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ABSTRACT

Although neural networks are well suited for sequential transfer learning tasks, the
catastrophic forgetting problem hinders proper integration of prior knowledge. In
this work, we propose a solution to this problem by using a multi-task objective
based on the idea of distillation and a mechanism that directly penalizes forget-
ting at the shared representation layer during the knowledge integration phase of
training. We demonstrate our approach on a Twitter domain sentiment analysis
task with sequential knowledge transfer from four related tasks. We show that our
technique outperforms networks fine-tuned to the target task. Additionally, we
show both through empirical evidence and examples that it does not forget useful
knowledge from the source task that is forgotten during standard fine-tuning. Sur-
prisingly, we find that first distilling a human made rule based sentiment engine
into a recurrent neural network and then integrating the knowledge with the target
task data leads to a substantial gain in generalization performance. Our experi-
ments demonstrate the power of multi-source transfer techniques in practical text
analytics problems when paired with distillation. In particular, for the SemEval
2016 Task 4 Subtask A (Nakov et al., 2016) dataset we surpass the state of the
art established during the competition with a comparatively simple model archi-
tecture that is not even competitive when trained on only the labeled task specific
data.

1 INTRODUCTION

Sequential transfer learning methodologies leverage knowledge representations from a source task
in order to improve performance for a target task. A significant challenge faced when transferring
neural network representations across tasks is that of catastrophic forgetting (or catastrophic inter-
ference). This is where a neural network experiences the elimination of important old information
when learning new information. The very popular strategy of fine-tuning a neural network involves
first training a neural network on a source task and then using the model to simply initialize the
weights of a target task network up to the highest allowable common representation layer. However
it is highly susceptible to catastrophic forgetting, because in training for the target task it has no ex-
plicit incentive to retain what it learned from the source task. While one can argue that forgetting the
source task should not matter if only the target task is of interest, our paper adds to the recent empir-
ical evidence across problem domains (Li & Hoiem, 2016),(Rusu et al., 2016) that show additional
network stability can lead to empirical benefits over the fine-tuning algorithm. It seems as though
for many Deep Learning problems we can benefit from an algorithm that promotes more stability
to tackle the well known stability-plasticity dilemma. One popular approach for addressing this
problem is rehearsals (Murre, 1992), (Robins, 1995). Rehearsals refers to a neural network training
strategy where old examples are relearned as new examples are learned. In the transfer setting it can
be seen as related to multi-task learning (Caruana, 1997) where two tasks are trained at the same
time, rather than sequentially, while sharing a common input encoder to a shared hidden represen-
tation. However, in rehearsals the representation is biased in favor of the source task representation
through initialization. This technique is very sensible because while fine-tuning is susceptible to
catastrophic forgetting, multi-task learning is not (Caruana, 1997).
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One of the biggest issues with the standard rehearsals paradigm is that it requires a cached mem-
ory of training examples that have been seen in the past. This can be a massive requirement as
the number of source tasks and training data sizes scale. One compelling technique for addressing
this problem is the concept of pseudorehearsals (Robins, 1995), (Robins, 1996), where relearning is
performed on an artificially constructed population of pseudoitems instead of the actual old exam-
ples. Unfortunately, current automatic techniques in the text analytics domain have not yet mastered
producing linguistically plausible data. As such, the pseudorehearsals paradigm is likely to waste
computational time that could be spent on learning realistic patterns that may occur during testing.
In our work, we extend the Learning without Forgetting (LwF) paradigm of (Li & Hoiem, 2016) to
the text analytics domain using Recurrent Neural Networks. In this approach, the target task data is
used both for learning the target task and for rehearsing information learned from the source task by
leveraging synthetic examples generated for the target task input by the model that only experienced
training on the source task data. As argued by Li & Hoiem (2016), this setup strikes an important
balance between classification performance, computational efficiency, and simplicity in deployment.

Regardless of whether they are applied to real source task examples, real target task examples,
or synthetic examples, paradigms in the style of rehearsals all address the shortcomings of neural
network forgetting by casting target task integration as a multi-task learning problem. However,
this is not quite the purpose of the multi-task learning architecture, which was designed for joint
learning of tasks from scratch at the same time. The key disconnect is that in multi-task learning, the
transformation from the shared hidden layer to the outputs for each task are all learned and updated
with the changing hidden representation. This would imply that, in the framework of rehearsals, it
is possible for there to be significant changes during learning of the network’s representation, and
thus its abilities on the source task itself. While it would be desirable to claim we were allowing
our source task network to become even better based on the target task than it was before, this
motivation seems idealistic in practice. One reason this is idealistic is because multi-task learning
generally only works well when tasks are sampled at different rates or alternatively given different
priority in the neural network loss function (Caruana, 1997). As a result, it is most likely that
auxilirary source tasks will receive less priority from the network for optimization than the target
task. Additionally, we observe in our experiments, and it has been observed by others in (Rusu
et al., 2015), that it is generally not possible to distill multiple complex tasks into a student network
at full teacher performance for all tasks. This seems to imply the degradation of the source task
performance during training is somewhat inevitable in a multi-task learning paradigm.

We address this issue with our proposed forgetting cost technique. We demonstrate that it, in fact,
can be valuable to keep the hidden to output transformation of the source tasks fixed during knowl-
edge integration with the target task. This way, we impose a stronger regularization on the hidden
representation during target task integration by not allowing it to change aspects that were important
to the source task’s performance without direct penalization in the neural network’s loss function.
We demonstrate empirically both that freezing the source task specific weights leads to less deterio-
ration in the accuracy on the source task after integration, and that it achieves better generalization
performance in our setting. The forgetting cost is practical and easy to implement in training any
kind of neural network. In our experiments, we explore application of the forgetting cost in a re-
current neural network to the three way Twitter sentiment analysis task of SemEval 2016 Task 4
Subtask A and find it to achieve consistently superior performance to reasonable baseline transfer
learning approaches in four examples of knowledge transfer for this task.

We also demonstrate how powerful distillation can be in the domain of text analytics when paired
with the idea of the forgetting cost. Significantly, we show that a high quality gazetteer based logical
rule engine can be distilled using unlabeled data into a neural network and used to significantly im-
prove performance of the neural network on the target task. This is achieved with a novel extension
of the LwF paradigm by Li & Hoiem (2016) to the scenario of a source task with the same output
space as the target task. This can be a very promising direction for improving the ability of humans
to directly convey knowledge to deep learning algorithms. Indeed, a human defined rule can contain
far more information than a single training example, as that rule can be projected on to many unla-
beled examples that the neural network can learn from. This is the reason human teachers generally
begin teaching human students tasks by going over core rules at the onset of learning. Moreover,
we showcase that multiple expert networks trained on the target task with prior knowledge from
different source tasks can be effectively combined in an ensemble and then distilled into a single
GRU model (Cho et al., 2014), (Chung et al., 2014). Leveraging this combination of distillation
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and knowledge transfer techniques allows us to achieve state of the art accuracy on the SemEval
task with a model that performs 11% worse than the best prior techniques when trained only on the
labeled data.

2 RELATED WORK

Since the work of (Bucilu et al., 2006) and (Hinton et al., 2015) showed that an ensemble of neural
network classifier can be distilled into a single model, knowledge distillation from a teacher network
to a student network has become a growing topic of neural network research. In (Ba & Caruana,
2014) it was shown that a deep teacher neural network can be learned by a shallow student network.
This idea was extended in (Romero et al., 2014), where it was demonstrated that a deep and nar-
row neural network can learn a representation that surpasses its teacher. The use of distillation as
a means of sharing biases from multiple tasks was explored in (Lopez-Paz et al., 2016), where the
teacher network is trained with the output of the other tasks as input. It is not obvious how to extend
a recurrent neural network to best use this kind of capability over a sequence. The idea of distill-
ing from multiple source task teachers into a student network was highlighted in the reinforcement
learning setting in (Rusu et al., 2015). Additionally, the concept of using distillation for knowledge
transfer was also explored in (Chen et al., 2015), where function preserving transformations from
smaller to bigger neural network architectures were outlined. This technique could also provide
value in some instances for our approach where wider or deeper neural networks are needed for the
task being transferred to than was needed for the original task. Distillation over target task data was
first proposed as a means of elevating catastrophic forgetting in sequential knowledge transfer as ap-
plied to image classification in (Li & Hoiem, 2016). We extend this approach for its first application
to our knowledge for text analytics problems, with a recurrent neural network architecture, and in
the setting where the source task and target task have the same output. The chief distinction of our
proposed forgetting cost is that source task specific parameters are held fixed during integration with
the target task as opposed to the joint training of all parameters used by Li & Hoiem (2016). Our ex-
periments empirically support the intuition that freezing these parameters leads to greater retention
of source task performance after target task integration and better generalization to the target task.

An ensemble over multiple diverse models trained for the same sentiment analysis task was also
considered in (Mesnil et al., 2014) for the IMDB binary movie reviews sentiment dataset (Maas
et al., 2011). We tried this ensemble model in our work and found that it gave very limited improve-
ment. Our ensemble technique learns a more powerful weighted average based on the soft targets
of each task and a multi-step greedy binary fusion approach that works better for the Twitter senti-
ment analysis task in our experiments. Knowledge transfer from multiple tasks was considered to
estimate the age of Twitter users based on the content of their tweets in (Riemer et al., 2015). We
experimented with the hidden layer sharing approach outlined in that work and found that even when
using just a single softmax combining layer, it would overfit on our limited training and validation
data. Progressive neural networks (Rusu et al., 2016) is a recently proposed method very similar in
motivation to our forgetting cost as it is directly trying to solve the catastrophic forgetting problem.
The idea is that learned weight matrices relate the fixed representations learned on the source task
to the construction of representations for the target task. In our experiments, the progressive neural
networks approach consistently fails to even match the results achieved with fine-tuning. We hy-
pothesize that although using fixed representations to aid learning addresses catastrophic forgetting,
it suffers from the curse of dimensionality. As such, when training data is relatively small given the
complexity of the task, it is prone to overfitting as it effectively increases the input dimension size
through shared fixed representations.

The combination of logic rules and neural networks has been explored in a variety of different archi-
tectures and settings. These neural-symbolic systems (Garcez et al., 2012) include early examples
such as KBANN (Towell et al., 1990) that construct network architectures from given rules to per-
form reasoning. (Hu et al., 2016) very recently also looked at the problem of distilling logical rules
into a neural network text analytics classifier. However, our approach is much more generic as it can
be applied to integrate knowledge from any kind of pre-made classifier and treats the rule engine as
a black box. In (Hu et al., 2016) they consider the individual rules and leverage an iterative convex
optimization algorithm alongside the neural network to regularize the subspace of the network. In
our work we demonstrate that, by guarding against catastrophic forgetting, it is possible to efficiently
leverage rules for transfer by utilizing a generic sequential knowledge transfer framework. We do
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not need to make any modification to the architecture of the neural network during testing and do
not need iterative convex optimization during training.

3 FORGETTING COST REGULARIZATION

3.1 SEQUENTIAL KNOWLEDGE TRANSFER PROBLEM STATEMENT

In the sequential knowledge transfer problem setting explored in this paper, training is first con-
ducted solely on the source task examples S, including KS training examples (xSi, ySi) ∈ S where
xSi is the input representation and ySi is the output representation. After training is complete on S,
we would like to now use prior knowledge obtained in the model trained on S to improve general-
ization on a new target task with examples T , which includesKT training examples (xTi, yTi) ∈ T .
Here we assume that the input representations xSi and xTi are semantically aligned in the same rep-
resentation space. As such, if there is useful knowledge in S that applies in some direct or indirect
way to the target task that is not present in T , we would expect a good knowledge integration ap-
proach to generalize better to the target task than it is possible to using the training data in T alone.
Strong performance for the sequential knowledge transfer problem is a first step towards the greater
goal of a mechanism for effective lifelong learning (Thrun, 1996).

3.2 FORGETTING COST FOR TUNING A TARGET TASK MODEL

The most straightforward application of our proposed forgetting cost paradigm is for the case of
integrating a neural network that has been trained on source task data S, which has outputs in the
same representation space as the outputs for the target task data T . In this case, the forgetting cost
amounts to the addition of a regularization term in the objective function during the integration phase
when we train using T . This promotes the neural network to be able to recreate the soft labels of the
initialized model found after training on S before integration is started with T . More formally:

Loss = L(y, ŷ) + αfL(yinit, ŷ) (1)
where L is some loss function (we use mean squared error in our experiments) and yinit is the soft
label generated for the target task input xTi based on the model after training just on S. The model
trained just on S is also used to initialize the weights of the target task model before integration
with T as we do in the standard fine-tuning paradigm. αf is a hyperparameter that can be utilized to
control the extent of allowed forgetting. Of course, a very similar way to express this idea would be
to mix synthetic training examples T ′ with the same input as T and output generated by the model
trained just on S with the true target task training examples T . In this case, the mixing rate of the
teacher generated training examples is analogous to our forgetting parameter αf determining the
prioritization. These techniques perform quite similarly in our experiments, but we actually find
that the formulation in equations 1 and 3 perform slightly better on the test set. For example, this
formulation is superior by 0.4% accuracy in tuning a distilled representation of a logical rule engine.
We conjecture that learning tasks in the same gradient step when they are related to the same input
data results in slightly less noisy gradients.

3.3 FORGETTING COST FOR KNOWLEDGE TRANSFER FROM A RELATED TASK

The assumption in section 3.2 that the output of the source task data S should be in the same rep-
resentation space as the output for the target task data T is quite a big one. It rules out the vast
majority of knowledge sources that we can potentially leverage. As such, we propose an extension
that does not make this restriction for application in sequential knowledge transfer of tasks that are
not directly semantically aligned. We update our model to include another predicted output separate
from ŷ:

ŷinit = finit(Wfixedhshared + bfixed) (2)

where ŷinit is a predicted output attempting to recreate the soft labels of the original model trained
just on S. finit is the non-linearity used in the final layer of the source task model. Weight matrix
Wfixed and bias bfixed are taken from the final layer of the source task model and are not updated
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during integration with the target task data T . As a result, the loss function is updated from section
3.2:

Loss = L(y, ŷ) + αfL(yinit, ŷinit) (3)

where the hidden state is shared between both terms in the objective function. Up to the shared hid-
den layer, we initialize the model for the target task with the weights learned just using S. Random
matrices and bias vectors are now used to initialize the prediction of ŷ based on the shared hidden
representation. This can be seen as a weak form of restricting the model parameters that can be
useful for regularization. The hidden representation is in effect constrained so that it is promoted
not to change in key areas that have a large effect on the output vector of the source task model. On
the other hand, there is little regularization for parameters that have little effect on the output vector
for the source task model.

4 RECURRENT NEURAL NETWORK MODEL

In recent years, recurrent neural network models have become a tool of choice for many NLP tasks.
In particular, the LSTM variant (Hochreiter & Schmidhuber, 1997) has become popular as it allevi-
ates the vanishing gradients problem (Bengio et al., 1994) known to stop recurrent neural networks
from learning long term dependencies over the input sequence. In our experiments we use the sim-
pler GRU network (Cho et al., 2014), (Chung et al., 2014) that generally achieves the same accuracy
despite a less complex architecture. Each time step t is associated with an input xt and a hidden
state ht. The mechanics of the GRU are defined with the following equations:

zt = σ(Wxzxt +Whzht−1) (4)

rt = σ(Wxrxt +Whrht−1) (5)

h̃t = tanh(Wxhxt + rt ◦Whhht−1) (6)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t (7)

where ◦ denotes an element-wise product. Wxz , Wxr, and Wxh represent learned matrices that
project from the input size to the hidden size. Whz , Whr, and Whh represent learned matrices
that project from the hidden size to the hidden size. In our work we evaluate the GRU in the
categorical prediction setting. For each document, the hidden state after the last word hL is used
for the prediction ŷ of the label y. As such, we treat hL as the shared hidden representation hshared
from section 3.3 for our experiments.

ŷ = f(WyhhL + by) (8)

The prediction goes through one other non-linear function f after the final hidden state is derived.
In our experiments we use the softmax function, but others are useful in different settings. A model
that builds on top of GRUs with an external memory storage paradigm (Kumar et al., 2015) currently
holds the state of the art on movie review sentiment analysis. However, we focus just on the straight-
forward single layer GRU model in our experiments so that we can more easily disentangle factors
of influence on performance. Our GRU model was fed a sequence of fixed 300 dimensional Glove
vectors (Pennington et al., 2014), representing words based on analysis of 840 billion words from a
common crawl of the internet, as the input xt for all tasks. It has been shown in a number of papers
that tuning the word embeddings during training could increase performance, and it is possible our
approach could have performed better had we done so.

5 SEQUENTIAL KNOWLEDGE TRANSFER EXPERIMENTS

5.1 EXPERIMENT DETAILS

Our neural network models were implemented in Theano (Theano Development Team, 2016) and
trained with Stochastic Gradient Descent. As we did not use an advanced optimization method and
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noticed run to run variation in performance, for all of our transfer learning models we trained 10
parallel versions and chose the one with the highest validation accuracy. The SemEval 2016 Task 4
Subtask A training set consists of 10,000 total training examples, but we were only able to receive
8,906 because of tweet removals when we used the downloading script. For the target task data
across our experiments, 7,600 examples of the SemEval training set examples were used for training
and the rest for validation. The GRU model achieves only 53.6% accuracy on the SemEval testing
data when just training with the target task data and random initialization. In order to improve, we
consider knowledge transfer from GRUs trained for the following source tasks to the SemEval target
task data:

Distilling Logical Rules: Knowledge distillation can be performed using teacher models that are
very different in structure than their neural network based student models. We demonstrate with this
task that a compilation of logical linguistic rules can be used as an effective teacher for a GRU by
having the GRU attempt to create the output of the rule engine generated over unlabeled in domain
data. Specifically, our gazetteer based logical rule engine separates sentences and phrases in the text.
It then applies dictionaries of positive and negative sentiment words and phrases to the corresponding
text. For each positive or negative phrase found, it checks to see if negation or double negation are
applied, and modifies the polarity of the sentiment accordingly. The result for any piece of text is
a count of positive and negative sentiment occurrences. For this task, we simply count the total
number of positive and negative indicators to give an overall positive, negative or neutral score. We
provide addition details on how we mapped rules to soft targets for the student network to recreate in
Appendix A. We utilized a GRU model with 50 hidden units and 50,000 unlabeled examples for our
source task model. We distill off the soft labels as in (Hinton et al., 2015), but set our temperature
fixed at 1.0. It is possible that our performance could have improved by tuning this parameter.
Additional details about the selection of the network and data size are included in Appendix B.
The logical rule model itself achieves 57.8% accuracy on the SemEval testing data and the rules
distilled into a GRU as explained in section 4 achieves 58.9% accuracy before any integration with
the SemEval target task data. We leverage this task for comparison of knowledge transfer techniques
when the source task and target task share an output space as discussed in section 3.2.

Binary Movie Reviews: For knowledge transfer from related tasks as discussed in section 3.3 we
first consider the Stanford Sentiment Treebank (Socher et al., 2013), which is a popular sentiment
dataset based on the movie review domain. We consider one source task to be the binary (positive,
and negative) sentence level sentiment subtask which contains 6,920 training examples, 872 valida-
tion examples, and 1,821 testing examples. Our GRU model with 40 hidden units achieves 85.5%
accuracy on this task.

Five Class Movie Reviews: We also consider another source task leveraging the Stanford Sentiment
Treebank data from the fine grained (very positive, positive, neutral, negative, and very negative)
sentence level sentiment substask which contains 8,544 training examples, 1,101 validation exam-
ples, and 2,210 testing examples. We use a GRU model with 200 hidden units to accommodate for
the increased task complexity and achieve 45.9% accuracy. This fine grained model can actually be
assessed directly on the SemEval task by projecting from five classes to three classes, but it only
achieves 44.2% accuracy with no tuning on the target task data. Our performance on these two
movie review source tasks is quite similar to what was reported in (Tai et al., 2015) when using a
similar setup, but with LSTMs for both subtasks.

Emoticon Heuristic: Finally, we consider a semi-supervised task based on emoticon prediction mo-
tivated by the successful work in (Go et al., 2009), leveraging it in the twitter sentiment domain and
its use as a vital component of the SemEval competition winning system (Bethard et al., 2016). We
find unlabelled tweets that contain smileys, frowns, or laughing emoticons. We remove emoticons
from the tweet before prediction and compile a dataset of 250,000 training examples, 50,000 vali-
dation examples, and 100,000 testing examples for each of the three classes. This is multiple orders
of magnitude smaller than the 90 million tweets used in (Bethard et al., 2016) to allow for quick
experimentation. Our GRU model with 50 hidden units achieves 63.4% accuracy on the emoticon
prediction test set.
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5.2 SEQUENTIAL KNOWLEDGE TRANSFER ALGORITHMS

We consider multiple sequential knowledge transfer algorithms for experimental comparison. Each
uses only the source task data for learning the source task and only the target task data for integrating
with the target task. This way integration is fast and simple, because it does not incorporate storage
and replay of examples from the potentially very large source task as argued in (Li & Hoiem, 2016).

Fine-Tuning: The representation is simply initialized with the representation found after training on
the source task and then trained as usual on the target task. This approach was pioneered in (Hinton
& Salakhutdinov, 2006), in application to unsupervised source tasks and applied to transfer learning
in (Bengio et al., 2012), and (Mesnil et al.). The learning rate is tuned by a grid search based on the
validation set performance.

Progressive Networks: We also compare with our implementation of a progressive neural network
(Rusu et al., 2016), where the representation learned for the source task is held fixed and integrated
with a target task specific model via lateral connections trained using the target task data. The
learning rate is also tuned based on a grid search using the validation set.

Learning without Forgetting (LwF): In the LwF paradigm, joint training is performed after pa-
rameter initialization. This is achieved by treating the target task data and the output generated by
the source task model based on the target task input data as two jointly learned tasks as in (Caruana,
1997). As opposed to our proposed forgetting cost, the source task specific parameters are not held
fixed while training on the target task data. The learning rate and mixing rate between the tasks are
tuned by a grid search based on validation set performance. We first consider a version of the LwF
model that leverages a random initialization of the target task specific parameters and initialization
of all parameters learned on the source task with the learned values. We also consider another for-
mulation that we call Greedy LwF. This is actually more closely aligned with the original paper (Li
& Hoiem, 2016). All source task parameters are first held fixed, and the target task specific param-
eters are learned alone before joint training with all of the parameters unfrozen as a second step.
For the case of source tasks with output in the space of the target task output, there are no source
task specific parameters, so the forgetting cost can be viewed as a viable interpretation of the LwF
paradigm appropriate in that setting.

Forgetting Cost: Finally, we compare each baseline model with our proposed forgetting cost de-
scribed in section 3. The learning rate as well as αf from equations 1 and 3 were tuned by a grid
search based on the validation set performance.

5.3 TARGET TASK RESULTS

We empirically evaluate the generalization performance of the forgetting cost for sequential knowl-
edge transfer from four different source tasks in Table 1 and Table 2. The source task considered in
Table 1 is distilling a logical rule model, leveraging the technique outlined in equation 1. In Table 2
we leverage the forgetting cost for related task knowledge transfer as outlined in equation 3.

Our experimental results on the SemEval data validate our intuition that the forgetting cost should
lead to stronger regularization and better generalization performance. One thing to note about our
progressive neural networks implementation is that it effectively has only one hidden layer, because
we hold our embeddings fixed during model training and the same embeddings are shared among
the models used for all of the tasks. It is possible that having multiple layers of lateral connec-
tions is important to achieving good performance. However, this setting was not applicable in our
experiments. Our results for sequential knowledge transfer on the SemEval benchmark are quite
encouraging as the forgetting cost outperforms baselines significantly in all cases.

We additionally have validated the intuition that equation 1 should perform stronger regularization
than equation 3 when equation 1 is applicable. In fact, for our distilled logical rule model tuning
experiments, we found that equation 1 performs 3% better on the test set. In an attempt to understand
more about what caused this performance difference, we monitored testing set performance at each
epoch and noticed that equation 3 is actually prone to overfitting away from a good solution on the
test set. However, it often finds a pretty good one comparable to equation 1 early in training. When
equation 1 could be applied, it seems to be a useful regularization to constrain both the hidden
layer and the output layer to align with the model learned on the source task. In equation 3, the
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Model Description Accuracy on SemEval Test Set
Forgetting Cost Transfer 64.4%
Fine-tuning Transfer 58.5%
Progressive Networks Transfer 56.9%
Distilled Logical Rule Model 58.9%
Logical Rule Model 57.8%
GRU Trained on Only SemEval Data 53.6%

Table 1: Evaluation of target task tuning methodologies for a distilled rule model to the task of
SemEval 2016 Task 4 Subtask A.

Source Task Fine-Tuning Progressive Networks LwF Greedy LwF Forgetting Cost
Binary Movie Reviews 57.3% 54.5% 58.1% 58.8% 59.7%
Five Class Movie Reviews 57.4% 54.6% 57.1% 56.6% 58.2%
Emoticon Heuristic 55.8% 53.2% 57.7% 56.7% 58.6%

Table 2: Evaluation of knowledge transfer from three source tasks to the task of SemEval 2016
Task 4 Subtask A.

hidden to output transformation learned for the target task can in contrast learn to deviate from the
transformation learned for the source task.

5.4 SOURCE TASK PERFORMANCE AFTER TARGET TASK INTEGRATION

In Table 3 we explore the retention of empirical performance on the source task for knowledge
transfer algorithms after integration with the target task is complete. Apparently in these cases,
allowing relearning of the source task model during integration with the target task data is indeed
destructive to source task performance. LwF outperforms Fine-Tuning significantly in knowledge
retention for movie reviews, but interestingly does not for the emoticon heuristic. The effect of the
greedy target task initialization strategy also appears inconsistent. It seems it is possible that this
greedy initialization could improve our proposed forgetting cost paradigm in some cases as well.
However, a rigorous analysis of the tradeoffs for this initialization approach is beyond the scope of
this paper.

As the source task representation is literally stored fixed as part of the target task representation in
progressive neural networks, it is not clear how to assess any effective forgetting of the source task
during target task integration. As a result, we omit them from our source task forgetting experiments.

5.5 INSPECTION OF LEARNED REPRESENTATIONS

Now that we have established the empirical benefits of our proposed forgetting cost, we will demon-
strate what it achieves qualitatively through examples. In Table 4 we include a sample of examples
that are predicted correctly by transferring the knowledge source with the forgetting cost paradigm
and not with fine-tuning based integration. The effect is, perhaps, easiest to understand for the rule
based and movie review based transfer scenarios. For the rule based transfer setting you can liter-
ally map insights that are not forgotten to their respective logical rule in the model, as is the case
in these examples. Moreover, we can see movie domain specific terminology such as ”May the
force be with” is seemingly forgotten with standard fine-tuning, but not when the forgetting cost
regularization is applied.

Source Task Fine-Tuning LwF Greedy LwF Forgetting Cost Source Only
Binary Movie Reviews 80.7% 81.3% 81.5% 83.3% 85.5%
Five Class Movie Reviews 41.6% 42.8% 43.1% 43.3% 45.9%
Emoticon Heuristic 59.4% 59.1% 58.9% 60.3% 63.4%

Table 3: Evaluation of accuracy on the source task after integration with the target task data of
SemEval 2016 Task 4 Subtask A. The accuracy after only source task training prior to integration
with the target task is included for reference as a baseline.
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Source Tweet Label Fine-Tuning Forgetting Cost
Logical Rules John Kasich should feel proud of his performance at the

#GOPDebate Thursday night. He looked more presi-
dential than the rest of the field.

Positive Neutral Positive

Logical Rules @BrunoMars I’m so tired of you dressing like you ain’t
got no money. You went from wearing Gucci loafers to
6th grade boy Sketchers.

Negative Neutral Negative

Logical Rules @DavidVonderhaar loving the beta Vahn, even playing
it on PC with a PS4 controller without aim assist, can’t
wait for November 6

Positive Neutral Positive

Movie Reviews Selena Gomez presented Amy Schumer with an award
and a heap of praise at the Hollywood Film Awards on
November 1.

Positive Negative Positive

Movie Reviews mailjet: It’s Fri...we mean Star Wars Day. May the force
be with all of your emails! https://t.co/FbDdjiJVUT

Positive Neutral Positive

Movie Reviews Straight Outta Compton’s success hopefully convinces
New Line Cinema to give Ice Cube the right budget for
the last Friday movie.

Positive Neutral Positive

Emoticons That ball Kris Bryant just hit is the 2nd farthest ball I’ve
ever seen hit. He is officially ridiculous.

Positive Neutral Positive

Emoticons This fandom’s a mess omg, I wouldn’t be surprise if to-
morrow there’s a trend who says Niall’s going to marry
his cousin #WeKnowTheTruth

Negative Positive Negative

Emoticons Christians snapchat story makes me want to kill my-
self..like I feel like a depressed 8th grader going through
that emo phase

Negative Neutral Negative

Table 4: Some transfer learning examples from each knowledge source to SemEval 2016 where the
GRU model successfully predicts sentiment when using the forgetting cost paradigm, but not with
fine-tuning based integration.

Considering that we have shown a neural network can distill and improve a representation learned
by a logical rule engine, how the final representation differs from the logic of the original engine
is of practical interest. We thus compare the agreement of our fine-tuned rule based GRU with the
original rule model on the SemEval testing set. We find that the transferred model achieves 78.7%
agreement with the rule model when the rule model is right. This clearly indicates that our final
model is not deterministic based on the rule engine, and has a probability of adding errors even
when the original rule model works well. However, our model actually has 44.7% accuracy on the
examples the rule model got wrong. Our approach yields significant gains in comparison to the
original rule classifiers, improving from 57.8% to 64.4% test set accuracy before even incorporating
in auxiliary knowledge sources.

6 INTEGRATING TRANSFER LEARNING FROM MULTIPLE TASKS WITH
ENSEMBLE DISTILLATION

6.1 ENSEMBLE METHODOLOGY

In our experiments we tried to find a balance between an ensemble model that is powerful enough
to have an adaptive weighted average decision function and not so powerful that it overfits on our
limited training and validation data. Our model is quite similar in architecture to the gating network
component of a hierarchical mixture of experts model (Jacobs et al., 1991), (Jordan & Jacobs, 1994).
We tried our model over all four representations at once and found that it overfits. Our experiments
showed it is more effective to adopt a greedy ensembling strategy where all models are combined
with the best performing model on the validation set at each phase until only two models are left.
Finally, these two models are combined with the same mechanism. (Riemer et al., 2016) suggests
that a many element gating network can be improved with a sparsity constraint, but this did not work
as well as the greedy strategy for our model and experiments.

More formally, for any two models A and B combined in an ensemble, we train the following
mechanism using Stochastic Gradient Descent:

9
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Model Description Accuracy on SemEval Test Set
Distilled GRU Trained on Full Ensemble 66.0%
Full Ensemble 65.9%
Ensemble with Logical Rules and Both Movie Review Tasks 65.7%
Ensemble with Logical Rules and Binary Movie Reviews 65.4%
Ensemble with Logical Rules and Five Class Movie Reviews 65.1%
Ensemble with Logical Rules and Emoticon Prediction 65.0%
Ensemble with Both Movie Review Tasks 62.1%
GRU Trained on Only SemEval Data 53.6%
SwissCheese (Bethard et al., 2016) 64.6%
NTNUSentEval (Jahren et al., 2016) 64.3%
UniPI (Attardi & Sartiano, 2016) 63.9%
CUFE (Nabil et al., 2016) 63.7%
INSIGHT-1 (Ruder et al., 2016) 63.5%

Table 5: Empirical three way sentiment classification results on the SemEval 2016 Task 4 Subtask
A test set.

mA = σ(WAŷA + bA) (9)

mB = σ(WB ŷB + bB) (10)

aA =
mA

mA +mB
(11)

aB =
mB

mA +mB
(12)

ŷensemble = aAŷA + aB ŷB (13)

where ŷensemble is the prediction vector of the combined ensemble. ŷA and ŷB are the output vectors
of the individual models.

6.2 ENSEMBLE RESULTS

Our ensemble model was trained on what was set aside as the validation data during the initial
training with early stopping. In the first phase of combining, the model transferred from the logical
rule source task was combined with each model. In the second phase, the model based on transfer
from the binary movie review sentiment model was combined with each model. In the third phase,
the two remaining models were combined. The results of our ensemble in Table 5 suggest that it
is possible to further improve the performance of a single sequential transfer model by intelligently
combining its predictions with models that have other perspectives. This is because they are modeled
using different source tasks for prior knowledge. Impressively, our final distilled model surpasses
results from all prior models on the SemEval 2016 benchmark using the same final architecture
of a 50 hidden unit GRU model that is clearly not even competitive when trained simply on the
task specific labeled data. The prior best model SwissCheese (Bethard et al., 2016) consists of
random forests ensemble built utilizing multiple convolutional neural network models and distant
supervision. In fact, we achieve superior results despite using over an order of magnitude less total
data for training our model.

We would also like to underscore that our total improvement of 1.5% as a result of creating an en-
semble with our best transferred model from the logical rule source task can be viewed as quite
disappointing, despite achieving state of the art results. In fact, in the theoretical limit of having a
decision model that switches to the best already learned model at each point, our four transferred
representations would achieve 85.1% accuracy together. For the combination of the movie review
based models and logical rule based model we can get to 81.4% accuracy. Moreover, we can get
76.5% accuracy with just the logical rule based transfer model and the emoticon prediction based
transfer model. Unfortunately, we achieve nowhere near these theoretical results despite represen-
tations that are apparently quite diverse. This seems indicative that there are significant gains yet to
be uncovered in integrating these representations.

10
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7 CONCLUSION

We consider a new methodology called the forgetting cost for preventing the catastrophic forgetting
problem of neural network sequential transfer learning. The forgetting cost is practical and easy to
implement. We have demonstrated for the challenging task of Twitter sentiment analysis that it can
uncover significant gains in generalization performance and that it seems to not forget knowledge
traditionally forgotten from the source task during fine-tuning. Our strong empirical results still mo-
tivate multiple avenues with high potential for continued exploration in text analytics. Using logical
rules to improve neural network models is a promising direction for humans to efficiently contribute
to increased model performance. Additionally, the large diversity of representations learned from
multiple classifiers with the same target task but different source tasks seems to indicate there is
potential to see even much greater gains when integrating multiple sources of knowledge transfer.
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A MAPPING SENTIMENT RULES TO SOFT TARGETS

The gazetteer based logical rule engine separates sentences and phrases in the text. It then applies
dictionaries of positive and negative sentiment words and phrases to the corresponding text. For
each positive or negative phrase found, it checks to see if negation or double negation are applied,
and modifies the polarity of the sentiment accordingly. The result for any piece of text is a count
of positive and negative sentiment occurrences. For this task, we simply count the total number of
positive and negative indicators to give an overall positive, negative or neutral score. To be concrete,
we have a simple procedure for mapping positive and negative word counts to soft labels that could
be used for distillation. If there are no positive or negative words, the output vector is a one hot
vector corresponding to a neutral label. If there are an unequal number of positive and negative
sentiment words, the neutral label is zero and the raw counts are sent to the softmax function to
create a soft label over the positive and negative word occurrences. Finally, if there are an equal
amount of positive and negative words, we consider the added total sentiment words plus one in the
neutral label as well as the number of positive words and negative words before sending these totals
through a softmax function.

B SIZE SELECTION FOR THE RULE DISTILLATION TASK

In Table 6 we detail the performance of distilling a logical rule engine into a GRU based recurrent
neural network by imposing soft labels over unlabeled tweets. The fact that we keep our word rep-
resentations fixed with general purpose unsupervised data makes it difficult for the GRU to distill
the entire model without a large number of examples. Additionally, as there were a large number
of examples in our distillation experiments, we did not experience high run to run variation and
only trained a single GRU model for each distillation experiment (as opposed to picking the best
validation error of 10 parallel training routines as in our transfer experiments). Our distilled GRU is
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Hidden Units Examples Alignment with Teacher Accuracy on SemEval Test Set
25 50,000 88.3% 59.1%
25 300,000 91.9% 58.6%
50 50,000 88.6% 58.9%
50 300,000 93.0% 58.5%
75 50,000 88.7% 58.9%
75 300,000 93.6% 58.3%

100 50,000 88.6% 58.7%
100 300,000 93.8% 58.1%
125 50,000 88.5% 58.7%
125 300,000 93.7% 58.3%
150 50,000 88.5% 59.0%
150 300,000 94.0% 58.5%

Table 6: Logical rule engine distillation performance and SemEval 2016 Task 4 Subtask A accuracy
as a function of the number of hidden units in the GRU and the number of training examples. The
50 hidden unit and 50,000 training example model performs the best on the SemEval training set.

better on the testing set than the original classifier, likely because this input representation prevents
the model from overfitting to the idiosyncrasies of the rule engine. This actually underscores an
important point for the distillation of abstract knowledge. If the target task is known during distil-
lation, it may be beneficial to stop short of totally distilling the original knowledge as it may hurt
down stream performance past a certain point. We impose a simple policy where the best hidden
unit and training example combination is selected based on performance on the training data of the
target task. As a result, we use the model with 50 hidden units based on 50,000 training examples in
our experiments integrating with other knowledge. This model is a pretty good one to choose, and
achieves high transfer performance relative to models that overfit on the teacher network.
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