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ABSTRACT

Deep convolutional networks are well-known for their high computational and
memory demands. Given limited resources, how does one design a network that
balances its size, training time, and prediction accuracy? A surprisingly effective
approach to trade accuracy for size and speed is to simply reduce the number of
channels in each convolutional layer by a fixed fraction and retrain the network. In
many cases this leads to significantly smaller networks with only minimal changes
to accuracy. In this paper, we take a step further by empirically examining a
strategy for deactivating connections between filters in convolutional layers in a
way that allows us to harvest savings both in run-time and memory for many
network architectures. More specifically, we generalize 2D convolution to use a
channel-wise sparse connection structure and show that this leads to significantly
better results than the baseline approach for large networks including VGG and
Inception V3.

1 INTRODUCTION

Deep neural networks combined with large-scale labeled data have become a standard recipe for
achieving state-of-the-art performance on supervised learning tasks in recent years. Despite of their
success, the capability of deep neural networks to model highly nonlinear functions comes with high
computational and memory demands both during the model training and inference. In particular, the
number of parameters of neural network models is often designed to be huge to account for the scale,
diversity, and complexity of data that they learn from. While advances in hardware have somewhat
alleviated the issue, network size, speed, and power consumption are all limiting factors when it
comes to production deployment on mobile and embedded devices. On the other hand, it is well-
known that there is significant redundancy among the weights of neural networks. For example,
Denil et al. (2013) show that it is possible to learn less than 5% of the network parameters and
predict the rest without losing predictive accuracy. This evidence suggests that neural networks are
often over-parameterized.

These motivate the research on neural network compression. However, several immediate ques-
tions arise: Are these parameters easy to identify? Could we just make the network 5% of its size
and retrain? Or are more advanced methods required? There is an extensive literature in the last
few years that explores the question of network compression using advanced techniques, including
network prunning, loss-based compression, quantization, and matrix decomposition. We overview
many of these directions in the next section. However, there is surprisingly little research on whether
this over-parameterization can simply be re-captured by more efficient architectures that could be
obtained from original architectures via simple transformations.

Our approach is inspired by a very simple yet successful method called depth multiplier (Howard,
2017). In this method the depth (the number of channels) of each convolutional layer in a given
network is simply reduced by a fixed fraction and the network is retrained. We generalize this ap-
proach by removing the constraint that every input filter (or channel) must be fully connected to
every output filter. Instead, we use a sparse connection matrix, where each output convolution chan-

∗The work was done while the author was doing an internship at Google Research.
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nel is connected only to a small random fraction of the input channels. Note that, for convolutional
networks, this still allows for efficient computation since the one channel spatial convolution across
the entire plane remains unchanged.

We empirically demonstrate the effectiveness of our approach on four networks (MNIST, CIFAR
Net, Inception-V3 and VGG-16) of different sizes. Our results suggest that our approach outper-
forms dense convolutions with depth multiplier at high compression rates.

For Inception V3 (Szegedy et al., 2016), we show that we can train a network with only about 300K
of convolutional parameters1 and about 100M multiply-adds that achieves above 52% accuracy af-
ter it is fully trained. The corresponding depth-multiplier network has only about 41% accuracy.
Another network that we consider is VGG-16n, a slightly modified version of VGG-16 (Simonyan
& Zisserman, 2015), with 7x fewer parameters and similar accuracy.2 We found VGG-16n to start
training much faster than the original VGG-16 which was trained incrementally in the original lit-
erature. We explore the impact of sparsification and the number of parameters on the quality of the
network by building the networks up to 30x smaller than VGG-16n (200x smaller than the original
VGG-16).

In terms of model flexibility, sparse connections allow for an incremental training approach, where
connection structure between layers can be densified as training progresses. More importantly, the
incremental training approach can potentially speed up the training significantly due to savings in
the early stages of training.

The rest of the paper is organized as follows. Section 2 summarizes relevant work. We describe
our approach in Section 3 and then present some intuition in Section 4. Finally, we show our
experimental results in Section 5.

2 RELATED WORK

2.1 COMPRESSION TECHNIQUES FOR NEURAL NETWORKS

Our work is closely related to a compression technique based on network pruning. However, the
important difference is that we do not try to select the connections which are redundant. Instead,
we just fix a random connectivity pattern and let the network train around it. We also give a brief
overview of other two popular techniques: quantization and decomposition, though these directions
are not the main focus and could be complementary to our work.

Network pruning Much initial work on neural network compression focuses on removing unim-
portant connections using weight decay. Hanson & Pratt (1989) introduce hyperbolic and exponen-
tial biases to the objective. Optimal Brain Damage (LeCun et al., 1989) and Optimal Brain Surgeon
(Hassibi & Stork, 1993) prune the networks based on second-order derivatives of the objectives.
Recent work by Han et al. (2015; 2016a) alternates between pruning near-zero weights, which are
encouraged by `1 or `2 regularization, and retraining the pruned networks.

More complex regularizers have also been considered. Wen et al. (2016) and Li et al. (2016) put
structured sparsity regularizers on the weights, while Murray & Chiang (2015) put them on the hid-
den units. Feng & Darrell (2015) explore a nonparametric prior based on the Indian buffet processes
(Griffiths & Ghahramani, 2011) on layers. Hu et al. (2016) prune neurons based on the analysis of
their outputs on a large dataset. Anwar et al. (2015b) consider special sparsity patterns: channel-wise
(removing a feature map/channel from a layer), kernel-wise (removing all connections between two
feature maps in consecutive layers), and intra-kernel-strided (removing connections between two
features with particular stride and offset). They also propose to use particle filter to decide the
importance of connections and paths during training.

Another line of work explores fixed network architectures with some subsets of connections re-
moved. For example, LeCun et al. (1998) remove connections between the first two convolutional
feature maps in a completely uniform manner. This is similar to our approach but they only con-

1Here and elsewhere, we ignore the parameters for the softmax classifier since they simply describe a linear
transformation and depend on number of classes.

2As of this writing, VGG networks have not finished training, but the training trajectory suggest similar
performance.
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sider a pre-defined pattern in which the same number of input feature map are assigned to each
output feature map (Random Connection Table in Torch’s SpatialConvolutionMap function). Fur-
ther, they do not explore how sparse connections affect performance compared to dense networks.
Along a similar vein, Cireşan et al. (2011) remove random connections in their MNIST experi-
ments. However, they do not try to preserve the spatial convolutional density and it might be a
challenge to harvest the savings on existing hardware. Ioannou et al. (2016a) explore three types of
hierarchical arrangements of filter groups for CNNs, which depend on different assumptions about
co-dependency of filters within each layer. These arrangements include columnar topologies in-
spired by AlexNet (Krizhevsky et al., 2012), tree-like topologies previously used by Ioannou et al.
(2016b), and root-like topologies. Finally, Howard (2017) proposes the depth multiplier method to
scale down the number of filters in each convolutional layer by a factor. In this case, depth multi-
plier can be thought of channel-wise pruning mentioned in (Anwar et al., 2015b). However, depth
multiplier modifies the network architectures before training and removes each layer’s feature maps
in a uniform manner.

With the exception of (Anwar et al., 2015b; Li et al., 2016; Ioannou et al., 2016a) and depth multi-
plier (Howard, 2017), the above previous work performs connection pruning that leads to irregular
network architectures. Thus, those techniques require additional efforts to represent network con-
nections and might or might not allow for direct computational savings.

Quantization Reducing the degree of redundancy of model parameters can be done in the form
of quantization of network parameters. Hwang & Sung (2014); Arora et al. (2014) and Courbariaux
et al. (2015; 2016); Rastegari et al. (2016) propose to train CNNs with ternary weights and binary
weights, respectively. Gong et al. (2014) use vector quantization for parameters in fully connected
layers. Anwar et al. (2015a) quantize a network with the squared error minimization. Chen et al.
(2015) randomly group network parameters using a hash function. We note that this technique could
be complementary to network pruning. For example, Han et al. (2016a) combine connection pruning
in (Han et al., 2015) with quantization and Huffman coding.

Decomposition Another approach is based on low-rank decomposition of the parameters. De-
composition methods include truncated SVD (Denton et al., 2014), decomposition to rank-1 bases
(Jaderberg et al., 2014), CP decomposition (PARAFAC or CANDECOMP) (Lebedev et al., 2015),
Tensor-Train decomposition of Oseledets (2011) (Novikov et al., 2015), sparse dictionary learning
of Mairal et al. (2009) and PCA (Liu et al., 2015), asymmetric (3D) decomposition using reconstruc-
tion loss of non-linear responses combined with a rank selection method based on PCA accumulated
energy (Zhang et al., 2015b;a), and Tucker decomposition using the kernel tensor reconstruction loss
combined with a rank selection method based on global analytic variational Bayesian matrix factor-
ization (Kim et al., 2016).

2.2 REGULARIZATION OF NEURAL NETWORKS

Hinton et al. (2012); Srivastava et al. (2014) propose Dropout for regularizing fully connected layers
within neural networks layers by randomly setting a subset of activations to zero during training.
Wan et al. (2013) later propose DropConnect, a generalization of Dropout that instead randomly sets
a subset of weights or connections to zero. Our approach could be thought as related to DropCon-
nect, but (1) we remove connections before training; (2) we focus on connections between convolu-
tional layers; and (3) we kill connections in a more regular manner by restricting connection patterns
to be the same along spatial dimensions.

Recently, Han et al. (2016b) and Jin et al. (2016) propose a form of regularization where dropped
connections are unfrozen and the network is retrained. This idea is similar to our incremental training
approach. However, (1) we do not start with a full network; (2) we do not unfreeze connections all
at once; and (3) we preserve regularity of the convolution operation.

2.3 NEURAL NETWORK ARCHITECTURES

Network compression and architectures are closely related. The goal of compression is to remove
redundancy in network parameters; therefore, the knowledge about traits that determine architec-
ture’s success would be desirable. Other than the discovery that depth is an important factor (Ba &
Caruana, 2014), little is known about such traits.
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Some previous work performs architecture search but without the main goal of doing compression
(Murray & Chiang, 2015; De Brabandere et al., 2016). Recent work proposes shortcut/skip con-
nections to convolutional networks. See, among others, highway networks (Srivastava et al., 2015),
residual networks (He et al., 2016a;b), networks with stochastic depth (Huang et al., 2016b), and
densely connected convolutional networks (Huang et al., 2016a).

3 APPROACH

A CNN architecture consist of (1) convolutional layers, (2) pooling layers, (3) fully connected layers,
and (4) a topology that governs how these layers are organized. Given an architecture, our general
goal is to transform it into another architecture with a smaller number of parameters. In this paper,
we limit ourselves to transformation functions that keep the general topology of the input architec-
ture intact. Moreover, the main focus will be on the convolutional layers and convolution operations,
as they impose highest computational and memory burden for most if not all large networks.

3.1 DEPTH MULTIPLIER

We first give a description of the depth multiplier method used in Howard (2017). Given a hy-
perparameter α ∈ (0, 1], the depth multiplier approach scales down the number of filters in each
convolutional layers by α. Note that depth here refers to the third dimension of the activation vol-
ume of a single layer, not the number of layers in the whole network.

Let nl−1 and nl be the number of input and output filters at layer l, respectively. After the oper-
ation nl−1 and nl become dαnl−1e and dαnle and the number of parameters (and the number of
multiplications) becomes ≈ α2 of the original number.

The result of this operation is a network that is both 1/α2 smaller and faster. Many large networks
can be significantly reduced in size using this method with only a small loss of precision (Howard,
2017). It is our belief that this method establishes a strong baseline to which any other advanced
techniques should compare themselves. To the best of our knowledge, we are not aware of such
comparisons in the literature.

3.2 SPARSE RANDOM

Instead of looking at depth multiplier as deactivating channels in the convolutional layers, we can
look at it from the perspective of deactivating connections. From this point of view, depth multiplier
kills the connections between two convolutional layers such that (a) the connection patterns are
still the same across spatial dimensions and (b) all “alive” input channels are fully connected to all
“alive” output channels.

We generalize this approach by relaxing (b) while maintaining (a). That is, for every output chan-
nel, we connect it to a small subset of input channels. In other words, dense connections between
a small number of channels become sparse connections between larger number of channels. This
can be summarized in Fig. 1. The advantage of this is that the actual convolution can still be com-
puted efficiently because sparsity is introduced only at the outer loop of the convolution operation
and we can still take the advantage of the continuous memory layout. For more details regarding
implementations of the two approaches, please refer to the Appendix.

More concretely, let nl−1 and nl be the number of channels of layer l − 1 and layer l, respectively.
For a sparsity coefficient α, each output filter j only connects to an α fraction of filters of the
previous layer. Thus, instead of having a connectivity matrix Wsij of dimension k2 × nl−1 × nl,
we have a sparse matrix with non-zero entries at Wsaijj , where aij is an index matrix of dimension
k2 × αnl−1 × nl and k is the kernel size.

3.2.1 INCREMENTAL TRAINING

In contrast to depth multiplier, a sparse convolutional network defines a connection pattern on a
much bigger network. Therefore, an interesting extension is to consider incremental training: we
start with a network that only contains a small fraction of connections (in our experiments we use
1% and 0.1%) and add connections over time. This is motivated by an intuition that the network can
use learned channels in new contexts by introducing additional connections. The potential practical
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Figure 1: Connection tensors of depth multiplier (left) and sparse random (right) approaches for
nl−1 = 5 and nl = 10. Yellow denotes active connections. For both approaches, the connection
pattern is the same across spatial dimension and fixed before training. However, in the sparse random
approach, each output channel is connected to a (possibly) different subset of input channels, and
vice versa.

advantage of this approach is that since we start training with very small networks and grow them
over time, this approach has a potential to speed up the whole training process significantly. We note
that depth multiplier will not benefit from this approach as any newly activated connections would
require learning new filters from scratch.

4 ANALYSIS

In this section, we approach a question of why sparse convolutions are frequently more efficient than
the dense convolutions with the same number of parameters. Our main intuition is that the sparse
convolutional networks promote diversity. It is much harder to learn equivalent set of channels as, at
high sparsity, channels have distinct connection structure or even overlapping connections. This can
be formalized with a simple observation that any dense network is in fact a part of an exponentially
large equivalence class, which is guaranteed to produce the same output for every input.

Lemma 1 Any dense convolutional neural network with no cross-channel nonlinearities, distinct
weights and biases, and with l hidden layers of sizes n1, n2, . . . , nl, has at least

∏l
i=1 ni! distinct

equivalent networks which produce the same output.

Proof Let I denote the input to the network, Ci be the convolutional operator, σi denote the non-
linearity operator applied to the i-th convolution layer and S be a final transformation (e.g. softmax
classifier). We assume that σi is a function that operates on each of the channels independently. We
note that this is the case for almost any modern network. The output of the network can then be
written as:

N (I) ≡ S ◦ σl ◦ Cl ◦ σl−1 ◦ · · · ◦ σ1 ◦ C1(I)

where we use ◦ to denote function composition to avoid numerous parentheses. The convolution
operator Ci operates on input with ni−1 channels and produces an output with ni channels. Now,
fix arbitrary set of permutation functions πi, where πi can permute depth of size ni. Since πi is
a linear function, it follows that C ′i = π−1i Ciπi−1 is a valid convolutional operator, which can be
obtained from Ci by permuting its bias according to πi and its weight matrix along input and output
dimensions according to πi−1 and πi respectively. For a new network defined as:

N ′(I) = S′ ◦ σl ◦ C ′l ◦ σl−1 ◦ · · · ◦ σ1 ◦ C ′1(I),

where π0 is an identity operator and S′ ≡ S ◦ πl, we claim that N ′(I) ≡ N (I). Indeed, since
nonlinearities do not apply cross-depth we have πnσnπ−1n ≡ σn and thus:

N ′(I) = S′ ◦ σl ◦ C ′l ◦ σl−1 ◦ · · · ◦ σ1 ◦ C ′1(I) =
= S ◦ πl ◦ σl ◦ π−1l ◦ Cl ◦ πl−1 ◦ · · · ◦ π1 ◦ σ1 ◦ π−11 ◦ C1(I) = N (I).

Thus, any set of permutations on hidden units defines an equivalent network. �

It is obvious that sparse networks are much more immune to parameter permutation – indeed every
channel at layer l is likely to have a unique tree describing its connection matrix all the way down.
Exploring this direction is an interesting open question.
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5 EXPERIMENTS

In this section, we demonstrate the effectiveness of the sparse random approach by comparing it to
the depth multiplier approach at different compression rates. Moreover, we examine several settings
in the incremental training where connections gradually become active during the training process.

5.1 SETUP

Networks and Datasets Our experiments are conducted on 4 networks for 3 different datasets.
All our experiments use open-source TensorFlow networks Abadi et al. (2015).

MNIST AND CIFAR-10 We use standard networks provided by TensorFlow. For MNIST, it has
3-layer convolutional layers and achieves 99.5% accuracy when fully trained. For CIFAR-10, it has
2 convolutional layers and achieves 87% accuracy.

IMAGENET We use open source Inception-V3 (Szegedy et al., 2016) network and a slightly mod-
ified version of VGG-16 (Simonyan & Zisserman, 2015) called VGG-16n on ImageNet ILSVRC
2012 (Deng et al., 2009; Russakovsky et al., 2015).

Random connections Connections are activated according to their likelihood from the uniform
distribution. In addition, they are activated in such a way that there are no connections going in or
coming out of dead filters (i.e., any connection must have a path to input image and a path to the
final prediction.). All connections in fully connected layers are retained.

Implementation details All code is implemented in TensorFlow (Abadi et al., 2015). Deactivat-
ing connections is done by applying masks to parameter tensors. The Inception-v3 and VGG-16n
networks are trained on 8 Tesla K80 GPUs, each with batch size 256 (32 per gpu) and batch normal-
ization was used for all networks.

5.2 COMPARISON BETWEEN SPARSE RANDOM AND DEPTH MULTIPLIER

5.2.1 MNIST AND CIFAR-10

We first compare depth multiplier and sparse random for the two small networks on MNIST and
CIFAR-10. We compare the accuracy of the two approaches when the numbers of connections are
roughly the same, based on a hyperparameter α. For dense convolutions, we pick a multiplier α and
each filter depth is scaled down by

√
α and then rounded up. In sparse convolutions, a fraction α of

connections are randomly deactivated if those parameters connect at least two filters on each layer;
otherwise, a fraction of

√
α is used instead if the parameters connect layers with only one filter left.

The accuracy numbers are averaged over 5 rounds for MNIST and 2 rounds on CIFAR-10.

We show in Fig. 2 and Fig. 3 that the sparse networks have comparable or higher accuracy for the
same number of parameters, with comparable accuracy at higher density. We note however that
these networks are so small that at high compression rates most of operations are concentrated at the
first layer, which is negligible for large networks. Moreover, in MNIST example, the size of network
changes most dramatically from 2000 to 2 million parameters, while affecting accuracy only by 1%.
This observation suggests that there might be benefits of maintaining the number of filters to be high
and/or breaking the symmetry of connections. We explore this in the next section.

5.2.2 INCEPTION-V3 ON IMAGENET

We consider different values of sparsity ranging from 0.003 to 1, and depth multiplier from 0.05
to 1. Our experiments show (see Table 1 and Fig. 4) significant advantage of sparse networks over
equivalently sized dense networks. We note that due to time constraints the reported quantitative
numbers are preliminary, as the networks have not finished converging. We expect the final numbers
to match the reported number for Inception V3 Szegedy et al. (2016), and the smaller networks to
have comparable improvement.
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Figure 2: Comparison of accuracy (averaged over 5 rounds) vs. Number of parameters/Number of
multiply-adds between dense and sparse convolutions on MNIST dataset. Note that though sparse
convolution result in better parameter trade-off curve, the multiply-add curve shows the opposite
pattern.

Table 1: Inception V3: Preliminary quantitative results after 100 Epochs. Note the smallest sparse
network is actually a hybrid network - we used both depth multiplier (0.5) and sparsity (0.01). The
number of parameters is the number of parameters excluding the softmax layer.

Accuracy for sparse convolutions Accuracy for Depth Multiplier
Sparsity MAdds Params P@1

0.50/0.01 43.0 M 90 k 40.3
0.003 82.0 M 158 k 46.1
0.01 104 M 287 k 52.3
0.03 208 M 724 k 59.5
0.10 628 M 2.3 M 67.2
0.30 1.80 B 6.6 M 73
0.60 3.50 B 13 M 75
1.00 5.70 B 22 M 77

Multiplier MAdds Params P@ 1
0.05 55.0M 56k 24.6
0.10 75.0M 170k 38.6
0.20 183M 718k 54.2
0.30 439M 1.8M 64.0
0.50 1.40B 5.4M 72.3
0.80 3.40B 13M 75.6

Original network: 5.70 B 22 M 77 (78.8)

5.2.3 VGG-16 ON IMAGENET

In our experiments with the VGG-16 network (Simonyan & Zisserman, 2015), we modify the model
architecture (calling it VGG-16n) by removing the two fully-connected layers with depth 4096 and
replacing them with a 2 × 2 maxpool layer followed by a 3 × 3 convolutional layer with the depth
of 1024. This alone sped up our training significantly. The comparison between depth multiplier
and sparse connection approaches is shown in Fig. 5. The modified VGG-16n network has about 7
times fewer parameters, but appears to have comparable precision.

Figure 3: Comparison of accuracy (averaged over 2 rounds) vs. Number of parameters/Number of
multiply-adds between dense and sparse convolutions on CIFAR-10 dataset.
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Figure 4: Inception V3: Comparison of Precision@1 vs. Number of parameters/Number of
multiply-adds between dense and sparse convolutions on ImageNet/Inception-V3. The full network
corresponds to the right-most point of the curve.

Figure 5: VGG 16: Preliminary Quantitative Results. Comparison of Precision@1 vs. Number of
parameters/Number of multiply-adds between dense and sparse convolutions on ImageNet/VGG-
16n. The full network corresponds to the right-most point of the curve. Original VGG-16 as de-
scribed in Simonyan & Zisserman (2015) (blue star) and the same model trained by us from scratch
(red cross) are also shown.

5.3 INCREMENTAL TRAINING

Figure 6: Incremental Training Of Inception V3: We show Precision@1 during the training process,
where the networks densify over time. The saturation points show where the networks actually reach
their full density.
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Finally, we show that incremental training is a promising direction. We start with a very sparse
model and increase its density over time, using the approach described in Sect. 3.2.1. We note that
a naive approach where we simply add filters results in training process basically equivalent to as if
it started from scratch in every step. On the other hand, when the network densifies over time, all
channels already possess some discriminative power and that information is utilized.

In our experiments, we initially start training Inception-V3 with only 1% or 0.1% of connections
enabled. Then, we double the number of connections every T steps. We use T = 10, 000, T =
25, 000 and T = 50, 000. The results are presented in Fig. 6. We show that the networks trained with
the incremental approach regardless of the doubling period can catch up with the full Inception-V3
network (in some cases with small gains). Moreover, they recover very quickly from adding more
(untrained) connections. In fact, the recovery is so fast that it is shorter than our saving interval
for all the networks except for the network with 10K doubling period (resulting in the sharp drop).
We believe that incremental training is a promising direction to speeding up the training of large
convolutional neural networks since early stages of the training require much less computation.

6 CONCLUSION

We have proposed a new compression technique that uses a sparse random connection structure
between input-output filters in convolutional layers of CNNs. We fix this structure before training
and use the same structure across spatial dimensions to harvest savings from modern hardware. We
show that this approach is especially useful at very high compression rates for large networks. For
example, this simple method when applied to Inception V3 (Fig. 4), achieves AlexNet-level accuracy
(Krizhevsky et al., 2012) with fewer than 400K parameters and VGG-level one (Fig. 5) with roughly
3.5M parameters. The simplicity of our approach is instructive in that it establishes a strong baseline
to compare against when developing more advanced techniques. On the other hand, the uncanny
match in performance of dense and equivalently-sized sparse networks with sparsity > 0.1 suggests
that there might be some fundamental property of network architectures that is controlled by the
number of parameters, regardless of how they are organized. Exploring this further might yield
additional insights on understanding neural networks.

In addition, we show that our method leads to an interesting novel incremental training technique,
where we take advantage of sparse (and smaller) models to build a dense network. One interesting
open direction is to enable incremental training not to simply densify the network over time, but also
increase the number of channels. This would allow us to grow the network without having to fix its
original shape in place.
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A ADDITIONAL DETAILS ON DENSE VS. SPARSE CONVOLUTIONS

We contrast naive implementations of dense and sparse convolutions (cf. Sect. 3) in Algorithm. 1
and Algorithm 2. We emphasize that we do not use sparse matrices and only introduce sparsity from
channel to channel. Thus, walltime will be mostly in terms of Multiply-Adds; the basic operation
(convolving the entire image plane in Line 8 of both algorithms) is unchanged.

Algorithm 1 Naive implementation of dense convolution

1: Inputs:
2: - input: Data tensor
3: - W : Parameter tensor
4: - input channels: Array of input channel IDs
5: - output channels: Array of output channel IDs
6: for i in input channels do
7: for o in output channels do
8: output[o]← output[o] + convolve(input[i],W [i, o, . . .])
9: end for

10: end for
11: return output

Algorithm 2 Naive implementation of sparse convolution

1: Inputs:
2: - input: Data tensor
3: - W : Parameter tensor
4: - input channels: Array of input channel IDs
5: - output channels connected to i: Array of array of output channel IDs specifying connec-

tions to each input channel
6: for i in input channels do
7: for index, o in enumerate(output channels connected to i[i]) do
8: output[o]← output[o] + convolve(input[i],W [i, index, . . .])
9: end for

10: end for
11: return output
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