
Under review as a conference paper at ICLR 2017

DEEPREBIRTH: A GENERAL APPROACH FOR ACCEL-
ERATING DEEP NEURAL NETWORK EXECUTION ON
MOBILE DEVICES

Dawei Li
Computer Science and Engineering Department
Lehigh University
Bethlehem, PA 18015, USA
dal312@lehigh.edu

Xiaolong Wang
Samsung Research America (SRA)
visionxiaolong@gmail.com

Deguang Kong
Samsung Research America (SRA)
doogkong@gmail.com

Mooi Choo Chuah
Computer Science and Engineering Department
Lehigh University
Bethlehem, PA 18015, USA
chuah@cse.lehigh.edu

ABSTRACT

Deploying deep neural networks on mobile devices is a challenging task due to
computation complexity and memory intensity. Existing works solve this prob-
lem by reducing model size using weight compression methods based on dimen-
sion reduction (i.e., SVD, Tucker decomposition and Quantization). However,
the execution speed of these compressed models are still far below the real-time
processing requirement of mobile services. To address this limitation, we pro-
pose a novel acceleration framework: DeepRebirth by exploring the deep learning
model parameter sparsity through merging the parameter-free layers with their
neighbor convolution layers to a single dense layer. The design of DeepRebirth
is motivated by the key observation: some layers (i.e., normalization and pool-
ing) in deep learning models actually consume a large portion of computational
time even few learned parameters are involved, and acceleration of these layers
has the potential to improve the processing speed significantly. Essentially, the
functionality of several merged layers is replaced by the new dense layer – re-
birth layer in DeepRebirth. In order to preserve the same functionality, the rebirth
layer model parameters are re-trained to be functionality equivalent to the orig-
inal several merged layers. The extensive experiments performed on ImageNet
using several popular mobile devices demonstrate that DeepRebirth is not only
providing huge speed-up in model deployment and significant memory saving but
also maintaining the model accuracy, i.e., 3x-5x speed-up and energy saving on
GoogLeNet with only 0.4% accuracy drop on top-5 categorization in ImageNet.
Further, by combining with other model compression techniques, DeepRebirth of-
fers an average of 65ms model forwarding time on single image using Samsung
Galaxy S6 with only 2.4% accuracy drop. In addition, 2.5x run-time memory
saving is achieved with rebirth layers.

1 INTRODUCTION

Recent years have witnessed the breakthrough of deep learning techniques for image classification
and object recognition. Mobile device becomes more and more popular due to its convenient mo-
biles services provided for end users. More and more mobile applications require deep learning
techniques to provide accurate, intelligent and effective services. However, the execution speed
of the deep learning model on mobile devices becomes a bottleneck for many applications due to
the large model size, deep network structure and complicated model parameters, which hinders the
real-time deployment. However, if deep learning service is only provided at cloud side, transmis-

1

Under review as a conference paper at ICLR 2017

sion of images though internet may compromise image owners’ privacy and is also limited by the
availability of the Internet.

Running deep learning models efficiently on mobile CPUs is a highly intriguing feature due to
many reasons: (1) CPU is available for all mobile devices, even phones released many years ago;
(2) powerful CUDA-enabled GPUs are generally not available on (compact) mobile devices; (3)
though a large majority of mobile devices are equipped with mobile GPUs, the speed-up achieved
on the mobile GPUs is quite limited when compared to CPU sh1r0 et al. (2015), not to mention the
complexity caused by different mobile GPU architectures; (4) major deep learning frameworks such
as Caffe Jia et al. (2014) and Tensorflow Abadi et al. (2015) only support CPU implementation on
mobile devices currently, and therefore an efficient CPU-friendly model is highly desirable.

However, most of current mobile CPUs cannot meet the needs of deep learning model deployment
because it takes much longer time and higher energy cost to process an image using pre-trained deep
learning models. For example, it takes more than 651ms to recognize an image using GoogleNet on
Samsung S5 (Table 4) with 984mJ energy costs (Table 5). Therefore a question that naturally follows
is: can we develop an efficient deep learning acceleration framework to facilitate deployment of deep
learning service on mobile device?

This problem is challenging due to the fact that the practical solution is highly desirable to support
different practical scenarios by addressing the following challenges (C1–C3).

C1: Minimum accuracy loss. The solution is expected to provide minimum accuracy loss while
provide great speed-up.

C2: Leveraging existing trained deep framework. In order to provide the best deep learning
service, the mechanism is designed to taking advantage of existing state-of-the-art deep learning
architectures (e.g., GoogLeNet and ResNet) instead of training from scratch.

C3: Supporting different deep learning architecture components. The proposed technique
should provide generic framework that can be applied to these popular deep learning models that
may consist of different types of layers. In general, all neural network layers can be grouped into two
categories: tensor layer and non-tensor layer based on whether the layer contains tensor-type param-
eters. For example, fully connected layer and the convolution layer are both tensor-layers since they
contain 2-d and 4-d tensor-type weight parameters, respectively. Pooling layer and LRN layer are
both non-tensor layers because they do not contain any high-order tensor-type weight parameters1.
Therefore, the framework is expected to support both tensor and non-tensor layers optimization.

However, the current solutions for deep learning model acceleration are still quite limited in address-
ing these challenges. The main goal of works (Han et al. (2016b), Li (2013); Kim et al. (2015);
Jiaxiang Wu & Cheng (2016)) is to reduce the model size by approximating the tensor-type layers
using low rank approximation and vector quantization techniques. While they can provide some
acceleration for only fully-connected layers (used in AlexNet, VGGNet), the application scenarios
of these methods are very limited and ineffective because modern deep learning architectures (e.g.,
Inception and ResNet) have removed large fully-connected layers. Moreover, for non-tensor layers
(e.g., normalization and pooling layers) that are generally used for speeding up the network training
and obtaining better generalization performance, none works, to the best of our knowledge, have
discussed how to accelerate the execution process.

To bridge these gaps, this paper proposes DeepRebirth, a new deep learning model acceleration
framework by exploring the sparsity of deep neural network layers to accelerate both non-tensor lay-
ers and tensor layers from two types of rebirth: streaming merging and branch merging. In stream-
ing merging, the new tensor layers are generated by merging non-tensor layers with its neighboring
sparse tensor layers in the feed-forward structure as illustrated in Figure 2, while in branch merg-
ing, the new tensor layers are created by fusing non-tensor banches with the sparse tensor branches
(at the same level) as shown in Figure 3, i.e., the inception module in GoogLeNet (Szegedy et al.
(2014)). The design of DeepRebirth is guided by the key observation:

Non-tensor layers are the major obstacles for real-time mobile CPU execution (Section 2).

Then reducing the execution time on non-tensor layers can greatly reduce the overall model for-
warding time. In order to reduce the execution time, both streaming merging and branch merging

1Other examples of non-tensor layers include dropout layer, normalization layer, softmax layer, etc.

2

Under review as a conference paper at ICLR 2017

Table 1: Percentage of Forwarding Time on Non-tensor Layers

Network Intel x86 Arm Titan X

AlexNet 32.08% 25.08% 22.37%
GoogLeNet 62.03% 37.81% 26.14%
ResNet-50 55.66% 36.61% 47.87%

ResNet-152 49.77% N/A 44.49%
Average 49.89% 33.17% 35.22%

(a) AlexNet (b) GoogLeNet (c) ResNet-50

Figure 1: Time Decomposition for each layer. Non-tensor layers (e.g., dropout, ReLU, LRN, soft-
max, pooling, etc) shown in red color while tensor layers (e.g., convolution, inner-product) shown
in black color.

are applied to merge non-tensor layers into tensor layers. Overall, reducing the execution time on
non-tensor layers can greatly reduce the model forwarding time given the fact that tensor-layer has
been optimized to the minimum as suggested by (Han et al. (2016b), Kim et al. (2015)). Ideally,
we can combine both non-tensor and tensor layer optimization together and further reduce latency
as well as the model size. To summarize, this paper makes the following contributions.

· Our approach is the first work that optimizes non-tensor layers and significantly accelerates a deep
learning model on CPUs while reducing the required runtime-memory since there are less layers in
the reconstructed deep learning model2.

· To address the challenges of (C1–C3), we perform both streaming merging and branch merging
based on the original structure of old layers while the new tensor layers are generated by merging
non-tensor layers with its neighboring sparse tensor layers vertically and horizontally.

· As demonstrated in the experiment, our approach has obtained the state-of-the-art speeding up
on popular deep learning models with negligible accuracy loss. Our proposed method enables
GoogLeNet to achieve 3x-5x speed-up for processing a single image with only 0.4% drop on Top-5
accuracy on ImageNet without any weights compression method. By further applying model com-
pression techniques, we achieve around 65 ms for processing a single image with Top-5 accuracy
of 86.5%. Furthermore, we show that our methods work for state-of-the-art non-tensor layers, e.g.,
batch normalization, in very deep neural network models such as ResNet He et al. (2015).

2 WHAT IS THE IMPACT OF NON-TENSOR LAYERS ON SPEED?

Experimental Settings To give a better understanding of the neural network latency, we evaluate
the time cost of different types of layers within a given network. We measure their latency by using
the time percentage measurement where larger value indicates longer time 3. Our experiment is
carried on different processors including Intel x86 CPU, Arm CPU and Titan X GPU. Along with
different processors, we also use different state-of-the-art networks to evaluate. These networks

2Tensor weights decomposition method such as Tucker Decomposition effectively reduces the model size
(i.e., the number of learned weights) and thus reduce the storage cost on hard drive. However, since the decom-
position methods increase the number of layers of the model, the actual runtime-memory (RAM) cost (which
is much more scarce resource than hard drive storage) can be even larger than the model before decomposition.

3The accumulated percentage for a given network is 100%.

3

Under review as a conference paper at ICLR 2017

include AlexNet (Figure 1a, Krizhevsky et al.), GoogLeNet(Figure 1b, Szegedy et al. (2014)) and
ResNet(Figure 1c, He et al. (2015)). We list the results in Figure 1 and Table 1.

Observations and Insights As demonstrated in the results, for classical deep models (e.g.,
AlexNet), among the non-tensor layers, “LRN” and “Pooling” layers are the major obstacles that
slow-down the model execution. ResNet-50 has abandoned the “LRN” layers by introducing the
batch normalization layer, but the findings remain valid as it takes up more than 25% of the time
on ARM CPU and more than 40% on Intel x86 CPU (in Caffe (Jia et al. (2014)), it was decom-
posed into a “BatchNorm” layer followed by a “Scale” layer as shown in Figure 1c). The time
fraction spent over such layers ranges from 22.37% to 62.03%. Among different types of proces-
sors, non-tensor layers have the largest impact on Intel x86 CPUs, and more specifically 62.03% of
the computing time. On the other hand, though non-tensor layers do not affect the mainstream ARM
CPUs, on average they still cost about 1/3 of the computing time. All these numbers confirm our
intuition: there is a great potential to accelerate the model by optimizing those non-tensor layers.

3 DEEPREBIRTH

This section covers the design of DeepRebirth in three aspects: streaming merging, branching merg-
ing and adapting DeepRebirth to the whole model.

In general deep learning models, the probability distribution of the dataset can be represented by
a large, very sparse deep neural network that is constructed layer after layer. From analyzing the
correlations of the current layer and preceding layers (or parallel layers), we can merge the highly
correlated layers and substitute it as a new “rebirth” layer. This process is similar to viewing the
Inception model as a logical culmination as suggested by Arora et al. (2013).

3.1 STREAMLINE MERGING

For deep network architecture with streamline layer connections, in order to accelerate the execution,
we first identify the layers that have large latency but also have potentials to be merged or processed.
The merging design is motivated by the following two key observations.

• Non-tensor layers are usually following a tensor layer such as convolution layer as shown
in Figure 2.

• Several consecutive layers can be viewed as a blackbox for non-linear transformations,
and therefore this can be replaced by a new tensor-layer by learning the parameters to
approximate the functionality of original several layers. An example is shown in Figure 2.

Method The streamline merging regenerates a new tensor layer (i.e., rebirth layer) by merging non-
tensor layers with its bottom tensor units in the feed-forward structure. After layer-wise regenera-
tion, we retrain the deep neural network model by fine-tuning the parameters of the new generated
layers. There are two streamline merging operations in the proposed scheme. The choice of merging
operation is depending on the type of non-tensor layers.

• Merging Pooling Layer: The pooling layer down-samples feature maps learned from pre-
vious layers. Therefore, to merge a pooling layer to a convolution layer, we remove the
pooling layer and set the stride value of the “merged” convolution layer as the product of
the stride values for both the original pooling layer and the convolution layer. With a larger
stride value for the new “merged” convolution layer, it further reduces the computation
required for executing the new model.

• Merging Non-Pooling Layer: For non-pooling layers such as LRN and batch normalization,
we directly prune those layers from the original deep neural network.

Example Figure 2 illustrates how the optimization works using streamline merging. This is one
representative part in GoogLeNet where the convolution layer conv2/3 × 3 is followed by a LRN
layer conv2/norm2 and a pooling layer poo2/3 × 3 s2 (The ReLU layer which has negligible
latency is retained to keep accuracy). Before merging, the 2 non-tensor layers without a single
learned parameter weight take even more time than running the convolution layer. After merging

4

Under review as a conference paper at ICLR 2017

conv2/3x3
(Convolution)

Tensor:	3x3x64x192
Stride:	1	

conv2/norm2
(LRN)

pool2/3x3_s2
(Pooling)
Stride:	2

Bottom Layers

Top Layers

conv2/3x3_merge
(Convolution)

Tensor:	3x3x64x192
Stride:	2

Bottom Layers

Top Layers

MERGE

69.1 ms

68.4 ms

16.3 ms

153.8 ms 16.6 ms

Input Shape
112x112x64

112x112x192

112x112x192

Output Shape
56x56x192

Input Shape
112x112x64

Output Shape
56x56x192

Figure 2: Streamline Merging: The GoogLeNet example and the running time is measured using
bvlc googlenet model in Caffe on a Samsung Galaxy S5. Left panel: convolution (in green), LRN
(in red), pooling (in red). Right Panel: single convolution layer. The three layers in the left panel
are merged and regenerated as a convolution layer (i.e., rebirth layer) in the right panel.

process them to generate a new rebirth convolution layer conv2/3× 3 merge, the time spent on the
rebirth layer is greatly reduced compare to the original layers.

3.2 BRANCH MERGING

The design of branch merging is motivated by the following key observation. Given the fact that
non-tensor layer requires more time on computation, if we can learn new tensor layers by fusing
non-tensor layers with the tensor units at the same layer level, then the the execution time will be
decreased.

Example One representative unit is the inception module in GoogLeNet. For example as illustrated
in Figure 3, layer “inception 3a” of GoogLeNet has 4 branches: 3 convolution branches take feature
maps from the bottom layer at various scales (1× 1, 3× 3 and 5× 5) and 1 additional 3× 3 pooling
branch Szegedy et al. (2014). The output feature maps of each branch are concatenated as input for
the following top layer.

Method For deep network architecture with parallel branches, the output of each branch constitutes
part of the feature maps as the input for the next layer. We identify non-tensor branches that have
large latency (e.g., the pooling branch in Figure 3). Similar to streamline merging, if we can use a
faster tensor branch to simulate the function of the non-tensor branch by relearning its parameters,
we can achieve clear speed-up.

To merge a non-tensor branch into a tensor branch, we re-create a new tensor layer (i.e., rebirth layer)
by fusing the non-tensor branch and a tensor unit with relatively small latency to output the feature
maps that were originally generated by the non-tensor branch. If the non-tensor branch has a kernel
size larger than 1× 1 (e.g., the 3× 3 pooling branch in Figure 3), the picked tensor branch’s kernel
size should be at least the size of the non-tensor branch. As shown in this figure, we re-learn a new
tensor layer “inception 3a” by merging the 3× 3 pooling branch with the 5× 5 convolution branch
at the same level, and the number of feature maps obtained by the 5 × 5 convolution is increased
from 32 to 64.

Explore Sparsity for Tensor-layer Branch Reducing and Merging

• Reducing: Current deep neural networks usually include convolution branches with 1 × 1
convolution layers (e.g., inception 3a/3x3 reduce in Figure 3) aiming to reduce feature
maps channels. This unit will be processed by a following convolution layer with larger
kernel size. For greater speed-up, we further reduce the number of feature maps generated

5

Under review as a conference paper at ICLR 2017

inception_3a
/1x1

(Convolution)
Tensor:	1x1x192x64

Bottom Layers

Top Layers

MERGE

6.48 ms

inception_3a
/pool

(Pooling)
Kernel_size:	3x3

20.6 ms

6.58 ms

3.68 ms

2.35 ms

1.51 ms

14.0 ms

55.2 ms

Bottom Layers

Top Layers

11.3 ms

2.19 ms

5.23 ms

2.35 ms

inception_3a
/output
(Concat)

inception_3a
/output_new
(Concat)

Input Shape: 56x56x192

Output Shape
56x56x256

Input Shape: 56x56x192

Output Shape
56x56x256

56x56x96 56x56x16 56x56x192 56x56x48 56x56x16

21.1 ms

inception_3a
/3x3_reduce
(Convolution)

Tensor:	1x1x192x96

inception_3a
/3x3

(Convolution)
Tensor:	3x3x96x128

inception_3a
/pool_proj

(Convolution)
Tensor:	1x1x192x32

inception_3a
/3x3_reduce_new
(Convolution)

Tensor:	1x1x192x48

inception_3a
/3x3_merge
(Convolution)

Tensor:	3x3x48x192

inception_3a
/5x5_reduce
(Convolution)

Tensor:	1x1x192x16

inception_3a
/5x5

(Convolution)
Tensor:	5x5x16x32

inception_3a
/5x5_reduce
(Convolution)

Tensor:	1x1x192x16

inception_3a
/5x5_merge
(Convolution)

Tensor:	5x5x16x64

Figure 3: Branch Merging: The GoogLeNet example and the running time is measured using
bvlc googlenet model in Caffe on a Samsung Galaxy S5. Left panel: four branches in parallel,
convolution layer, convolution + convolution, convolution + convolution, convolution + pooling.
Right panel: two branches in parallel, convolution + convolution, convolution + convolution. The
four branches are merged into two branches.

by the 1×1 “reducer”. For layer inception 3a/3x3 reduce, we reduce the number of output
feature maps from 96 to 48.

• Merging: A convolution branch with a smaller kernel size can be merged to a convolution
branch with a larger kernel size. The method is similar to the merging of non-tensor lay-
ers. To keep other layers’ structures in network unchanged, we remove the small-kernel
convolution branch and increase the number of feature maps generated by the large-kernel
convolution layers. For examples, for layer inception 3a/3x3 reduce, we remove the 1× 1
convolution branch and increase the number of feature maps generated by the 3× 3 convo-
lution from 128 to 196.

3.3 ADAPTING DEEPREBIRTH TO OVERALL MODEL

The new generated layer (i.e., rebirth layer) is required to learn the new parameters using fine-
tuning as discussed in Yosinski et al. (2014); Razavian et al. (2014). We use standard initialization
methods to (e.g., Xavier Glorot & Bengio (2010) initialization) to initialize the parameters in the
new layer while keeping the weights of other layers unchanged. In our optimization procedure, we
set the learning rate of the new learning layers 10 times over those in other layers. The proposed
optimization scheme is applied from the bottom layer to the top layer. It is also possible to learn
multiple rebirth layers at the same time (we merge and fine-tune 3 sequential inception layers 4b-4d
together for GoogLeNet) or merge layers in orders other than bottom-to-top.

4 EVALUATION

4.1 GOOGLENET

To evaluate the performance of DeepRebirth, we performed a comprehensive evaluation using iffer-
ent optimization approaches on top of GoogLeNet. We use Caffe’s GoogLeNet implementation (i.e.,
bvlc googlenet) with its pre-trained model weights. Then we apply the proposed DeepRebirth opti-
mization scheme to accelerate the running speed of GoogLeNet, which is denoted as “GoogLeNet-
Merge” (see structure in appendix). After non-tensor layer optimization (streamline and branch
merging), we further apply tucker decomposition approach (Kim et al. (2015)) to reduce the model
size (i.e., the number of learned weights) by 50%, represented as “GoogLeNet-Merge-Tucker”. In
addition, we directly employ tucker decomposition method to compress original GoogLeNet. This

6

Under review as a conference paper at ICLR 2017

Table 2: GoogLeNet Accuracy on each layer after merging

Step Merged Layer(s) Top-5 Accuracy

0 N/A 88.89%
1 conv1 88.73%
2 conv2 88.82%
3 inception 3a 88.50%
4 inception 3b 88.27%
5 inception 4a 88.60%
6 inception 4b-4d 88.61%
7 inception 4e 88.43%
8 inception 5a 88.41%
9 inception 5b 88.43%

Tucker Decomposition N/A 86.54%

is indicated as “GoogLeNet-Tucker”. Thus, we have 4 models to compare, namely GoogLeNet,
GoogLeNet-Merge, GoogLeNet-Tucker and GoogLeNet-Merge-Tucker.

4.1.1 ACCURACY

Since one of our major goals is to propose a new acceleration approach which can speed up the
model running time with satisfied accuracy (in constrast to the original model), we list the accuracy
changes along with the optimization steps conducted on ImageNet ILSVRC-2012 validation dataset
as indicated in Table 2. During the whole optimization procedure of model training, we set the
base learning rate for the re-generated layer as 0.01 (the rest layers are 0.001). We apply stochastic
gradient descent training method (Bottou (2012)) to learn the parameters with a batch size of 32.
During our training phase, we set 40,000 as the step size together with 0.1 set for gamma value
and 0.9 for momentum parameter. At each step, the model generally converges at around 90,000
iterations (2 epochs).

The result indicates that the proposed method has almost negligible impact on the model accu-
racy, and the accuracy even increases at certain step (e.g., step 5). This indicates that “the new-
born” layers perfectly simulate the functionalities of previous non-tensor layers before optimiza-
tion. By applying tucker decomposition method on the merged model to reduce the weights by half
(GoogLeNet-Merge-Tucker), we observer that there is a larger drop on accuracy (around 2%). How-
ever, directly applying tucker decomposition method (GoogLeNet-Tucker) to reduce the GoogLeNet
weights to a half drops the top-5 accuracy to 85.7%. These results imply that our method performs
reasonable well even after streamline and branch layer mergings.

4.1.2 SPEED-UP

To evaluate and compare the latency of different optimization approaches, we evaluate the the layer-
wise running speed on a Samsung Galaxy S5 smart phone which has an ARMv7 quad-core CPU @
2.5 GHz and 2 GB RAM. We use Caffe’s integrated benchmark module to test the model forwarding
time. Each test run includes 50 subtests with a random input. We try 10 test runs on each compared
model and report the best test run in terms of forwarding time. During the whole experiment, we
turn on phone to the airplane mode and close all other apps.

As is demonstrated in Table 3, we observe that for the best case scenario, GoogLeNet-Merge is
3x faster than GoogLeNet and for the worst case scenario, GoogLeNet takes around 950 ms for a
single forwarding while GoogLeNet-Merge takes only around 250 ms, which is almost 4x speed-
up. This is because the original GoogLeNet model has too many small layers and this results in
performance fluctuation. The same finding is also sharply observed in Kim et al. (2015) . The Tucker
Decomposition method further reduces the computation for around 50% at the cost of around 2%
accuracy loss. On the other hand, directly applying tucker decomposition on tensor layers doesn’t
show any significant acceleration.

7

Under review as a conference paper at ICLR 2017

Table 3: Breakdown of GoogLeNet forwarding time cost using different methods on each layer.

Device GoogLeNet GoogLeNet
-Tucker

GoogLeNet
-Merge

GoogLeNet
-Merge-Tucker

conv1 94.92 ms 87.85 ms 8.424 ms 6.038 ms
conv2 153.8 ms 179.4 ms 16.62 ms 9.259 ms

inception 3a 55.23 ms 85.62 ms 21.17 ms 9.459 ms
inception 3b 98.41 ms 66.51 ms 25.94 ms 11.74 ms
inception 4a 30.53 ms 36.91 ms 16.80 ms 8.966 ms
inception 4b 32.60 ms 41.82 ms 20.29 ms 11.65 ms
inception 4c 46.96 ms 30.46 ms 18.71 ms 9.102 ms
inception 4d 36.88 ms 21.05 ms 24.67 ms 10.05 ms
inception 4e 48.24 ms 32.19 ms 28.08 ms 14.08 ms
inception 5a 24.64 ms 14.43 ms 10.69 ms 5.36 ms
inception 5b 24.92 ms 15.87 ms 14.58 ms 6.65 ms

loss3 3.014 ms 2.81 ms 2.97 ms 2.902 ms
Total 651.4 ms 614.9 ms (1.06x) 210.6 ms (3.09x) 106.3 ms (6.13x)

Table 4: Execution time using different methods (including SqueezeNet) on different mobile devices

Device GoogLeNet GoogLeNet
-Tucker

GoogLeNet
-Merge

GoogLeNet
-Merge-Tucker SqueezeNet

Moto E 1168.8 ms 897.9 ms 406.7 ms 213.3 ms 291.4 ms
Samsung Galaxy S5 651.4 ms 614.9 ms 210.6 ms 106.3 ms 136.3 ms
Samsung Galaxy S6 424.7 ms 342.5 ms 107.7 ms 65.34 ms 75.34 ms
Macbook Pro (CPU) 91.77 ms 78.22 ms 23.69 ms 15.18 ms 17.63 ms

Titan X 10.17 ms 10.74 ms 6.57 ms 7.68 ms 3.29 ms

Not limited to mobile platform of Samsung Galaxy S5, we also apply the speed-up schemes on
other popular processors. These mobile devices include (1) Moto E: a low-end mobile ARM CPU,
(2) Samsung Galaxy S5: a middle-end mobile ARM CPU, (3) Samsung Galaxy S6: a high-end
mobile ARM CPU, (4) Macbook Pro: an Intel x86 CPU, and (5) Titan X: a powerful server GPU.
We demonstrate the experimental results in Table 4. The promising result indicates that the proposed
method achieves significant speed-up on various types of CPUs. Even on the low-end mobile CPU
(i.e., Moto E), around 200 ms model forwarding time is achieved by further applying tensor weights
compression method. Finally, we compare the proposed approach with SqueezeNet (Iandola et al.
(2016)) which is a state-of-the-art compressed CNN model. We are very excited to see that our
optimization approach can obtain faster speed with higher accuracy compared to SqueezeNet(80%
for Top-5)’s performance on all CPU platforms as listed in Table 4.

4.1.3 ENERGY, STORAGE AND RUNTIME-MEMORY COST

We measure the energy cost of each compared model using PowerTutor Android app (Zhang et al.
(2010)) on Samsung Galaxy S5. The original GoogLeNet consumes almost 1 Joule per image
while GoogLeNet-Merge consumes only 447 mJ. Applying tucker decomposition further reduces
the energy cost to only 1/4 at 226 mJ .

When deploying to the mobile devices, we remove the loss1 and loss2 branches from the trained
models so that the storage cost of each model is reduced by 24.33 MB. GoogLeNet-Merge which
achieves significant speed-up does not save much storage cost compared to the original GoogLeNet
model. However, for modern mobile devices, storage is not a scarce resource (e.g., Samsung Galaxy
S5 has 16 GB or 32 GB storage), so a 20 MB deep learning model is “affordable” on mobile devices.
Meanwhile, we can always perform the tensor weights compression method to further reduce the
storage cost.

8

Under review as a conference paper at ICLR 2017

Table 5: GoogLeNet Execution Storage vs. Engery vs. Runtime-Memory Cost

Model Energy Storage Runtime Memory Max Batch Size
on Titan X

GoogLeNet 984 mJ 26.72 MB 33.2 MB 350
GoogLeNet-Tucker 902 mJ 14.38 MB 35.8 MB 323
GoogLeNet-Merge 447 mJ (2.2x) 23.77 MB 13.2 MB 882 (2.52x)

GoogLeNet-Merge-Tucker 226 mJ (4.4x) 11.99 MB 14.8 MB 785 (2.24x)
SqueezeNet 288 mJ 4.72 MB 36.5 MB 321

Table 6: AlexNet Result (Accuracy vs. Speed vs. Energy cost)

Step Merged Layer(s) Top-5 Accuracy Speed-up Energy Cost

0 N/A 80.03% 445 ms 688 mJ
1 conv1+norm1 → conv1 79.99% 343 ms (1.29x) 555 mJ (1.24x)
2 conv2+norm2 → conv2 79.57% 274 ms (1.63x) 458 mJ (1.51x)

Another benefit of layer merging is run-time memory saving. The generated GoogLeNet-Merge
model reduces the number of layers and consumes only 13.2 MB to process one image. This feature
is also very useful for the cloud based deep learning service which can process a much larger batch
at one run. As shown in table 5, one Titan X GPU can run a batch size of 882 with the GoogLeNet-
Merge model while the original GoogLeNet can only allow a batch size of 350. On the other hand,
SqueezeNet though has much less trained parameters, it has much larger run-time memory impact
due to the increased number of layers.

4.2 ALEXNET AND RESNET

To further analyze the generality of proposed DeepRebirth acceleration framework, besides
GoogLeNet, we also apply the proposed framework to other popular deep neural structures: AlexNet
(Krizhevsky et al.) and ResNet (He et al. (2015)). Note that we did not apply tensor weights com-
pression to those two models which can further reduce the model forwarding latency.

First, we study the classical AlexNet model. We apply streamline merging approach to re-generate
new layers by merging the first two convolution layers followed by LRN layers. We illustrate the re-
sult in Table 6. This indicates that by applying merging to the first two layers, the model forwarding
time of AlexNet is reduced from 445 ms to 274 ms on Samsung Galaxy S5, and the Top-5 accuracy
is slightly dropped from 80.03% to 79.57%.

We also apply the acceleration scheme to the state-of-the-art ResNet model. In the experiment, we
use the popular 50-layer ResNet-50 model as baseline. We mainly apply the acceleration framework
to conv1 and res2a layers (res2a has 2 branches; one branch has 1 convolution layer and another
branch has 3 convolution layers). We present the result in Table 7. The time latency on Samsung
Galaxy S5 for the processed layers (i.e., conv1 and res2a) is reduced from 189 ms to 104 ms. More-
over, the run-time memory cost is reduced by 2.21x. The accuracy is only slightly reduced.

Table 7: ResNet (conv1-res2a) Result (Accuracy vs. Speed up).

Step Merged Layer(s) Top-5 Accuracy Speed-up Runtime-Mem Batch32

0 N/A 92.36% 189 ms 2505 MB
1 conv1 92.13% 162 ms (1.17x) 2113 MB (1.19x)
2 res2a branch1 92.01% 140 ms (1.35x) 1721 MB (1.46x)
3 res2a branch2a-2c 91.88% 104 ms (1.82x) 1133 MB (2.21x)

9

Under review as a conference paper at ICLR 2017

5 RELATED WORK

Reducing the model size and accelerating the running speed are two general ways to facilitate the
deployment of deep learning models on mobile devices. Many efforts have been spent on improving
the model size. In particular, most works focus on optimizing tensor-layers to reduce the model
size due to the high redundancy in the learned parameters in tensor layers of a given deep model.
Vanhoucke et al. (2011) proposed a fixed-point implementation with 8-bit integer activation to re-
duce the number of parameter used in the deep neural network while Gong et al. (2014) applied
vector quantization to compressed deep convnets. These approaches, however, mainly focus on
compressing the fully connected layer without considering the convolutional layers. To reduce the
parameter size, Denton et al. (2014) applied the low-rank approximation approach to compress the
neural networks with linear structures. Afterwards, hashing function was utilized by Chen et al.
(2015) to reduce model sizes by randomly grouping connection weights. More recently, Han et al.
(2016b) proposed to effectively reduce model size and achieve speed-up by the combination of prun-
ing, huffman coding and quantization. However, the benefits can only be achieved by running the
compressed model on a specialized processor Han et al. (2016a). In general, reducing the model size
can help deployment of deep learning models, this, however, does not necessarily bring significant
speed up for running deep learning models. Compared to these works, instead of reducing model
size, DeepRebirth provides a generic framework to accelerate the running speed that can be applied
for different deep learning architectures on different low-level hardware (CPU, GPU, etc).

In order to improve the network running efficiency, some scalable networks have been proposed
by balancing the running speed and the accuracy. Rastegari et al. (2016) designed a binary deep
learning network (called XNOR-Net) where both the network weight and the input can be binarized
for memory and computational saving. However, this network design depressed the accuracy greatly.
The top-5 accuracy obtained by this framework is reduced by more than 10% for ResNet-18 model
along with 2x speed-up. Another popular newly designed small model -SqueezeNet Iandola et al.
(2016) becomes widely used for its much smaller memory cost and increased speed. However,
the near-AlexNet accuracy is far below the state-of-the art performance. Compared with these two
newly networks, our approach has much better accuracy with more significant acceleration.

Springenberg et al. (2014) shows that the conv-relu-pool substructure may not be necessary for a
neural network architecture. The authors find that max-pooling can simply be replaced by another
convolution layer with increased stride without loss in accuracy. Different from this work, Deep-
Rebirth replaces a complete substructure (e.g., conv-relu-pool, conv-relu-LRN-pool) with a single
convolution layer, and aims to speed-up the model execution on a mobile device. In addition, our
work fine-tunes a trained network by relearning the merged “rebirth” layers and does not require to
train from scratch.

6 CONCLUSION

We have proposed DeepRebirth acceleration framework which can speed up the neural networks
with satisfactory accuracy. Our method operates by re-generating new tensor layers from optimiz-
ing the non-tensor layers and their neighboring units. Moreover, as a generic method, DeepRebirth
is compatible with state-of-the-art deep models like GoogleNet and ResNet, where most parameter
weight compression methods failed. By applying DeepRebirth at different deep learning architec-
tures, we obtain the significant speed-up on different processors, especially on mobile CPUs. This
will greatly facilitate the deployment of deep learning models on mobile phones and make it possible
to provide more smart and intelligent services in the new AI tide.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning

10

Under review as a conference paper at ICLR 2017

on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds for learning some deep
representations. CoRR, abs/1310.6343, 2013. URL http://arxiv.org/abs/1310.6343.

Lon Bottou. Stochastic Gradient Tricks, volume 7700, pp. 430445. Springer, Jan-
uary 2012. URL https://www.microsoft.com/en-us/research/publication/
stochastic-gradient-tricks/.

Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. CoRR, abs/1504.04788, 2015.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Advances in Neural Informa-
tion Processing Systems, pp. 1269–1277, 2014.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-
ral networks. In In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS10). Society for Artificial Intelligence and Statistics, 2010.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: Efficient inference engine on compressed deep neural network. International Confer-
ence on Computer Architecture (ISCA), 2016a.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. International Conference on Learning
Representations (ICLR), 2016b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size.
arXiv:1602.07360, 2016.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. arXiv preprint arXiv:1408.5093, 2014.

Yuhang Wang Qinghao Hu Jiaxiang Wu, Cong Leng and Jian Cheng. Quantized convolutional neural
networks for mobile devices. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. CoRR,
abs/1511.06530, 2015. URL http://arxiv.org/abs/1511.06530.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems, pp. 2012.

Jinyu Li. Restructuring of deep neural network acoustic models with sin-
gular value decomposition. In Interspeech, January 2013. URL
https://www.microsoft.com/en-us/research/publication/
restructuring-of-deep-neural-network-acoustic-models-with-singular-value-decomposition/.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, 2016.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN features
off-the-shelf: an astounding baseline for recognition. CoRR, abs/1403.6382, 2014. URL http:
//arxiv.org/abs/1403.6382.

11

http://tensorflow.org/
http://arxiv.org/abs/1310.6343
https://www.microsoft.com/en-us/research/publication/stochastic-gradient-tricks/
https://www.microsoft.com/en-us/research/publication/stochastic-gradient-tricks/
http://arxiv.org/abs/1511.06530
https://www.microsoft.com/en-us/research/publication/restructuring-of-deep-neural-network-acoustic-models-with-singular-value-decomposition/
https://www.microsoft.com/en-us/research/publication/restructuring-of-deep-neural-network-acoustic-models-with-singular-value-decomposition/
http://arxiv.org/abs/1403.6382
http://arxiv.org/abs/1403.6382

Under review as a conference paper at ICLR 2017

sh1r0, zif520, and strin. BWorld Robot Control Software. https://github.com/sh1r0/
caffe-android-lib/issues/23, 2015. [Online; accessed 19-July-2016].

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. Striving
for simplicity: The all convolutional net. CoRR, abs/1412.6806, 2014. URL http://arxiv.
org/abs/1412.6806.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
CoRR, abs/1409.4842, 2014. URL http://arxiv.org/abs/1409.4842.

Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of neural networks on
cpus. 2011.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? CoRR, abs/1411.1792, 2014. URL http://arxiv.org/abs/1411.
1792.

Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick, Zhuoqing Morley
Mao, and Lei Yang. Accurate online power estimation and automatic battery behavior based
power model generation for smartphones. In Proceedings of the Eighth IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis, CODES/ISSS ’10, pp.
105–114, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-905-3. doi: 10.1145/1878961.
1878982. URL http://doi.acm.org/10.1145/1878961.1878982.

Appendices

12

https://github.com/sh1r0/caffe-android-lib/issues/23
https://github.com/sh1r0/caffe-android-lib/issues/23
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1411.1792
http://doi.acm.org/10.1145/1878961.1878982

Under review as a conference paper at ICLR 2017

GoogleNet-Merge

Enter your network definition here.

Use Shift+Enter to update the visualization.

name: "GoogleNet-Merge"

layer {

 name: "data"

 type: "Data"

 top: "data"

 top: "label"

 include {

 phase: TRAIN

 }

 transform_param {

 mirror: true

 crop_size: 224

 mean_value: 104

 mean_value: 117

 mean_value: 123

 }

 data_param {

 source: "/userdata/IMAGENET/ilsvrc12_train_lmdb_encoded"

 batch_size: 1

 backend: LMDB

 }

}

layer {

 name: "data"

 type: "Data"

 top: "data"

 top: "label"

 include {

 phase: TEST

 }

 transform_param {

 mirror: false

 crop_size: 224

 mean_value: 104

 mean_value: 117

 mean_value: 123

 }

 data_param {

 source: "/userdata/IMAGENET/ilsvrc12_val_lmdb_encoded"

 batch_size: 50

 backend: LMDB

 }

}

layer {

 name: "conv1/7x7_s2"

 type: "Convolution"

 bottom: "data"

 top: "conv1/7x7_s2"

 param {

 lr_mult: 1

 decay_mult: 1

 }

 param {

 lr_mult: 2

 decay_mult: 0

 }

 convolution_param {

 num_output: 64

 pad: 3

 kernel_size: 7

 stride: 4

 weight_filler {

 type: "xavier"

 }

 bias_filler {

 type: "constant"

 value: 0.2

 }

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

data

conv1/7x7_s 2

conv1/relu_7x7

conv 2/3x3_reduce

conv2/relu_3x3_reduce

conv2/3x3_merge

label

conv2/3x3

conv2/3x3_merge_relu

inception_3a/5x5_reduce

inception_3a/relu_5x5_reduce

inception_3a/5x5_new

inception_3a/3x3_reduce_new

inception_3a/3x3_reduce

inception_3a/3x3_new

inception_3a/3x3

inception_3a/relu_3x3_new

inception_3a/5x5

inception_3a/relu_5x5_new

inception_3a/output

inception_3b/5x5_reduce

inception_3b/relu_5x5_reduce

inception_3b/5x5_new

inception_3b/3x3_reduce

inception_3b/relu_3x3_reduce

inception_3b/3x3_new

inception_3b/3x3

inception_3b/relu_3x3_new

inception_3b/5x5

inception_3b/relu_5x5_new

inception_3b/output_new

pool3/3x3_s2

inception_4a/5x5_reduce

inception_4a/relu_5x5_reduce

inception_4a/5x5_new
inception_4a/3x3_reduce

inception_4a/relu_3x3_reduce

inception_4a/3x3

inception_4a/relu_3x3

inception_4a/1x1

inception_4a/relu_1x1

inception_4a/5x5

inception_4a/relu_5x5_new

inception_4a/output

inception_4b/5x5_reduce

inception_4b/relu_5x5_reduce

inception_4b/5x5_new
inception_4b/3x3_reduce

inception_4b/relu_3x3_reduce

inception_4b/3x3

inception_4b/relu_3x3

inception_4b/1x1

inception_4b/relu_1x1

loss1/ave_pool

loss1/conv

loss1/relu_conv

loss1/fc

loss1/relu_fc

loss1/drop_fc

loss1/classifier

loss1/loss

loss1/loss 1

inception_4b/5x5

inception_4b/relu_5x5_new

inception_4b/output

inception_4c/5x5_reduce

inception_4c/relu_5x5_reduce

inception_4c/5x5_new
inception_4c/3x3_reduce

inception_4c/relu_3x3_reduce

inception_4c/3x3

inception_4c/relu_3x3

inception_4c/1x1

inception_4c/relu_1x1

inception_4c/5x5

inception_4c/relu_5x5_new

inception_4c/output

inception_4d/5x5_reduce

inception_4d/relu_5x5_reduce

inception_4d/5x5_new
inception_4d/3x3_reduce

inception_4d/relu_3x3_reduce

inception_4d/3x3

inception_4d/relu_3x3

inception_4d/1x1

inception_4d/relu_1x1

inception_4d/5x5

inception_4d/relu_5x5_new

inception_4d/output

inception_4e/5x5_reduce

inception_4e/relu_5x5_reduce

inception_4e/5x5_new

inception_4e/3x3_reduce_new

inception_4e/1x1

inception_4e/relu_1x1

loss2/ave_pool

loss2/conv

loss2/relu_conv

loss2/fc

loss2/relu_fc

loss2/drop_fc

loss2/classifier

loss2/loss

loss2/loss1

inception_4e/3x3_reduce

inception_4e/3x3_new

inception_4e/3x3

inception_4e/relu_3x3_new

inception_4e/5x5

inception_4e/relu_5x5_new

inception_4e/output

pool4/3x3_s2

inception_5a/5x5_reduce

inception_5a/relu_5x5_reduce

inception_5a/5x5_new

inception_5a/3x3_reduce_new

inception_5a/1x1

inception_5a/relu_1x1

inception_5a/3x3_reduce

inception_5a/3x3_new

inception_5a/3x3

inception_5a/relu_3x3_new

inception_5a/5x5

inception_5a/relu_5x5_new

inception_5a/output

inception_5b/5x5_reduce

inception_5b/relu_5x5_reduce

inception_5b/5x5_new

inception_5b/3x3_reduce_new

inception_5b/1x1

inception_5b/relu_1x1

inception_5b/3x3_reduce

inception_5b/3x3_new

inception_5b/3x3

inception_5b/relu_3x3_new

inception_5b/5x5

inception_5b/relu_5x5_new

inception_5b/output

pool5/7x7_s1

pool5/drop_7x7_s1

loss3/class ifier

loss3/loss3

Netscope http://ethereon.github.io/netscope/#/editor

1 of 1 12/16/2016 12:35 AM

Figure 4: An illustration of GoogleNet-Merge’s structure in details.

13

	Introduction
	What is the impact of non-tensor layers on speed?
	DeepRebirth
	Streamline Merging
	Branch Merging
	Adapting DeepRebirth to overall model

	Evaluation
	GoogLeNet
	Accuracy
	Speed-Up
	Energy, Storage and Runtime-Memory Cost

	AlexNet and ResNet

	Related Work
	Conclusion
	Appendices

