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ABSTRACT

We discuss a range of modeling choices that arise when constructing an end-to-end
differentiable programming language suitable for learning programs from input-
output examples. Taking cues from programming languages research, we study
the effect of memory allocation schemes, immutable data, type systems, and built-
in control-flow structures on the success rate of learning algorithms. We build
a range of models leading up to a simple differentiable functional programming
language. Our empirical evaluation shows that this language allows to learn far
more programs than existing baselines.

1 INTRODUCTION

Inductive Program Synthesis (IPS), i.e., the task of learning a program from input/output examples,
is a fundamental problem in computer science. It is at the core of empowering non-experts to use
computers for repeated tasks, and recent advances such as the FlashFill extension of Microsoft
Excel (Gulwani, [2011) have started to deliver on this promise.

A related line of research is the extension of neural network architectures with components that
correspond to hardware primitives (Giles et al.l|1989;|Graves et al., [2014; Weston et al., 2015} |Joulin
& Mikolov, 2015} |Grefenstette et al., 2015} [Kurach et al., [2016; [Kaiser & Sutskever, [2016; |Reed
& de Freitas) 2016} |Andrychowicz & Kurachl 2016; [Zaremba et al., [2016; (Graves et al., [2016), en-
abling them to learn program-like behavior. However, these models are usually tightly coupled to
the idea of a differentiable interpretation of computer hardware, as names such as Neural Turing
Machine (Graves et al., 2014}, Neural Random-Access Machine (Kurach et al.,[2016), and Neural
GPU (Kaiser & Sutskever, [2016) indicate. We observe that while such architectures form the basis
modern computing, they are usually not the models that are used to program computers. Instead,
decades of programming languages research have lead to ever higher programming languages that
aim to make programming simpler and less error-prone. Indeed, as recent comparisons show (Gaunt
et al.,|2016b), program synthesis methods from the programming languages community that actively
exploit such constructs, e.g. by leveraging known semantics of loops, are currently achieving consid-
erably better results than comparable neural architectures. Still, neural IPS techniques are clearly at
an advantage when extending the problem setting from simple integer input/output examples to more
complex cases, such as IPS problems with perceptual data (Gaunt et al.,|2016a)), imprecise examples,
or leveraging additional cues such as a natural language description of the desired program.

Hence, we propose to adapt features of modern high-level programming languages to the differen-
tiable setting. In this paper, we develop an end-to-end differentiable programming language operating
on integers and lists, taking cues from functional programming. In our empirical evaluation, we show
the effects on learning performance of our four modeling recommendations, namely automatic mem-
ory management, the use of combinators and if-then-else constructs to structure program control
flow, immutability of data, and an application of a simple type system. Our experiments show that
each of these features crucially improves program learning over existing baselines.

2 BACKGROUND

The basic building block of functional programs is the function, and programs are built by composing
functions together. In the following, we highlight some common features in functional programs
before discussing how to integrate them into an end-to-end differentiable model in Sect.
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Memory Management Most modern programming languages eschew manual memory manage-
ment and pointer manipulation where possible. Instead, creation of heap objects automatically gener-
ates an appropriate pointer to fresh memory. Similarly, built-in constructs allow access to fields of
objects, instead of requiring pointer arithmetic. Both of these choices move program complexity into
the fixed implementation of a programming language, making it easier to write correct programs.

Immutable Data Functions are expected to behave like their mathematical counterparts, avoiding
mutable data and side effects. This helps programmers reason about their code, as it eliminates the
possibility that a variable might be left uninitialized or accessed in an inconsistent state. Moreover,
no data is ever “lost” by being overwritten or mutated.

Types Expressive type systems are used to protect programmers from writing programs that will
fail. Practically, a type checker is able to rule out many syntactically correct programs that are certain
to fail at runtime, and thus restricts the space of valid programs. Access to types helps programmers
to reason about the behavior of their code. In particular, the type system tells the programmer what
kinds of data they can expect each variable to contain.

Structured Control Flow A key difference between hardware-level assembly languages and
higher-level programming languages is that higher-level languages structure control flow using loops,
conditional statements, and procedures, as raw gotos are famously considered harmful (Dijkstral,
1968). Functional languages go a step further and leverage higher-order functions to abstract over
common control flow patterns such as iteration over a recursive data structure. In an imperative
language, such specialized control flow is often repeated and mixed with other code.

3 OUR MODELS

In the following, we will discuss a range of models, starting with a simple assembly-like language
and progressing to a differentiable version of a simple functional programming language. We make
four modeling recommendations whose effect we demonstrate in our experiments in Sect. 4]

We first discuss the general format of our programs and program states, which we will refine step
by step. Our programs operate on states consisting of an instruction pointer indicating the next
instruction to execute, a number of registers holding inputs and intermediate results of executed
instructions, and a heap containing memory allocated by the program. We focus on list-manipulating
programs, so we create a heap consisting of standard cons cells, which are data and pointer value
pairs where the pointer points to another cons cell or the special nil value. To represent a linked
list, each cell points to the next cell in the list, except for the last cell, which points to nil.

3.1 PROGRAM AND DATA REPRESENTATION

We define our models by lifting simple instructions to the differentiable setting. To do so, we bound
the domain of all values and parameters, following earlier work (e.g. (Graves et al.| 2014} Kurach
et al.,|2016; Gaunt et al., 2016b))). We represent a value v from a domain {d; ...dp} as a tuple RP,
interpreted as a discrete probability distribution. We pick a maximal integer value M that bounds all
values occurring in our programs, a number of instructions I, and a number of registers R. In this
setting, the size of the heap memory H has to be equal to the maximal integer value M, but we will
relax this later. We limit the length of programs to some value P, and can then encode programs as

a sequence of tuples (o), i(P)] afp ), aép )), where i(P) € [1, I] identifies the p-th instruction and
0P, al(p ), az(p ) e [1, R] its output and argument registers respectively. To “execute” such a program,
we unroll it for 7' timesteps and keep a program state s(*) = (p(*), rl(t) . Tg’), hl(t) . hg)) for
each timestep ¢, where p(*) € [1, P] is an instruction pointer indicating which instruction to execute

next, ngt) are the values of registers, and h,Et) are the values of the cons cells in the heap.

All of our models share a basic instruction set, namely the cons cell constructor cons, the heap
accessors (car & cdr) which return the data (resp. pointer) element of a cons cell, integer addition,

increment and decrement (add, inc, dec), integer equality and greater-than comparison (eq & gt),
Boolean conjunction and disjunction (and & or), common constants (zero & one), and finally a
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noop instruction. These all have the usual semantics as transformers on the program state, and we
will discuss the behavior of cons in detail later. For example, executing (o, add, a3, ag) on
a state at timestep ¢ yields the following registers at the next timestep, where the addition operation
is lifted to operate on distributions over natural numbers.

(t) 2 Yu € [].,R]

Pt r((lf) + n(lt) mod M ifu=o
“ o otherwise.

As we allow all involved quantities to be distributions over all possible choices, computing the next
state requires a case analysis for all allowed values. The new state is then obtained by averaging the
results of all possible execution steps, weighted by the probabilities assigned to each choice. Thus, if
n(s®, (0,1, a1, az)) computes the state obtained by executing the instruction (0, 7, a;, az), we can
compute the next state s(**1) as follows, where [x = n] denotes the probability that a variable x
encoding a discrete probability distribution assigns to the value n.

s =37 [0 =p] - [oP=0] - [{P=i] - [af" = ar] - [ =] -0\ (0, 4 a1, 02)) (D)
pe[1,Pl,ie1,1],
0,a1,a2€[1,R]
In practice, we developed our models in TerpreT (Gaunt et al.,|2016b), which hides these technicali-
ties.

Training Objective Our aim is to learn the program parameters (o(?), i(P), al(p ), aép )) such that
program “evaluation” according to (1)) starting on a state s(?) initialized to an example input yields the
target output in (7). For scalar outputs such as a sum of values, our objective is simply to minimize
the cross-entropy between the distribution in the output register rg) and a point distribution with all
probability mass on the correct output value.

Handling list outputs is more complex, as many valid outputs exist (depending on how list elements
are placed in the heap memory). Intuitively, we traverse the heap from the returned heap address
until reaching the end of a linked list, recording the list elements as we go. To formalize this intuition,

let dh,iT) (resp. P h,gT)) denote the data (resp. pointer) information in the heap cell at address k at
the final state of the evaluation. We then compute the traversal sequences of list element values
v1,...,vy and addresses a1, ...,ay as follows.

(T) P
ai:{rR o vi= Y lai=ad] "n"

T .
>aen,mlai-1 = d] PR{T) otherwise o]

The probability that the computed output list is equal to an expected output list [71, . . . , ] is then
k _
[ar+1 =0] - >0 [vi = vi].

Memory Management As the programs we want to learn need to construct new lists, we need a
memory allocation mechanism that provides fresh cells. We explored two options for this allocator.

First, we attempt to follow stack-allocation models in which a stack of memory cells is used with
a stack pointer sp which always points to the next free memory cell. We fix a maximum stack size
H. Whenever a memory cell is allocated (i.e., a cons instruction is executed), the stack pointer is
incremented, guaranteeing that no cell is ever overwritten. However, uncertainty about whether an
instruction is cons translates into uncertainty about the precise value of the stack pointer, as each
call to cons changes sp. This uncertainty causes cells holding results from different instructions
in the stack to blur together, despite the fact that cells are immutable once created. As an example,
consider the execution of two instructions, where the first is cons 1 0 with probability 0.5 and
noop otherwise, and the second is cons 2 0 with probability 0.5 and noop otherwise. After
executing starting with sp = 1 and an empty stack, the value of sp will be blurred across three values
1, 2 and 3 with probabilities 0.25, 0.5 and 0.25. Similarly, the value of the first heap cell will be 0
(the default) with probability 0.25, 1 with probability 0.5 and 2 with probability 0.25. This blurring
effect becomes stronger with longer programs, and we found that it substantially impacted learning.

Both of these problems can be solved by transitioning to a fully immutable representation of the
heap. In this variant, we allocate and initialize one heap cell per timestep, i.e., we set H = T'. If the
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current instruction is a cons, the appropriate values are filled in, otherwise both data and pointer
value are set to a default value (in our case, 0). This eliminates the issue of blurring between outputs
of different instructions. The values of a cons cell may still be uncertain as they inherit uncertainty
about the executed instructions and the values of arguments, but depend only on the operations at one
timestep. While this modification requires a larger domain to store pointers, we found not copying
the stack significantly reduces memory usage during training of our models.

Recommendation (F): Use fixed heap memory allocation deterministically controlled by the model.

3.2 PROGRAM MODELS

Our baseline program 'model'corresponds closely to an assem- % - % &gl] &52] %
bly language as used in earlier work (Bunel et al., 2016), re- out instr argl arg? branch

sulting in a program model as shown on the right, where boxes 2: [ ] « [ ][ 1 J[_]
correspond to learnable parameters. We extend our instruction .

set with jump-if-zero (jz), jump-if-not-zero (jnz) and return instructions. Our assembly pro-
gram representation also includes a “branch” parameter b specifying the new value of the instruction

pointer for a successful conditional branch. To learn programs in this language, the model must

learn how to create the control flow that it needs using these simple conditional jumps. Note that the

instruction pointer suffers from the same problems as the stack pointer above, i.e., uncertainty about

its value blurs together the effects of many possible program executions.

Structured Control Flow We see structured con- out instr argl arg2 cond
trol flow as a way to reduce the “bleeding” of uncer- »™+* L1 < [ 1L JL JL ]
tainty about the value of the instruction pointer into  prez:

X : reg
the values of registers and cells on the heap. To in- .~ . . —

troduce structured control flow, we replace raw jumps out instr argl arg2  cond
with an i f-then-else instruction and an explicit foopy: [ ]« [ JLCJLC T 1
foreach loop that is suited for processing lists. We loop,:

restrict our model to a prefix of instructions, a loop out instr  argl arg2 cond

which iterates over a list, and a suffix of instructions. A ——————- d
The parameters for instructions in the loop can access ~ 5%/2:

an additional register that contains the value of the current list element. To implement this behavior in
practice, we unroll the loop for a fixed number of iterations derived from the bound on the size of the
input, which ensures that every input list can be processed. After unrolling, the instruction executed at
each timestep becomes deterministic, removing uncertainty about the value of the instruction pointer.

For the i f-then-else instruction, we extend the instruction representation with a “condition”
parameter ¢ € [1, R] and let the evaluation of i f-then-else yield its first argument when the
register ¢ is non-zero and the second argument otherwise. An overview of the structure of such
programs is displayed above.

foldli: We note that while fixing the iteration over the list elements is
doe < % already helpful, learning. most list-processing programs requi;es
fax — o the model to repeatedly infer the concepts of creating a new list,

corench ele in % aggregating results and keeping track of the current list index.
out instr_ argl are2 cond 1N functional programming languages, such regular patterns are

(1 «< [ [ 1 [_J[C_1encapsulated in combinators. Thus, in a second model, we re-
. place the simple foreach loop with three combinators: mapi

acc  + % creates a new list by applying a function to each element of the
idx 4« ddx + 1 input list, zipWithi creates a new list by iterating over two
% e e lists in parallel and applying a function to both elements, and

foldli computes a value by iterating over all list elements
and applying a function to the current list element and the value computed so far. A program model
using the foldli combinator is shown on the left. The i suffix indicates that these combinators
additionally provide the index of the current list element (the precise semantics of the combinators
are presented in Sect. [A.T).

Recommendation (L): Instead of raw jumps, use loop and if-then-else templates.
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Immutable Data In training our models, we observed that many random initializations of the
program parameters would overwrite input data or important intermediate results, and later steps
would not be able to recover this data. In models with combinators that provide a way to accumulate
result values, we can sidestep this issue by making registers immutable. To do so, we create one
register per timestep, and fix the output of each instruction to the register for its timestep. Parameters
for arguments then range over all registers initialized in prior timesteps, with an exception for the
closures executed by a combinator. Here, each instruction only gets access to the inputs to the closure,
values computed in the prefix, and registers initialized by preceding instructions in the same loop
iteration. As in the heap allocation case, we can avoid keeping a copy of all registers for every
timestep, and instead share these values over all steps, reducing memory usage.

Recommendation (I): Use immutable registers by deterministically choosing where to store outputs.

Types When training our models, we found that for many initializations, training would fall into
local minima corresponding to ill-typed programs, e.g., where references to the heap would be used
in integer additions. We expect the learned program to be well-typed, so we introduce a simple type
system. We explored two approaches to adding a type system.

A first attempt integrated the well-typedness of the program into our objective function. In our
programs, we use three simple types of data—integers, pointers and booleans—as well as a special
type, L, which represents type errors. We extended the program state to contain an additional element
tr for each register, encoding its type. Each instruction then not only computes a value that is assigned
to the target register, but also a type for the target register. Most significantly, if one of the arguments
has an unsuitable type (e.g., an integer in place of a pointer), the resulting type is L. We then extended
our objective function to add a penalty for values with type L. Unfortunately, this changed objective
function had neither a positive nor negative effect on our experiments, so it seems that optimizing for
the correct type is redundant when we are already optimizing for the correct return value.

In our second attempt, rather than penalizing ill-typed programs, we prevent programs from accessing
ill-typed data by construction. We augment our register representation by adding an integer, pointer,
and Boolean slot to each register, so each register can hold a separate value of each type. Instructions
which read from registers now read from the slot corresponding to the type of the argument. When
writing to a register, we write to the slot corresponding to the instruction’s return type, and set the
other slots to a default value 0. This prevents any ill-typed sequence of instructions, i.e., it is now
impossible to, for example, increment a pointer value or to construct a cons cell with a non-pointer
value. Furthermore, this modification allows us to set the heap size H to a value different from
the maximal integer M. Our experiments in Sect.[4.3|show that separating differently-typed values
simplifies the learning of programs that operate on lists and integers at the same time.

Recommendation (T): Use different storage for data of different types.

4 EXPERIMENTS

We have empirically evaluated our modeling recommendations on a selection of program induction
tasks of increasing complexity, ranging from straight-line programs to problems with loops and
conditional expressions. All of our models are implemented in TerpreT (Gaunt et al., 2016b) and
we learn using TerpreT’s TENSORFLOW (Abadi et al.| 2015) backend. We aim to release TerpreT,
together with these models, under an open source license in the near future.

For all tasks, three groups of five input/output example pairs were sampled as training data and
another 25 input/output pairs as test data. For each group of five examples, training was started
from 100 random initializations of the model parameters. After training for 3500 epochs (tests with
longer training runs showed no significant changes in the outcomes), the learned programs were
tested by discretizing all parameters and comparing program outputs on test inputs with the expected
values. We perform 300 runs per model and task, and report only the ratio of successful runs. A
run is successful if the discretized program returns the correct result on all five training and 25 test
examplesﬂ The ratio of runs converging to zero loss on the training examples was within 1% of the
number of successful runs, i.e., very few found solutions failed to generalize.

"'We inspected samples of the obtained programs as well and verified that they were indeed correct solutions.
See Sect. [A.2]for some of the learned programs.
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Figure 1: Success rate of our models on straight-line programs of increasing length

We performed a cursory exploration of hyperparameter choices. We varied the choice of optimization
algorithm (Momentum, Adam, RMSProp), the learning rate (from 0.001 to 5), gradient noise (testing
the recommended choices from |[Neelakantan et al.|(2016b)), a decaying entropy bonus (starting from
0.001 to 20), and gradient clipping (to values between 0.1 and 10). We sampled 100 hyperparameter
settings from this space and tested their effect on two simple tasks. We ran the remaining experiments
with the best configuration obtained by this process: the RMSProp optimization algorithm, a learning
rate of 0.1, clipped gradients at 1, and no gradient noise.

We consider the ratio of successful runs as earlier work has identified this as a significant problem.
For example, [Neelakantan et al.|(2016b) reports that even after a (task-specific) “large grid search”
of hyperparameters, the Neural Random Access Machine converged only in 5%, 7% and 22% of
random restarts. Similar observations were made in Kaiser & Sutskever (2016); Bunel et al.|(2016);
Gaunt et al.[|(2016Db) for related program learning models.

In our experiments we evaluate the effect of the choices discussed in Sect. 3} comparing seven model
variants in total. We call our initial assembly model A and its variation with a fixed memory allocation
scheme A+F. All other models use the same fixed memory allocation scheme. The extension of
the assembly model with a built-in foreach loop is called A+L. The A+L model also allows a
foreachZip loop structure that allows parallel iteration over two lists, similar to the zipWith
combinator. The model including predefined combinators is called C, where C+I (resp. C+T) are
its extensions with immutable registers (resp. typed registers). Finally, C+T+I combines all of these
and is, in effect, a simple end-to-end differentiable functional programming language.

Additionally, we show results for A? (Feser et al}2015), a strong program synthesis baseline from
programming languages research, because of its built-in support for list-processing programs. As \?
is deterministic, we only report a success rate of either 1 or 0.

4.1 STRAIGHT-LINE PROGRAMS

In our first experiment, we consider two families of simple problems—solvable with straight-line
programs—to study the interaction of our modeling choices with program length. Our first benchmark
task is to duplicate a scalar input a fixed number & times to create a list of length k. Our second
benchmark is to retrieve the k-th element of a list, again fixing k& beforehand (we will consider a
generalization of this task where k is a program input later). We set the hyperparameters for all
models to allow 11 statements, i.e., for A and A+F we have set the program length to 11, and for
the A+L and C * models we have set the prefix and loop length to 0 and the suffix length to 11.
For models where the number of registers does not depend on the number of timesteps, we set the
number of registers to 3, with one initialized to the input. This allows for ~ 103° programs in the A,
A+F, C+1, and C+T+I models and for ~ 102® programs in the remaining models. These parameters
were chosen to be slightly larger than required by the largest program to be learned. For all of our
experiments, the maximal integer M was set to 20 for models where possible (i.e., for A, C+T+I,
C+T), and to H (derived from T', coming to 22) for the 0thersE|

>We also experimented with varying the value of /. Choices over 20 showed no significant differences to
smaller values.
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We evaluated all of our models following the regime discussed above and present the results in Fig. 1]
for k values from 1 to 9. The difference between A and A+F on the dupX task illustrates the signifi-
cance of Recommendation (F) to fix the memory allocation scheme. Following Recommendation
(T) to separate values of different types improves the results on both tasks, as the differences between
C+T+I (resp. C+T) and C+I (resp. C) illustrate.

4.2 SIMPLE LOOP PROGRAMS

In our second experiment, we compare our models on three simple list algorithms: computing the
length of a list, reversing a list and summing a list. Model parameters have been set to allow 6
statements for the A and A+F models, and empty prefixes, empty suffixes, and 2 instructions in the
loop for the other models. For models where the number of registers does not depend on the number
of timesteps, we set the number of registers to 4, with one initialized to the input.

Program C+T+I C+T C+l C A A+F A+L 2
len 100.00 75.00 100.00 43.67 0.00 0.00 15.67  100.00
rev 48.33 32.67 46.33 41.33 0.00 0.00 86.33 100.00
sum 91.67 41.00 88.33 30.67 0.00 0.00 32.67 100.00

Table 1: Success ratios for experiments on simple loop-requiring tasks.

The results of our evaluation are displayed in Tab. |1} starkly illustrating Recommendation (L) to use
predefined loop structures. We speculate that learning explicit jump targets is extremely challenging
because changes to the parameters controlling jump target instructions have outsized effects on all
computed (intermediate and output) values. On the other hand, models that could choose between
different list iteration primitives were able to find programs for all tasks. We again note the effect of
Recommendation (T) to separate values of different types on the success rates for the 1en and sum
examples, and the effect of Recommendation (I) to avoid mutable data on results for 1en and rev.

4.3 LooprP PROGRAMS

In our main experiment, we consider a larger set of common list-manipulating tasks (such as checking
if all/one element of a list is greater than a bound, retrieving a list element by index, finding the index
of a value, and computing the maximum value). Descriptions of all tasks are shown in Fig. [2] in
the appendix. We do not show results for the A and A+F models, which always fail. We set the
parameters for the remaining models to M = 32 where possible (M = H = 34 for the others), the
length of the prefix to 1, the length of the closure / loop body to 3 and the length of the suffix to 2.
Again, these parameters are slightly larger than required by the largest program to be learned.

Program C+T+I C+T C+I C A+L 2
len 98.67 96.33 0.67 0.33 0.00 100.00
rev 18.00 10.33 2.67 8.33 9.67 100.00
sum 38.00 38.33 1.00 0.00 10.00 100.00
allGtK 0.00 0.00 0.00 0.33 0.00 100.00
exGtK 3.00 1.00 0.67 0.00 0.67  100.00
findLastIdx 0.33 0.00 0.00 0.00 0.00 0.00
getldx 1.00 0.00 0.00 0.00 0.00 0.00
last2 0.00 8.00 0.00 2.00 23.00 0.00
mapAddK 100.00 98.00 100.00 95.67 0.00 100.00
maplnc 99.67 98.00 99.33 97.00 0.00  100.00
max 2.33 5.67 0.00 0.00 0.33  100.00
pairwiseSum 43.33 32.33 43.67 33.67 0.00  100.00
revMaplnc 0.00 0.67 0.00 0.00 6.33 100.00

Table 2: Success ratios for full set of tasks.

The results for our experiments on these tasks are shown in Tab. 2] Note the changed results of the
examples from Sect. as the change in model parameters has increased the size of the program
space from ~ 107 to ~ 1020, The relative results for the A+L model show the value of built-in
iteration and aggregation patterns. The choice between immutable and mutable registers is less clear
here, seemingly dampened by other influences. An inspection of the generated programs (eg. Fig.[8]in
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the appendix) reveals that mutability of registers can sometimes be exploited to find elegant solutions.
Overall, it may be effective to combine both approaches, using a small number of (mutable) “scratch
value” registers and immutable default output registers for each statement.

5 RELATED WORK

Inductive Program Synthesis There has been significant recent interest in synthesizing functional
programs from input-output examples in the programming languages community. Synthesis systems
generally operate by searching for a program which is correct on the examples, using types or custom
deduction rules to eliminate parts of the search space. Among the notable systems: MYTH (Osera
& Zdancewic| 2015} [Frankle et al., 2016)) synthesizes recursive functional programs from examples
using types to guide the search for a correct program, A2 (Feser et al.| 2015) synthesizes data structure
manipulating programs structured using combinators using types and deduction rules in its search,
ESCHER (Albarghouthi et al.l 2013) synthesizes recursive programs using search and a specialized
method for learning conditional expressions, and FlashFill (Gulwani, 2011)) structures programs
as compositions of functions and uses custom deduction rules to prune candidate programs. Our
decision to learn functional programs was strongly inspired by this previous work. In particular,
the use of combinators to structure control flow was drawn from [Feser et al.| (2015). However, our
end-to-end differentiable setting is fundamentally different from discrete search employed in the
programming languages community, and thus concrete techniques are largely incomparable.

Neural Networks Learning Algorithms A number of recent models aim to learn algorithms
from input/output data. Many of these augment standard recurrent neural network architectures with
differentiable memory and simple computation components (e.g. |(Graves et al.[(2014); Kurach et al.
(2016); Joulin & Mikolov| (2015)); Neelakantan et al.| (2016al); Reed & de Freitas| (2016); [Zaremba
et al.| (2016); \Graves et al.| (2016)). The use of an RNN can be seen as fixed looping structure, and
the use of fixed output registers for the modules in Neural Random Access Machines (Kurach et al.,
2016) is similar to our modeling of immutable registers.

However, none of these works focus on producing source code. |Gaunt et al.|(2016b)) show that this is
an extremely challenging task for assembly-like program models. More recently, [Bunel et al.| (2016)
and Riedel et al.[(2016)) have used program models similar to assembly (resp. Forth) source code to
initialize solutions, and either optimize or complete them.

6 DISCUSSION AND FUTURE WORK

We have discussed a range of modeling choices for end-to-end differentiable programming languages
and made four design recommendations. Empirically, we have shown these recommendations to
significantly improve the success ratio of learning programs from input/output examples, and we
expect these results to generalize to similar models attempting to learn programs.

In this paper, we only consider list manipulating programs, but are interested in supporting more
data structures, such as arrays (which should be a straightforward extension) and associative maps.
We also only support loops over lists at this time, but are interested in extending our models to also
have built-in support for loops counting up to (and down from) integer values. A generalization of
this concept would be an extension allowing the learning and use of recursive functions. Recursion
is still more structured than raw goto calls, but more flexible than the combinators that we currently
employ. An efficient implementation of recursion is a challenging research problem, but it could
allow significantly more complex programs to be learned. Modeling recursion in an end-to-end
differentiable language could allow us to build libraries of (learned) differentiable functions that can
be used in later synthesis problems.

However, we note that with few exceptions on long straight-line code, A2 performs better than all
of our considered models, and is able to synthesize programs in milliseconds. We see the future of
differentiable programming languages in areas in which deterministic tools are known to perform
poorly, such as the integration of perceptual data, priors and “soft” side information such as natural
language hints about the desired functionality.|Gaunt et al.|(2016a) was developed in parallel to this
work and builds on many of our results to learn programs that can process perceptual data (in the
current example, images).
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A APPENDIX

Name Description

len Return the length of a list.

rev Reverse a list.

sum Sum all elements of a list.

allGtK Check if all elements of a list are greater than k.

exGtK Check if at least one element of a list is greater k.

findLastIdx Find the index of the last list element which is equal to v.

getIdx Return the kth element of a list.

last2 Return the 2nd to last element of a list.

mapAddK Compute list in which k has been added to each element of the input list.

mapInc Compute list in which each element of the input list has been incremented.

max Return the maximum element of a list.

pairwiseSum Compute list where each element is the sum of the corresponding elements of
two input lists.

revMapInc Reverse a list and increment each element.

Figure 2: Our example tasks for loop based programs. “Simple” tasks are above the line.

Al

function FOLDLI(list, acc, func)

ide < 0

for ele in list do
acc < func(acc, ele, idx)
idx < idx + 1

return acc

COMBINATORS

function MAPI(list, func)
tdx 0
ret + []
for ele in list do
ret < append(ret, func(ele,idx))

idr < idr +1
return ret

function ZIPWITHI(listq, lista, func)

idr < 0
ret + []

for eleq, eles in listy, listy do
ret < append(ret, func(eley, eles, idzx))
idx < idx + 1

return ret

Figure 3: Semantics of foldli, mapi, zipwithi in a Python-like language.

A.2 SELECTED SOLUTIONS

We show example results of our training in Figs. @{I6] Note that these are the actual results produced
by our system, and have only been slightly edited for typesetting. Finally, we have colored statements
that a simple program analysis can identify as not contributing to the result in gray.
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let rg =l in

. 1
let ry = kin :0 “k
let Ty = (7‘() = 7"1) in !

Tg <—T9g =11

for ele in g do
ro < if ro then ele else 1
ro < ele > rq
r9 <12 V1o

letr3 = foldli rg ro (A ele accide —
let co = acc V accin
let c; = ele > rq in
let co =cgVcy in

CQ) in v
let T4 = T3 V r3 in 7?2 — 7:2 y /"TO
let rs =13 A\ 19 in ! lte T2 T2
return r4 return r
Figure 5: Solutions to exGtK in the C+T+I and A+L models.
let ro =lin

letr; =ein

letrg :r0+1in

let rs = foldli rg re (A ele accide —
let ¢y = if 5 then idx else | in
let ¢c; = (r; = ele) in
let co = if ¢ then idx else acc in
cz) in

letry =r3+1in

let s = T2 in

return 3

Figure 6: A solution to findLast Idx in the C+T+I model.

ro + 1

r1 <k

ro <— 19 V T

r1 < £foldli rg 1o (A ele accidr —
ro  ele > rq
Ty $— Ccar acc
Tro < 19 N\ acc
7“2)

ro <—T1 AT

T 1M

return 7o

Figure 4: A solution to al1GtXK in the C model. Code in gray is dead.

let rp = lin

letr; = kin

let ro = car rg in

let rs = foldli rg re (A ele accide —
let ¢o = (r; = idx) in
let ¢c; = if ¢y then ele else acc in
let co = if idx then idx else ¢g in

1) in
let ry = car rgin
let rs = cdr rg in
return 3

Figure 7: A solution to get Idx in the C+T+I model.
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"o : é ro < l
Tfjl < nil r < 0
" . . . 9 <= CONs 1o 7o
ro < foldli rgry (A ele accidx — for (cley, eley) in (o, 72) do
o : aee ro < if ro then eles else eles
"2 “ T} ry < 1r9g—1
:1) ine ¢ r1 ¢ car ro
o ? s r1 < if r{ then r5 else rq
.0 ,2 12 Ty < if () then 0 else (81
o0 return r
return 7o 2
Figure 8: Solutions to 1ast2 in the C+T and A+L models.
let ro =lin

let 1 = 0in
let ro = cdr rgin
let r3 = foldli rg rg (A ele accide —
let co = idx + 1in
let ¢c; = if 1 then 5 else ¢g in
let co = cp = elein
Co) in
let 4, = if 5 then r3 else 75 in
let rs = r3 + 7o in
return 3

Figure 9: A solution to 1en in the C+T+I model.

let rg =l in
let 1 = kin
let 7o = if 1 then r( else r in
let r3 = mapi rg (A eleide —
let cg = ele — 1in
letci =cp—1in
let co = r1 +elein
CQ) in
let T4 =173 in
let s =173 in
return 3

Figure 10: A solution to mapAddK in the C+T+I model.

let g = [lin

let r; = 0in

let Ty =170 in

let r3 = mapi o (A ele ide —
let ¢o = if r; then ele else acc in
letc; =ele +1in
let Co =T in
Cl) in

let ry = cons r3 rgin

let s =T34 in

return r3

Figure 11: A solution to mapInc in the C+T+I model.
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let rg =lin

let 1 = 0in

let ro = cdr rgin

let rs = foldli rg ro (A ele accide —
let co = acc > elein
let ¢c; = accin
let co = if ¢y then acc else ele in
Cg) in

let rg =19 — 1 in

let r5 = car o in

return 3

Ty < l
r 0
To < T — 1
for (eley, eles) in (rg,70) do
Ty < (’Z(",l
r1 < eley > ry
ro < if 1 then ele; else 7o
ro <= 1o+ 70
o <~ CONns 19 19
return o

Figure 12: Solutions to max in the C+T+I and A+L models.

let ro = ll in
let r;y =[5 in
let ro = if 1 then 7 else 71 in

letrs = zipWithi r ro (A eley eleg ide —

let co = elel + ele2 in

letcqy =ele2 —1in

let co = ide — 1in

¢p) in
let r4, = if o then 75 else 71 in
let r5 = if 4 then r5 else 71 in
return 3

Figure 13: A solution to pairwiseSum in the C+T+I model.

let rg = [lin

letr; = 0in

let ro = cons rg rg in

letr3 = foldli rg ry (A ele accidx —

let ¢cg = cons ele accin
let c; = cons acc accin
let c; = cons ele accin
CQ) in

let 4, = if r5 then r3 else 75 in
let rs = cons r4 r3in
return 3

ro < l

1 0

ro <— cdr r

for ele; in rg do
r1 < cons eles 1o
r9 < cons elej ro
r1 4 cdr rg

ro < cdr 7o

o <— Ccons ro 1

return 7o

Figure 14: Solutions to rev in the C+T+I and A+L models.

ro < 1

r1 < 0

r1 < cdr g

ro <— £oldli rg 1o (A ele accidr —
r9 <—ele+1
ro ¢ cons ro acc
9 <— CONs 9 acc
7‘2)

71 4 Ccons ro 11

g <~ Ccons rqo 1o

return 7o

70 1
ri <0
ry <1
for ele; in rg do
rg < elel +1
T — 1
T'9 <— CcOons rg
71 <= cons rg 2
" <— consrgnre
return o

Figure 15: Solutions to revMapInc in the C+T and A+L models.
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let ro =lin

let 1 = 0in

let T =170 in

let r3 = foldli rg rg (A ele accide —
let co = acc+ o in
let ¢y = acc+ elein
let co = if 7 then idx else 1 in
Cl) in

let ry =1To + 1lin

let rs =r3 —1in

return 3

Ty < l
ri <0
7 o< if 79 then 7, else To
for eley in g do
re < eley + 1y
1 <— Ccons ro o
r1 < eley + eles
ro <711 +711
ro < 19 + 1
return o

Figure 16: Solutions to sum in the C+T+I and A+L models.
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