows the joint log-likelihood of the JMVAE on MNIST dataset by both JMVAE-zero and
JMVAE-kl. It is apparent that the log-likelihood test on both approaches is almost identical (strictly,
JMVAE-zero is slightly lower). The test log-likelihood on JMVAE-kl becomes much lower if α is
large.

E IMAGE GENERATION FROM CONDITIONAL DISTRIBUTION ON MNIST

Figure 7 presents generation samples of x conditioned on single input w. It is apparent that the
JMVAE with JMVAE-kl generates conditioned digit images properly, although that with JMVAE-
zero cannot generate them. As results showed, we also confirmed qualitatively that JMVAE-kl can
model qφx

(z|x) properly compared to JMVAE-zero.
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