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ABSTRACT

We propose an augmented training procedure for generative adversarial networks
designed to address shortcomings of the original by directing the generator to-
wards probable configurations of abstract discriminator features. We estimate and
track the distribution of these features, as computed from data, with a denoising
auto-encoder, and use it to propose high-level targets for the generator. We com-
bine this new loss with the original and evaluate the hybrid criterion on the task
of unsupervised image synthesis from datasets comprising a diverse set of visual
categories, noting a qualitative and quantitative improvement in the “objectness”
of the resulting samples.

1 INTRODUCTION

Generative adversarial networks (Goodfellow et al., 2014a) (GANs) have become well known for
their strength at realistic image synthesis. The objective function for the generative network is
an implicit function of a learned discriminator network, estimated in parallel with the generator,
which aims to tell apart real data from synthesized. Ideally, the discriminator learns to capture
distinguishing features of real data, which the generator learns to imitate, and the process iterates
until real data and synthesized data are indistinguishable.

In practice, GANs are well known for being quite challenging to train effectively. The relative model
capacities of the generator and discriminator must be carefully balanced in order for the generator
to effectively learn. Compounding the problem is the lack of an unambiguous and computable
convergence criterion. Nevertheless, particularly when trained on image collections from relatively
narrow domains such as bedroom scenes (Yu et al., 2015) and human faces (Liu et al., 2015), GANs
have been shown to produce very compelling results.

For diverse image collections comprising a wider variety of the visual world, the results have gen-
erally been less impressive. For example, samples from models trained on ImageNet (Russakovsky
et al., 2014) roughly match the local and global statistics of natural images but yield few recogniz-
able objects. Recent work (Salimans et al., 2016) has sought to address this problem by training
the discriminator in a semi-supervised fashion, granting the discriminator’s internal representations
knowledge of the class structure of (some fraction of) the training data it is presented. This tech-
nique markedly increases sample quality, but is unsatisfying from the perspective of GANs as a tool
for unsupervised learning.

We propose to augment the generator’s training criterion with a second training objective which
guides the generator towards samples more like those in the training set by explicitly modeling the
data density in addition to the adversarial discriminator. Rather than deploy a second computation-
ally expensive convolutional network for this task, the additional objective is computed in the space
of features learned by the discriminator. In that space, we train a denoising auto-encoder, a family
of models which is known to estimate the energy gradient of the data on which it is trained. We
evaluate the denoising auto-encoder on samples drawn from the generator, and use the “denoised”
features as targets – nearby feature configurations which are more likely than those of the generated
sample, according to the distribution estimated by the denoiser.
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We show that this yields generators which consistently produce recognizable objects on the CIFAR-
10 dataset without the use of label information as in Salimans et al. (2016). The criterion appears to
improve stability and possesses a degree of natural robustness to the well known “collapse” pathol-
ogy. We further investigate the criterion’s performance on two larger and more diverse collections
of images, and validate our qualitative observations quantitatively with the Inception score proposed
in Salimans et al. (2016).

2 BACKGROUND

2.1 GENERATIVE ADVERSARIAL NETWORKS

The generative adversarial networks paradigm (Goodfellow et al., 2014a) estimates generative sam-
plers by means of a training procedure which pits a generator G against a discriminator D. D is
trained to tell apart training examples from samples produced by G, while G is trained to increase
the probability of its samples being incorrectly classified as data. In the original formulation, the
training procedure defines a continuous minimax game

arg min
G

arg max
D

Ex∼D logD(x) + Ez∼p(z) log (1−D (G(z))) (1)

where D is a data distribution on Rn, D is a function that maps Rn to the unit interval, and G is a
function that maps a noise vector z ∈ Rm, drawn from a simple distribution p(z), to the ambient
space of the training data, Rn. The idealized algorithm can be shown to converge and to mini-
mize the Jensen-Shannon divergence between the data generating distribution and the distribution
parameterized by G.

Goodfellow et al. (2014a) found that in practice, minimizing (1) with respect to the parameters of G
proved difficult, and elected instead to optimize an alternate objective,

arg max
G

Ez∼p(z) logD (G(z)) (2)

at the same time as D is optimized as above. logD(G(z)) yields more favourably scaled per-
sample gradients forGwhenD confidently identifies a sample as counterfeit, avoiding the vanishing
gradients arising in that case with the − log(1−D(G(z))) objective.

Subsequent authors have investigated applications and extensions of GANs; for a review of this
body of literature, see Warde-Farley & Goodfellow (2016). Of particular note for our purposes is
Radford et al. (2015), who provide a set of general guidelines for the successful training of generative
adversarial networks, and Salimans et al. (2016), who build upon these techniques with a number of
useful heuristics and explore a variant in which the discriminator D is trained to correctly classify
labeled training data, resulting in gradients with respect to the discriminator evidently containing a
great deal of information relevant to generating “object-like” samples.

2.2 CHALLENGES AND LIMITATIONS OF GANS

While Goodfellow et al. (2014a) provides a theoretical basis for the GAN criterion, the theory relies
on certain assumptions that are not satisfied in practice. Proofs demonstrate convergence of the GAN
criterion in the unconstrained space of arbitrary functions; in practice, finitely parameterized families
of functions such as neural networks are employed. As a consequence, the “inner loop” of the
idealized algorithm – maximizing (1) with respect to (the parameters of) D, is infeasible to perform
exactly, and in practice only one or a few gradient steps stand in for this maximization. This results
in a de facto criterion for G which minimizes a lower bound on the correct objective (Goodfellow,
2014).

A commonly observed failure mode is that of full or partial collapse, where G maps a large fraction
of probable regions under p(z) to only a few, low-volume regions of Rn; in the case of images, this
manifests as the appearance of many near-duplicate images in independent draws from G, as well
as a lower diversity of samples and modes than what is observed in the dataset. As G and D are
typically trained via mini-batch stochastic gradient descent, several authors have proposed heuristics
that penalize such duplication within each mini-batch (Salimans et al., 2016; Zhao et al., 2016).
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GANs represent a departure from traditional probabilistic models based on maximum likelihood
and its approximations in that they parameterize a sampler directly and lack a closed form for the
likelihood. This makes objective, quantitative evaluation difficult. While previous results in the
literature have reported approximate likelihoods based on Parzen window estimates, Theis et al.
(2015) has convincingly argued that these estimates can be quite misleading for high-dimensional
data. In this work, we adopt the Inception score proposed by Salimans et al. (2016), which uses a
reference Inception convolutional neural network (Szegedy et al., 2015) to compute

I({x}N1 ) = exp (E [DKL(p(y|x)‖p(y)])) (3)

where p(y|x) is provided by the output of the Inception network and p(y) =
∫
x
p(x)p(y|x)dx u

1
N

∑
p(y|xi). Note that this score can be made larger by a low-entropy per-sample posterior (i.e.

the Inception network classifies a given sample with greater certainty) as well as a higher entropy
aggregate posterior (i.e. the Inception network identifies a wide variety of classes among the sam-
ples presented to it). Salimans et al. (2016) found this score correlated well with human evaluations
of samplers trained on CIFAR-10; we therefore employ the Inception score here as a quantitative
measure of visual fidelity of the samples, following the previous work’s protocol of evaluating the
average Inception score over 10 independent groups of 5,000 samples each. Error estimates corre-
spond to standard deviations, in keeping with previously reported results.

3 IMPROVING UNSUPERVISED GAN TRAINING ON DIVERSE DATASETS

In this work, we focus on the apparent difficulty of training GANs to produce “object-like” sam-
ples when trained on diverse collections of natural images. While Salimans et al. (2016) make
progress on this problem by employing labeled data and training the discriminator, here we aim to
make progress on the unsupervised case. Nevertheless, our methods would be readily applicable to
supervised, semi-supervised or (with slight modifications) conditional setting.

We begin from the slightly subtle observation that in realistic manifestations of the GAN training
procedure, the discriminator’s (negative) gradient with respect to a sample points in a direction of
(infinitesimal) local improvement with respect to the discriminator’s estimate of the sample being
data; it does not necessarily point in the direction of a draw from the data distribution. Indeed, the
literature is replete with instances of gradient descent with respect to the input of a classification
model, particularly wide-domain natural image classifiers, producing ghostly approximations to a
particular class exemplar (Le et al., 2012; Erhan et al., 2009; Yosinski et al., 2015) when this proce-
dure is carried out without additional guidance, to say nothing of the problems posed by adversarial
examples (Szegedy et al., 2013; Goodfellow et al., 2014b) and fooling examples (Nguyen et al.,
2015).

While the gradient of the loss function defined by the discriminator may be a source of information
mostly relevant to very local improvements, the discriminator itself is a potentially valuable source
of compact descriptors of the training data. Many authors have noted the remarkable versatility of
high-level features learned by convolutional networks (Donahue et al., 2014; Yosinski et al., 2014)
and the degree to which high-level semantics can be reconstructed from even the deepest layers
of a network (Dosovitskiy & Brox, 2016). Although non-stationary, the distribution of the high-
level activations of the discriminator when evaluated on data is ripe for exploitation as an additional
source of knowledge about salient aspects of the data distribution.

We propose in this work to track this distribution with a denoising auto-encoder r(·) trained on
the discriminator’s hidden states when evaluated on training data. Alain & Bengio (2014) showed
that a denoising auto-encoder trained on data from a distribution q(h) estimates via r(h) − h the
gradient of the true log-density, ∂ log q(h)

∂h . Hence, if we train the denoising auto-encoder on the
transformed training data h = Φ(x) with x ∼ D, then r(Φ(x′))− Φ(x′) with x′ = G(z) indicates
in which direction x′ should be changed in order to make h = Φ(x′) more like those features seen
with the data. Minimizing ||r(Φ(x′)) − Φ(x′)||2 with respect to x′ would thus push x′ towards
higher probability configurations according to the data distribution in the feature space Φ(x). We
thus evaluate the discriminator features Φ(x), and the denoising auto-encoder, on samples from the
generator, and treat the denoiser’s output reconstruction as a fixed target for the generator. We refer
to this procedure as denoising feature matching, and employ it as a learning signal for the generator
in addition to the traditional GAN generator objective.
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Formally, letG be the generator parameterized by θG, andD = d◦Φ be our discriminator composing
feature extractor Φ(·) : Rn → Rk and a classifier d(·) : Rk → [0, 1]. Let C(·) : Rk → Rk be a
corruption function to be applied at the input of the denoising auto-encoder when it is trained to
denoise. The parameters of the discriminator D, comprising the parameters of both d and Φ, is
trained as in Goodfellow et al. (2014a), while the generator is trained according to

arg min
θG

Ez∼p(z)

[
λdenoise‖Φ(G(z))− r(Φ(G(z)))‖|2 − λadv logD(G(z))

]
(4)

where r(G(z)) is treated as constant with respect to gradient computations. Simultaneously, the
denoiser r(·) is trained according to the objective

arg min
θr

Ex∼D‖Φ(x)− r(C(Φ(x)))‖2 (5)

3.1 EFFECT OF Φ

The theory surrounding denoising auto-encoders applies when estimating a denoising function from
a data distribution p(vecx). Here, we propose to estimate the denoising auto-encoder in the space
of discriminator features, giving rise to a distribution q(Φ(x)). A natural question is what effect
this has on the gradient being backpropagated. This is difficult to analyze in general, as for most
choices the mapping Φ will not be invertible, though it is instructive to examine the invertible case.
Assuming an invertible Φ : Rn → Rn, let J = ∂Φ(x)

∂x be the Jacobian of Φ, and q(Φ(x)) = p(x)|J |.
By the inverse function theorem, J is also invertible (and is in fact the Jacobian of the inverse Φ−1).
Applying the chain rule and re-arranging terms, taking advantage of the invertibility of J , we arrive
at a straightforward relationship between the score of q and the score of p:

∂ log q(Φ(x))

∂Φ(x)
=
∂ log [p(x) |J |]

∂Φ(x)
(6)

=
∂ log p(x)

∂Φ(x)
+
∂ log

∣∣∣∂Φ(x)
∂x

∣∣∣
∂Φ(x)

(7)

=

(
∂ log p(x)

∂x
+
∂ log |J |
∂x

)
J−1 (8)

where

∂ log |J |
∂xk

= Tr

(
J−1 dJ

dxk

)
(9)

and dJ
dxk

is a matrix of scalar derivatives of elements of J with respect to xk. Thus, we see that
the gradient backpropagated to the generator in an ideal setting is the gradient of the data dis-
tribution p(x) along with an additive term which accounts for the changes in the rate of volume
expansion/contraction in Φ locally around x. In practice, Φ is not invertible, but the added benefit
of the denoiser-targeted gradient appears to reduce underfitting to the modes of p in the generator,
irrespective of any distortions Φ may introduce.

4 RELATED WORK

Denoising feature matching was originally inspired by feature matching introduced by Salimans
et al. (2016) as an alternative training criterion for GAN generators, namely (in our notation)

arg min
θG

∣∣‖Ex∼D [Φ(x)]− Ez∼p(z) [Φ(G(z))] ‖
∣∣2 (10)

Feature matching is equivalent to linear maximum mean discrepancy (Gretton et al., 2006), em-
ploying linear first moment matching in the space of discriminator features Φ(·) rather than the
more familiar kernelized formulation. When performed on features in the penultimate layer, Sali-
mans et al. (2016) found that the feature matching criterion was useful for the purpose of improving
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results on semi-supervised classification, using classification of samples from the generator as a so-
phisticated form of data augmentation. Feature matching was, however, less successful at producing
samples with high visual fidelity. This is somewhat unsurprising given that the criterion is insensi-
tive to higher-order statistics of the respective feature distributions. Indeed, a degenerate G which
deterministically reproduces a single sample m̂ such that Φ(m̂) = Ex∈DΦ(x) trivially minimizes
(10); in practice the joint training dynamics of D and G do not appear to yield such degenerate
solutions.

Rather than aiming to merely reduce linear separability between data and samples in the feature
space defined by Φ(·), denoising feature matching selects a more probable (according to the feature
distribution implied by the data, as captured by the denoiser) feature space target for each sample
produced by G and regresses G towards it. While an early loss of entropy in G could result in
the generator locking on to one or a few attractors in the denoiser’s energy landscape, we observe
that this does not happen when used in conjunction with the traditional GAN objective, and in fact
that the combination of the two objectives is notably robust to the collapses often observed in GAN
training, even without taking additional measures to prevent them.

This work also draws inspiration from Alain & Bengio (2014), which showed that a suitably trained
denoiser learns an operator which locally maps a sample towards regions of high probability un-
der the data distribution. They further showed that a suitably trained1 reconstruction function r(·)
behaves such that

r(x)− x ∝ ∂ log p(x)

∂x
(11)

That is, r(x) − x estimates the score of the data generating distribution, up to a multiplicative
constant. Our use of denoising auto-encoders necessarily departs from idealized conditions in that
the denoiser is estimated online from an ever-changing distribution of features.

Several approaches to GAN-like models have cast the problem in terms of learning an energy func-
tion. Kim & Bengio (2016) extends GANs by modeling the data distribution simultaneously with
an energy function parameterized by a deep neural network (playing the role of the discriminator)
and the traditional generator, carrying out learning with a learning rule resembling that of the Boltz-
mann machine (Ackley et al., 1985), where the “negative phase” gradient is estimated from samples
from the generator. The energy-based GAN formulation of Zhao et al. (2016) resembles our work in
their use of an auto-encoder which is trained to faithfully reconstruct (in our case, a corrupted, func-
tion of) the training data. The energy-based GAN replaces the discriminator with an auto-encoder,
which is trained to assign low energy (L2 reconstruction error) to training data and higher energy
to samples from G. To discourage generator collapses, a “pull-away term” penalizes the normal-
ized dot product in a feature space defined by the auto-encoder’s internal representation. In this
work, we preserve the discriminator, trained in the usual discriminative fashion, and in fact preserve
the traditional generator loss, instead augmenting it with a source of complementary information
provided by targets obtained from the denoiser. The energy-based GAN can be viewed as training
the generator to seek fixed points of the autoencoding function (i.e. by backpropagating through
the decoder and encoder in order to decrease reconstruction error), whereas we treat the output of
r(·) as constant with respect to the optimization as in Lee et al. (2015). That is to say, rather than
using backpropagation to steer the dynamics of the autoencoder, we instead employ our denoising
autoencoder to augment the gradient information obtained by ordinary backpropagation.

Closest to our own approach, concurrent work on model-based super-resolution by Sønderby et al.
(2016) trains a denoising auto-encoder on high-resolution ground truth and evaluates it on synthe-
sized super-resolution images, using the difference between the original synthesized image and the
denoiser’s output as an additional training signal for refining the output of the super-resolution net-
work. Both Sønderby et al. (2016) and our own work are motivated by the results of Alain & Bengio
(2014) discussed above. Aside from addressing a different application area, our denoiser is learned
on-the-fly from a high-level feature representation which is itself learned.

1In the limit of infinite training data, with isotropic Gaussian noise of some standard deviation σ.
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5 EXPERIMENTS

We evaluate denoising feature matching on learning synthesis models from three datasets of increas-
ing diversity and size: CIFAR-10, STL-10, and ImageNet. Although several authors have described
GAN-based image synthesis models operating at 128 × 128 (Salimans et al., 2016; Zhao et al.,
2016) and 256× 256 (Zhao et al., 2016) resolution, we carry out our investigations at relatively low
resolutions, both for computational ease and because we believe that the problem of unconditional
modeling of diverse image collections is not well solved even at low resolutions; making progress
in this regime is likely to yield insights that apply to the higher-resolution case.

In all experiments, we employ isotropic Gaussian corruption noise with σ = 1. Although we ex-
perimented with annealing σ towards 0 (as also performed in Sønderby et al. (2016)), an annealing
schedule which consistently outperformed fixed noise remained elusive. We experimented with con-
volutional denoisers, but our best results to date were obtained with deep, fully-connected denoisers
using the ReLU nonlinearity on the penultimate layer of the discriminator. The number of hidden
units was fixed to the same value in all denoiser layers, and the procedure is apparently robust to this
hyperparameter choice, as long as it is greater than or equal to the input dimensionality.

Our generator and discriminator architectures follow the methods outlined in Radford et al. (2015).
Accordingly, batch normalization (Ioffe & Szegedy, 2015) was used in the generator and discrimi-
nator in the same manner as Radford et al. (2015), and in all layers of the denoiser except the output
layer. In particular, as in Radford et al. (2015), we separately batch normalize data and generator
samples for the discriminator and denoiser with respect to each source’s statistics. We calculate
updates with respect to all losses with the parameters of all three networks fixed, and update all
parameters simultaneously.

All networks were trained with the Adam optimizer Kingma & Ba (2014) with a learning rate of
10−4 and β1 = 0.5. The Adam optimizer is scale invariant, and so it suffices to e.g. tune λdenoise

and fix λadv to 1. In our experiments, we set λdenoise to 0.03/nh, where nh is the number of
discriminator hidden units fed as input to the denoiser; this division decouples the scale of the first
term of (4) from the dimensionality of the representation used, reducing the need to adjust this
hyperparameter simply because we altered the architecture of the discriminator.

5.1 CIFAR-10

CIFAR-10 (Krizhevsky & Hinton, 2009) is a small, well-studied dataset consisting of 50,000 32×32
pixel RGB training images and 10,000 test images from 10 classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck.

Samples from our model trained on CIFAR-10 are shown in Figure 1, and Inception scores for sev-
eral methods, including those reported in Salimans et al. (2016) and scores computed from samples
generated from a model presented in Dumoulin et al. (2016), are presented in Table 1. We achieve
a mean Inception score of 7.72, falling slightly short of Salimans et al. (2016), which employed
a supervised discriminator network (the same work reports a score of 4.36 ± .04 when labels are
omitted from their training procedure). Qualitatively, the samples include recognizable cars, boats
and various animals. The best performing generator network consisted of the 32 × 32 ImageNet
architecture from Radford et al. (2015) with half the number of parameters at each layer, and less
than 40% of the parameters of the CIFAR-10 generator presented in Salimans et al. (2016).

Real data? Semi-supervised Unsupervised
Improved GAN (Salimans et al)? ALI (Dumoulin et al)† Ours

11.24 ± .12 8.09 ± .07 5.34 ± 0.05 7.72 ± 0.13

Table 1: Inception scores for models of CIFAR-10. ? as reported in Salimans et al. (2016); semi-
supervised † computed from samples drawn using author-provided model parameters and imple-
mentation.
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Figure 1: Samples generated from a model trained with denoising feature matching on CIFAR10.

5.2 STL-10

STL-10 (Coates et al., 2011) is a dataset consisting of a small labeled set and larger (100,000)
unlabeled set of 96 × 96 RGB images. The unlabeled set is a subset of ImageNet that is more
diverse than CIFAR-10 (or the labeled set of STL-10), but less diverse than full ImageNet. We
downsample by a factor of 2 on each dimension and train our networks at 48× 48. Inception scores
for our model and a baseline, consisting of the same architecture trained without denoising feature
matching (both trained for 50 epochs), are shown in Table 2. Samples are displayed in Figure 2.

Real data Ours GAN Baseline
26.08 ± .26 8.51 ± 0.13 7.84 ± .07

Table 2: Inception scores for models of the unlabeled set of STL-10.

5.3 IMAGENET

The ImageNet database (Russakovsky et al., 2014) is a large-scale database of natural images. We
train on the designated training set of the most widely used release, the 2012 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC2012), consisting of a highly unbalanced split among
1,000 object classes. We preprocess the dataset as rescaled central crops following the procedure of
Krizhevsky et al. (2012), except at 32 × 32 resolution to facilitate comparison with Radford et al.
(2015).

ImageNet poses a particular challenge for unsupervised GANs due to its high level of diversity and
class skew. With a generator and discriminator architecture identical to that used for the same dataset
in Radford et al. (2015), we achieve a higher Inception score using denoising feature matching, using
denoiser with 10 hidden layers of 2,048 rectified linear units each. Both fall far short of the score
assigned to real data at this resolution; there is still plenty of room for improvement. Samples are
displayed in Figure 3.

6 DISCUSSION AND FUTURE DIRECTIONS

We have shown that training a denoising model on high-level discriminator activations in a GAN,
and using the denoiser to propose high-level feature targets for the generator, can usefully improve
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Figure 2: Samples from a model trained with denoising feature matching on the unlabeled portion
of the STL-10 dataset.

Figure 3: Samples from our model of ILSVRC2012 at 32× 32 resolution.
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Real data Radford et al? Ours
25.78 ± .47 8.83 ± 0.14 9.18 ± .13

Table 3: Inception scores for models of ILSVRC 2012 at 32 × 32 resolution. ? computed from
samples drawn using author-provided model parameters and implementation.

GAN image models. Higher Inception scores, as well as visual inspection, suggest that the procedure
captures class-specific features of the training data in a manner superior to the original adversarial
objective alone. That being said, we do not believe we are yet making optimal use of the paradigm.
The non-stationarity of the feature distribution on which the denoiser is trained could be limiting the
ability of the denoiser to obtain a good fit, and the information backpropagated to the generator is
always slightly stale. Steps to reduce this non-stationarity may be fruitful; we experimented briefly
with historical averaging as explored in Salimans et al. (2016) but did not observe a clear benefit thus
far. Structured denoisers, including denoisers that learn an energy function for multiple hidden layers
at once, could conceivably aid in obtaining a better fit. Learning a partially stochastic transition
operator rather than a deterministic denoiser could conceivably capture interesting multimodalities
that are “blurred” by a unimodal denoising function.

Our method is orthogonal and could conceivably be used in combination with several other GAN
extensions. For example, methods incorporating an encoder component (Donahue et al., 2016;
Dumoulin et al., 2016), various existing conditional architectures (Mirza & Osindero, 2014; Denton
et al., 2015; Reed et al., 2016), or the semi-supervised variant employed in Salimans et al. (2016),
could all be trained with an additional denoising feature matching objective.

We have proposed a useful heuristic, but a better theoretical grounding regarding how GANs are
trained in practice is a necessary direction for future work, including grounded criteria for assess-
ing mode coverage and mass misassignment, and principled criteria for assessing convergence or
performing early stopping.
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