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ABSTRACT

Stochastic gradient descent (SGD) is a well-known method for regression and
classification tasks. However, it is an inherently sequential algorithm — at each
step, the processing of the current example depends on the parameters learned
from the previous examples. Prior approaches to parallelizing SGD, such as HOG-
WILD! and ALLREDUCE, do not honor these dependences across threads and thus
can potentially suffer poor convergence rates and/or poor scalability. This paper
proposes SYMSGD, a parallel SGD algorithm that retains the sequential seman-
tics of SGD in expectation. Each thread in this approach learns a local model
and a probabilistic model combiner that allows the local models to be combined
to produce the same result as what a sequential SGD would have produced, in
expectation. This SYMSGD approach is applicable to any linear learner whose
update rule is linear. This paper evaluates SYMSGD’s accuracy and performance
on 9 datasets on a shared-memory machine shows up-to 13× speedup over our
heavily optimized sequential baseline on 16 cores.

1 INTRODUCTION

Stochastic Gradient Descent (SGD) is an effective method for many regression and classification
tasks. It is a simple algorithm with few hyper-parameters and its convergence rates are well under-
stood both theoretically and empirically. However, its performance scalability is severely limited by
its inherently sequential computation. SGD iteratively processes its input dataset where the compu-
tation at each iteration depends on the model parameters learned from the previous iteration.

Current approaches for parallelizing SGD do not honor this inter-step dependence across threads.
Each thread learns a local model independently and combine these models in ways that can break
sequential behavior. For instance, threads in HOGWILD! Recht et al. (2011) racily update a shared
global model without holding any locks. In parameter-server Li et al. (2014a), each thread (or ma-
chine) periodically sends its model deltas to a server that applies them to a global model. In ALLRE-
DUCE Agarwal et al. (2014), threads periodically reach a barrier where they compute a weighted-
average of the local models. Although these asynchronous parallel approaches reach the optimal
solution eventually, they can produce a model that is potentially different from what a sequential
SGD would have produced after processing a certain number of examples. Our experiments indi-
cate that this makes their convergence rate slower than sequential SGD in terms of total number
of examples studied. Our experiments show that all these algorithms either do not scale or their
accuracy on the same number of examples falls short of a sequential baseline.

To address this problem, this paper presents SYMSGD, a parallel SGD algorithm that seeks to retain
its sequential semantics. The key idea is for each thread to generate a sound combiner that allows
the local models to be combined into a model that is the same as the sequential model. This paper
describes a method for generating sound combiners for a class of SGD algorithms in which the
inter-step dependence is linear in the model parameters. This class includes linear regression, linear
regression with L2 regularization, and polynomial regression. While logistic regression is not in this
class, our experiments show that linear regression performs equally well in classification tasks as
logistic regression for the datasets studied in this paper. Also, this approach works even if the SGD
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Figure 1: Convex error function for a two-dimensional feature space.

computation is non-linear on the input examples and other parameters such as the learning rate; only
the dependence on model parameters has to be linear.

Generating sound combiners can be expensive. SYMSGD uses random projection techniques to
reduce this overhead but still retaining sequential semantics in expectation. We call this approach
probabilistically sound combiners. Even though SYMSGD is expected to produce the same answer
as the sequential SGD, controlling the variance introduced by the random projection requires care
— a large variance can result in reduced accuracy. This paper describes the factors that affect this
variance and explores the ensuing design trade-offs.

The resulting algorithm is fast, scales well on multiple cores, and achieves the same accuracy as
sequential SGD on sparse and dense datasets. When compared to our optimized sequential baseline,
SYMSGD achieves a speedup of 3.5× to 13× on 16 cores, with the algorithm performing better
for denser datasets. Moreover, the cost of computing combiners can be efficiently amortized in a
multiclass regression as a single combiner is sufficient for all of the classes. Finally, SYMSGD (like
ALLREDUCE) is deterministic, producing the same result for a given dataset, configuration, and
random seed. Determinism greatly simplifies the task of debugging and optimizing learning.

2 SOUND AND PROBABILISTIC MODEL COMBINERS

Stochastic gradient descent (SGD) is a robust method for finding the parameters of a model that
minimize a given error function. Figure 1 shows an example of a (convex) error function over two
dimensions x and y reaching the minimum at parameter w∗. SGD starts from some, not necessarily
optimal, parameter wg (as shown in Figure 1), and repeatedly modifies w by taking a step along the
gradient of the error function for a randomly selected example at the currentw. The magnitude of the
step is called the learning rate and is usually denoted by α. The gradient computed from one example
is not necessarily the true gradient at w. Nevertheless, SGD enjoys robust convergence behavior
by moving along the “right” direction over a large number of steps. This is shown pictorially in
Figure 1, where SGD processes examples in dataset D1 to reach w1 from wg . Subsequently, SGD
starts from w1 and processes a different set D2 to reach wh. There is a clear dependence between
the processing ofD1 and the processing ofD2 — the latter starts from w1, which is only determined
after processing D1. Our goal is to parallelize SGD despite this dependence.

State of the art parallelization techniques such as HOGWILD! and ALLREDUCE approach this prob-
lem by processing D1 and D2 starting from the same model wg (let us assume that there only two
processors for now), and respectively reaching w1 and w2. Then, they combine their local models
into a global model, but do so in an ad-hoc manner. For instance, ALLREDUCE computes a weighted
average of w1 and w2, where the per-feature weights are chosen so as to prefer the processor that
has larger update for that feature. This weighted average is depicted pictorially as wa. Similarly, in
HOGWILD!, the two processors race to update the global model with their respective local model
without any locking. (HOGWILD! performs this udpate after every example, thus the size of D1 and
D2 is 1.) Both approaches do not necessarily reach wh, the model that a sequential SGD would have
reached on D1 and D2. While SGD is algorithmically robust to errors, such ad-hoc combinations
can result in slower convergence or poor performance, as we demonstrate in Section 4.

Sound Combiner: The goal of this paper is to soundly combine local models. Looking at Figure 1,
a sound combiner combines local models w1 and w2, respectively generated from datasets D1 and
D2, into a global model wh that is guaranteed to be the same as the model achieved by the sequential
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SGD processing D1 and then D2. In effect, a sound combiner allows us to parallelize the sequential
computation without changing its semantics.

If we look at the second processor, it starts its computation at wg , while in a sequential execution it
would have started at w1, the output of the first processor. To obtain sequential semantics, we need
to “adjust” its computation from wg to w1. To do so, the second processor performs its computation
starting fromwg +∆w, where ∆w is an unknown symbolic vector. This allows the second processor
to both compute a local model (resulting from the concrete part) and a sound combiner (resulting
from the symbolic part) that accounts for changes in the initial state. Once both processors are done
learning, second processor finds wh by setting ∆w to w1 − wg where w1 is computed by the first
processor. This parallelization approach of SGD can be extended to multiple processors where all
processor produce a local model and a combiner (except for the first processor) and the local models
are combined sequentially using the combiners.

When the update to the model parameters is linear in a SGD computation, then the dependence on the
unknown ∆w can be concisely represented by a combiner matrix, as formally described in Section 3.
Many interesting machine learning algorithms, such as linear regression, linear regression with L2
regularization, and polynomial regression already have linear update to the model parameters (but
not necessarily linear on the input example).

Probabilistically Sound Combiner: The main problem with generating a sound combiner is that
the combiner matrix has as many rows and columns as the total number of features. Thus, it can
be effectively generated only for datasets with modest number of features. Most interesting ma-
chine learning problems involve learning over tens of thousands to billions of features, for which
maintaining a combiner matrix is clearly not feasible.

We solve this problem through dimensionality reduction. Johnson-Lindenstrauss (JL) lemma John-
son & Lindenstrauss (1984) allows us to project a set of vectors from a high-dimensional space to
a random low-dimensional space while preserving distances. We use this property to reduce the
size of the combiner matrix without losing the fidelity of the computation — our parallel algorithm
produces the same result as the sequential SGD in expectation.

Of course, a randomized SGD algorithm that generates the exact result in expectation is only useful
if the resulting variance is small enough to maintain accuracy and the rate of convergence. We
observe that for the variance to be small, the combiner matrix should have small singular values.
Interestingly, the combiner matrix resulting from SGD is dominated by the diagonal entries as the
learning rate has to be small for effective learning. We use this property to perform the JL projection
only after subtracting the identity matrix. Also, other factors that control the singular values are
the learning rate, number of processors, and the frequency of combining local models. This paper
explores this design space and demonstrates the feasibility of efficient parallelization of SGD that
retains the convergence properties of sequential SGD while enjoying parallel scalability.

3 PARALLEL SYMSGD ALGORITHM

Consider a training dataset (Xn×f , yn×1), where f is the number of features, n is the number of
examples in the dataset, the ith row of matrix X , Xi, represents the features of the ith example, and
yi is the dependent value (or label) of that example. A linear model seeks to find a

w∗ = arg min
w∈Rf

n∑
i=0

Q(Xi · w, yi)

that minimizes an error function Q. For linear regression, Q(Xi · w, yi) = (Xi · w − yi)2. When
(Xi, yi) is evident from the context, we will simply refer to the error function as Qi(w).

SGD iteratively finds w∗ by updating the current model w with a gradient of Qr(w) for a randomly
selected example r. For the linear regression error function above, this amounts to the update

wi = wi−1 − α∇Qr(wi−1) = wi−1 − α(Xr · wi−1 − yr)XT
r (1)

Here, α is the learning rate that determines the magnitude of the update along the gradient. As it
is clear from this equation, wi is dependent on wi−1 which creates a loop-carried dependence and
consequently makes parallelization of SGD across iterations using naı̈ve approaches impossible.
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The complexity of SGD for each iteration is as follows. Assume thatXr has z non-zeros. Therefore,
the computation in Equation 1 requires O(z) amount of time for the inner product computation,
Xr ·wi−1, and the sameO(z) amount of time for scalar-vector multiplication, α(Xr ·wi−1−yr)XT

r .
If the updates to the weight vector happen in-place meaning thatwi andwi−1 share the same memory
location, the computation in Equation 1 takes O(z) amount of time.

3.1 SYMBOLIC STOCHASTIC GRADIENT DESCENT

This section explains a new approach to parallelize the SGD algorithm despite its loop-carried de-
pendence. As shown in Figure 1, the basic idea is to start each processor (except the first) on a
concrete model w along with a symbolic unknown ∆w that captures the fact that the starting model
can change based on the output of the previous processor. If the dependence on ∆w is linear during
an SGD update, which is indeed the case for linear regression, then the symbolic dependence on ∆w
on the final output can be captured by an appropriate matrix Ma→b that is a function of the input
examples Xa, . . . , Xb processed (ya, . . . , yb do not affect this matrix). Specifically, as Lemma A.1
in the Appendix shows, this combiner matrix is given by

Ma→b =

a∏
i=b

(I − αXT
i ·Xi) (2)

In effect, the combiner matrix above is the symbolic representation of how a ∆w change in the input
will affect the output of a processor. Ma→b is referred by M when the inputs are not evident.

The parallel SGD algorithm works as follows (see Figure 1). In the learning phase, each processor
i starting from w0, computes both a local model li and a combiner matrix Mi. In a subsequent
reduction phase, each processor in turn computes its true output using

wi = li +Mi · (wi−1 − w0) (3)

Lemma A.1 ensures that this combination of local models will produce the same output as what
these processors would have generated had they run sequentially. We call such combiners sound.

One can compute a sound model combiner for other SGD algorithms provided the loop-carried
dependence on w is linear. In other words, there should exist a matrix Ai and vector bi in iteration i
such that wi = Ai · wi−1 + bi. Note that Ai and bi can be nonlinear in terms of input datasets.

3.2 DIMENSIONALITY REDUCTION OF A SOUND COMBINER

The combiner matrixM generate above can be quite large and expensive to compute. The sequential
SGD algorithm maintains and updates the weight vector w, and thus requires O(f) space and time,
where f is the number of features. In contrast, M is a f × f matrix and consequently, the space and
time complexity of parallel SGD is O(f2). In practice, this would mean that we would need O(f)
processors to see constant speedups, an infeasible proposition particularly for datasets that can have
thousands if not millions of features.

SYMSGD resolves this issue by projecting M into a smaller space while maintaining its fidelity.
This projection is inspired by the Johnson-Lindenstrauss (JL) lemma Johnson & Lindenstrauss
(1984) and follows the treatment of Achlioptas Achlioptas (2001).
Lemma 3.1. 1 Let A be a random f × k matrix with

aij = dij/
√
k

where aij is the element of A at the ith row and jth column and dij is independently sampled from
a random distribution D with IE[D] = 0 and Var[D] = 1. Then

IE[A ·AT ] = If×f

The matrix A from Lemma 3.1 projects from Rf → Rk where k can be much smaller than f . This
allows us to approximate Equation 3 as

wi ≈ li +Mi ·A ·AT (wi−1 − w0) (4)
1See proof in Appendix A.2.
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Lemma 3.1 guarantees that the approximation above is unbiased.

IE[li +Mi ·A ·AT (wi−1 − w0)] = li +Mi · IE[A ·AT ](wi−1 − w0) = wi

This allows an efficient algorithm that only computes the projected version of the combiner matrix
while still producing the same answer as the sequential algorithm in expectation. We call such
combiners probabilistically sound.

Algorithm 1: SYMSGD learning a local
model and a model combiner.
1 <vector,matrix,matrix> SymSGD(
2 float α, vector: w0, X1..Xn,
3 scalar: y1..yn) {
4 vector w = w0;
5 matrix A = 1√

k
random(D,f,k);

6 matrix MA = A;
7 for i in (1..n) {
8 w = w - α(Xi·w - yi)Xi

T;
9 MA = MA - α Xi·(XiTMA); }

10 return <w,MA,A>; }

Algorithm 2: SYMSGD combining local
models using model combiners.
1 vector SymSGDCombine(vector w0,
2 vector w, vector l,
3 matrix MA, matrix A) {
4 parallel {
5 matrix NA = MA - A;
6 w = l+w-w0+NA·AT(w-w0);
7 }
8 return w; }

Algorithm 1 shows the resulting symbolic SGD learner. The random function in line 5 returns
a f × k matrix with elements chosen independently from the random distribution D according to
Lemma 3.1. When compared to the sequential SGD, the additional work is the computation of
MA in Line 9. It is important to note that this algorithm maintains the invariant that MA = M ·
A at every step. This projection incurs a space and time overhead of O(z × k) where z is the
number of non-zeros in Xi. This overhead is acceptable for small k and infact in our experiments
in Section 4, k is between 7 to 15 across all benchmarks. Most of the overhead for such a small
k is hidden by utilizing SIMD hardware within a processor (SymSGD with one thread is only half
as slow as the sequential SGD as discussed in Section 4.1). After learning a local model and a
probabilistically sound combiner in each processor, Algorithm 2 combines the resulting local model
using the combiners, but additionally employs the optimizations discussed in Section 3.3.

Note that the correctness and performance of SYMSGD do not depend on the sparsity of a dataset
and as Section 4 demonstrates, it works for very sparse and completely dense datasets. Also, note
that X1, . . . ,Xn may contain a subset of size f’ of all f features. Our implementation of Algorithm 1
takes advantage of this property and allocates and initializes A for only the observed features. This
optimization is omitted from the pseudo code in Algorithm 1 for the sake of simplicity.

3.3 CONTROLLING THE VARIANCE

While the dimensionality reduction discussed above is expected to produce the right answer, this
is useful only if the variance of the approximation is acceptably small. Computing the variance is
involved and is discussed in the associated technical report SymSGDTR. But we discuss the main
result that motivates the rest of the paper.

Consider the approximation ofM ·∆w with v = M ·A ·AT ·∆w. Let C(v) be the covariance matrix
of v. The trace of the covariance matrix tr(C(v)) is the sum of the variance of individual elements
of v. Let λi(M) by the ith eigenvalue of M and σi(M) =

√
λi(MTM) the ith singular value of

M . Let σmax(M) be the maximum singular value of M . Then the following holds SymSGDTR:

‖∆w‖22
k

∑
i

σ2
i (M) ≤ tr(C(v)) ≤

‖∆w‖22
k

(
∑
i

σ2
i (M) + σ2

max(M))

The covariance is small if k, the dimension of the projected space, is large. But increasing k pro-
portionally increases the overhead of the parallel algorithm. Similarly, covariance is small if the
projection happens on small ∆w. Looking at Equation 4, this means that wi−1 should be as close
to w0 as possible, implying that processors should communicate frequently enough such that their
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models are roughly in sync. Finally, the singular values of M should be as small as possible. The
next section describes a crucial optimization that achieves this.

Taking Identity Off: Expanding Equation 2, we see that the combiner matrices are of the form

I − αR1 + α2R2 − α3R3 + · · ·

where Ri matrices are formed from the sum of products of Xj · XT
j matrices. Since α is a small

number, this sum is dominated by I . In fact, for a combiner matrix M generated from n examples,
M − I has at most n non-zero singular values SymSGDTR. We use these observation to lower the
variance of dimensionality reduction by projecting matrix N = M − I instead of M . Appendix A.3
empirically shows the impact of this optimization. Rewriting Equations 3 and 4, we have

wi = li + (Ni + I) · (wi−1 − w0)

= li + wi−1 − w0 +Ni · (wi−1 − w0)

≈ li + wi−1 − w0 +Ni ·A ·AT · (wi−1 − w0) (5)

Lemma 3.1 guarantees that the approximation above is unbiased. Algorithm 2 shows the
pseudo code for the resulting probabilistically sound combination of local models. The function
SymSGDCombine is called iteratively to combine the model of the first processor with the local
models of the rest. Note that each model combination is executed in parallel (Line 4) by parallelizing
the underlying linear algebra operations.

An important factor in controlling the singular values of N is the frequency of model combinations
which is a tunable parameter in SYMSGD. As it is shown in Appendix A.3, the fewer the number of
examples learned, the smaller the singular values of N and the less variance (error) in Equation 5.

Implementation For the implementation of SymSGD function, matrix M and weight vector w are
stored next to each other. This enables better utilization of vector units in the processor and improves
the performance of our approach significantly. Also, most of datasets are sparse and therefore, SGD
and SymSGD only copy the observed features from w0 to their learning model w. Moreover, for
the implementation of matrix A, we used Achlioptas (2001) theorem to minimize the overhead of
creating A. In this approach, each element of A is independently chosen from { 13 ,−

1
3 , 0} with

probability { 16 ,
1
6 ,

2
3}, respectively.

4 EVALUATION

All experiments described in this section were performed on an Intel Xeon E5-2630 v3 machine
clocked at 2.4 GHz with 256 GB of RAM. The machine has two sockets with 8 cores each, allowing
us to study the scalability of the algorithms across sockets. We disabled hyper-threading and turbo
boost. We also explicitly pinned threads to cores in a compact way which means that thread i + 1
was placed as close as possible to thread i. The machine runs Windows 10. All of our implementa-
tions were compiled with Intel C/C++ compiler 16.0 and relied heavily on OpenMP primitives for
parallelization and MKL for efficient linear algebra computations. And, finally, to measure runtime,
we use the average of five independent runs on an otherwise idle machine.

There are several algorithms and implementations that we used for our comparison: Vowpal Wab-
bit Langford et al. (2007), a widely used public library, Baseline, a fast sequential implementation,
HW-Paper, the implementation from Recht et al. (2011), HW-Release, an updated version, Hog-
Wild, which runs Baseline in multiple threads without any synchronization, and ALLREDUCE, the
implementation from Agarwal et al. (2014). Each of these algorithms have different parameters and
settings and we slightly modified to ensure a fair comparison; see Appendix A.4 for more details.

When studying the scalability of a parallel algorithm, it is important to compare the algorithms
against an efficient baseline Bailey (1991); McSherry et al. (2015). Otherwise, it is empirically not
possible to differentiate between the scalability achieved from the parallelization of the inefficiencies
and the scalability inherent in the algorithm. We spent a significant effort to implement a well-tuned
sequential algorithm which we call Baseline in our comparisons. Baseline is between 1.97 to 7.62
(3.64 on average) times faster than Vowpal Wabbit and it is used for all speedup graphs in this paper.

Datasets Table 1 describes the datasets used for evaluation. The number of features, training in-
stances, test instances, classes and the sparsity of each dataset is shown in Table 1. We used Vowpal
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Benchmarks #Features #Training #Test #Classes Sparsity (%) Logistic Linear SYMSGD HOGWILD!
aloi 128 75463 32537 1000 76.03 > 80 >80 12.94 3.12
mnist8m 784 5668902 2431098 10 74.49 86.697 86.518 7.20 2.65
url 3231961 1677282 718848 2 99.996 99.135 99.144 2.55 4.05
rcv1.multiclass 47236 15564 518571 53 99.86 86.538 86.523 7.43 5.63
epsilon 2000 400000 100000 2 0.00 89.694 89.689 8.05 3.93
sector 55197 6412 3207 105 99.70 85.594 85.75 8.36 4.49
mnist 780 60000 10000 10 80.78 91.91 91.82 13.29 2.62
news20 62061 15935 3993 20 99.87 83.045 83.747 3.55 5.13
rcv1.binary 20242 677399 47236 2 99.84 96.201 96.321 3.50 2.91

Table 1: Datasets used for evaluation with their settings, maximum accuracies using logistic and
linear regression and maximum speedup using SYMSGD and HOGWILD!. Red speedup numbers
represent the only cases where HOGWILD! performs faster than SYMSGD.

Wabbit with the configurations discussed in Appendix A.4 to measure the maximum accuracies that
can be achieved using linear and logistic regression and the result is presented in columns 8 and 9
of Table 1. In the case of aloi dataset, even after 500 passes (the default for our evaluation was 100
passes) the accuracies did not saturate to the maximum possible and we reported that both linear
and logistic achieved at least 80% accuracy. The last two columns show the maximum speedup of
SYMSGD and HOGWILD! over the baseline.
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Figure 2: Speedup and accuracy comparison

Parameters Hyper-parameters searching is essential for performance and accuracy. The learning
rate, α, for each dataset was selected by searching for a constant value among {.5, .05, .005, . . . }
where Baseline reached close to maximum accuracy for each benchmark. The parameters for the
projection size, k, and the frequency of model combination were searched to pick the best perform-
ing configuration. The parameters for ALLREDUCE were similarly searched.

4.1 RESULTS

Figure 2 shows the accuracy and speedup measurements on three benchmarks: rcv1.binary, a sparse
binary dataset, rcv1.multiclass, a sparse multiclass dataset, and epsilon, a dense binary dataset. The
results for the other six benchmarks are presented in Appendix A.5.

Sparse Binary, rcv1.binary: Figure 2a compares the scalability of all the algorithms studied in
this paper. HW-Paper is around six times slower than HW-Release. While this could potentially be
a result of us running HW-Release on a Ubuntu VM, our primary aim of this comparison was to
ensure that HogWild is a competitive implementation of HOGWILD!. Thus, we remove HW-Paper
and HW-Release in our subsequent comparisons.
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SYMSGD is half as slow as the Baseline on one thread as it performs lot more computation, but
scales to a 3.5× speedup to 16 cores. Note, this represents a roughly 7× strong-scaling speedup
with respect to its own performance on one thread. Analysis of the hardware performance counters
shows the current limit to SYMSGD’s scalability arises from load-imbalance across barrier synchro-
nization, which provides an opportunity for future improvement.

Figure 2d shows the accuracy as a function of the number of examples processed by different algo-
rithms. SYMSGD “stutters” at the beginning, but it too matches the accuracy of Baseline. The initial
stuttering happens because the magnitude of the local models on each processor are large during the
first set of examples. This directly affect the variance of the combiner matrix approximation. How-
ever, as more examples are given to SYMSGD, the magnitude of the local models are smaller and
thus SYMSGD better matches the Baseline accuracy. One way to avoid this stuttering is to combine
models more frequently (lower variance) or running single threaded for the first few iterations.

HogWild does approach sequential accuracy, however, it does so at the cost of scalablity (i.e., see
Figure 2a (a)). Likewise, ALLREDUCE scales slightly better but does so at the cost of accuracy.

Sparse Multiclass, rcv1.multiclass: Figure 2b shows the scalability on rcv1.multiclass. Since this
is a multiclass dataset, SYMSGD is competitive with the baseline on one thread as it is able to
amortize the combiner matrix computation across all of the classes (M is the same across different
classes). Thus, it enjoys much better scalability of 7× when compared to rcv1.binary. HogWild
scales similar to SYMSGD up-to 8 threads but suffers when 16 threads across multiple sockets
are used. Figure 2e shows that SYMSGD meets the sequential accuracy after an initial stutter.
ALLREDUCE suffers from accuracy.

Dense Binary, epsilon: Figure 2c in Appendix A.5 shows that SYMSGD achieves a 7× speedup
over the baseline on 16 cores. This represents a 14× strong scaling speedup over SYMSGD on
one thread. As HOGWILD! is not designed for dense workloads, its speedup suffers when 16 cores
across multiple sockets are used. This shows that SYMSGD scales to both sparse and dense datasets.
Similarly, ALLREDUCE suffers from accuracy.

5 RELATED WORK

Most schemes for parallelizing SGD learn local models independently and communicate to update
the global model. The algorithms differ in how and how often the update is performed. These
choices determine the applicability of the algorithm to shared-memory or distributed systems.

To the best of our knowledge, our approach is the only one that retain the semantics of the sequen-
tial SGD algorithm. While some prior work provides theoretical analysis of the convergence rates
that justify a specific parallelization, convergence properties of SYMSGD simply follow from the
sequential SGD algorithm. On the other hand, SYMSGD is currently restricted to class of SGD
computations where the inter-step dependence is linear in the model parameters.

Given a tight coupling of the processing units, Langford et al. Langford et al. (2009) suggest on
a round-robin scheme to update the global model allowing for some staleness. However, as the
SGD computation per example is usually much smaller when compared to the locking overhead,
HOGWILD! Recht et al. (2011) improves on this approach to perform the update in a “racy” manner.
While HOGWILD! is theoretically proven to achieve good convergence rates provided the dataset
is sparse enough and the processors update the global model fast enough, our experiments show
that the generated cache-coherence traffic limits its scalability particularly across multiple sockets.
Moreover, as HOGWILD! does not update the model atomically, it potentially loses correlation
among more frequent features resulting in loss of accuracy. Lastly, unlike SYMSGD, which works
for both sparse and dense datasets, HOGWILD! is expclitly designed for sparse data. Recently,
Sallinen et al. (2016) proposed applying lock-free HOGWILD! approach to mini-batch. However,
mini-batch converges slower than SGD and also they did not study multi-socket scaling.

Zinkevich et al. Zinkevich et al. (2010) propose a MapReduce-friendly framework for SGD. The
basic idea is for each machine/thread to run a sequential SGD on its local data. At the end, the global
model is obtained by averaging these local models. Alekh et al. Agarwal et al. (2014) extend this
approach by using MPI AllReduce operation. Additionally, they use the adagrad Duchi et al. (2011)
approach for the learning rates at each node and use weighted averaging to combine local models
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with processors that processed a feature more frequently having a larger weight. Our experiments
on our datasets and implementation shows that it does not achieve the sequential accuracy.

Several distributed frameworks for machine learning are based on parameter server Li et al.
(2014b;a) where clients perform local learning and periodically send the changes to a central pa-
rameter server that applies the changes. For additional parallelism, the models themselves can be
split across multiple servers and clients only contact a subset of the servers to perform their updates.

6 CONCLUSION

With terabytes of memory available on multicore machines today, our current implementation has
the capability of learning from large datasets without incurring the communication overheads of a
distributed system. That said, we believe the ideas in this paper apply to distributed SGD algorithms
and how to pursue in future work.

Many machine learning SGD algorithms require a nonlinear dependence on the parameter mod-
els. While SYMSGD does not directly apply to such algorithms, it is an interesting open problem
to devise linear approximations (say using Taylor expansion) to these problems and subsequently
parallelize with probabilistically sound combiners. This is an interesting study for future work.
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A APPENDIX

A.1 COMBINER MATRIX

Lemma A.1. If the SGD algorithm for linear regression processes examples
(Xa, ya), (Xa+1, ya+1), . . . , (Xb, yb) starting from model ws to obtain wb, then its outcome
starting on model ws + ∆w is given by wb + Ma→b · ∆w where the combiner matrix Ma→b is
given by

Ma→b =

a∏
i=b

(I − αXT
i ·Xi)

Proof. The proof follows from a simple induction. Starting from ws, let the models computed
by SGD after processing (Xa, ya), (Xa+1, ya+1), . . . , (Xb, yb) respectively be wa, wa+1, . . . wb.
Consider the base case of processing of (Xa, ya). Starting from ws + ∆w, SGD computes the
model w′a using Equation 1 (reminder: wi = wi−1 − α(Xi · wi−1 − yi)XT

i ):

w′a = ws + ∆w − α(Xa · (ws + ∆w)− ya)XT
a

= ws + ∆w − α(Xa · ws − ya)XT
a − α(Xa ·∆w)XT

a

= ws − α(Xa · ws − ya)XT
a + ∆w − α(Xa ·∆w)XT

a

= wa + ∆w − α(Xa ·∆w)XT
a (6)

= wa + ∆w − αXT
a (Xa ·∆w) (7)

= wa + ∆w − α(XT
a ·Xa) ·∆w (8)

= wa + (I − αXT
a ·Xa) ·∆w

Step 6 uses Equation 1, Step 7 uses the fact that Xa ·∆w is a scalar (allowing it to be rearranged),
and Step 8 follows from associativity property of matrix multiplication.

The induction is very similar and follows from replacing ∆w with Ma→i−1∆w and the property
that

Ma→i = (I − αXT
i ·Xi) ·Ma→i−1
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Figure 3: Distribution of singular values of M for rcv1 binary dataset for α = 0.01 and α = 0.001.

A.2 PROOF OF LEMMA 3.1

Proof. Let’s call B = A · AT . Then bij , the element of B at row i and column j, is
∑

s aisajs.
Therefore, IE[bij ] =

∑k
s=1 IE[aisajs] = ( 1√

k
)2

∑k
s=1 IE[disdjs] = 1

k

∑k
s=1 IE[disdjs]. For i 6= j,

IE[bij ] = 1
k

∑k
s=1 IE[dis]IE[djs] because dij are chosen independently. Since IE[D] = 0 and

dis, djs ∈ D, IE[dis] = IE[djs] = 0 and consequently, IE[bij ] = 0. For i = j, IE[bii] =
1
k

∑
s IE[disdis] = 1

k

∑
s IE[d2is]. Since IE[D2] = 1 and dis ∈ D, IE[d2is] = 1. As a result,

IE[bii] = 1
k

∑k
s=1 IE[d2is] = 1

k

∑k
s=1 1 = 1.

A.3 EMPIRICAL EVALUATING SINGULAR VALUES OF M

Figure 3 empirically demonstrates the benefit of taking identity off. This figure plots the singular
values of M for the rcv1.binary dataset (described in Section 4) after processing 64, 128, 192, 256
examples for two different learning rates. As it can be seen, the singular values are close to 1.
However, the singular values of N = M − I are roughly the same as those of M minus 1 and
consequently, are small. Finally, the smaller α, the closer the singular values of M are to 1 and the
singular values of N are to 0. Also, note that the singular values of M decrease as the numbers of
examples increase and therefore, the singular values of N increase. As a result, the more frequent
the models are combined, the less variance (and error) is introduced into Equation 5.

A.4 ALGORITHM DETAILS AND SETTINGS

This section provides details of all algorithms we used in this paper. Each algorithm required slight
modification to ensure fair comparison.

Vowpal Wabbit: Vowpal Wabbit Langford et al. (2007) is one of the widely used public libraries
for machine learning algorithms. We used this application as a baseline for accuracy of different
datasets and as a comparison of logistic and linear regression and also an independent validation
of the learners without any of our implementation bias. Vowpal Wabbit applies accuracy-improving
optimizations such as adaptive and individual learning steps or per feature normalize updates. While
all of these optimizations are applicable to SYMSGD, we avoided them since the focus of this paper
is the running time performance of our learner. The non-default flags that we used are: --sgd,
--power t 0, --holdout off, --oaa nc for multiclass datasets where nc is the number
of classes, --loss function func where func is squared or logistic. For learning
rate, we searched for α, the learning rate, in the set of {.1, .5, .01, .05, .001, .005, . . . } and used
--learning rate α. We went through dataset 100 times for each dataset (--passes 100)
and saved the learned model after each pass (--save per pass). At the end, for linear and logis-
tic regressions, we reported the maximum accuracies achieved among different passes and different
learning rates.

Baseline: Baseline uses a mixture of MKL Intel and manually vectorized implementations of linear
algebra primitives in order to deliver the fastest performance. Baseline processes up-to 3.20 billion
features per second at 6.4 GFLOPS.

HOGWILD!: HOGWILD! Recht et al. (2011) is a lock-free approach to parallelize SGD where
multiple thread apply Equation 1 simultaneously. Although this approach may have race condition
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when two threads process instances with a shared feature but the authors discuss that this does
not hurt the accuracy significantly for sparse datasets. There are multiple implementations of this
approach that we studied and evaluated in this section. Below is a description of each:

• HW-Paper: This is the implementation used to report the measurements in Recht et al. (2011)
which is publicly available Hogwild. This code implements SVM algorithm. Therefore, we modi-
fied the update rule to linear regression. The modified code was compiled and run on our Windows
machine described above using an Ubuntu VM since the code is configured for Linux systems.

• HW-Release: This is an optimized implementation that the authors built after the HOGWILD! pa-
per Recht et al. (2011) was published. Similar to HW-Paper, we changed the update rule accordingly
and executed it on the VM.

• HogWild: We implemented this version which runs Baseline by multiple threads without any
synchronizations. This code runs natively on Windows and enjoys all the optimizations applied to
our Baseline such as call to MKL library and manual vectorization of linear algebra primitives.

ALLREDUCE: ALLREDUCE Agarwal et al. (2014) is an approach where each thread makes a copy
from the global model and applies the SGD update rule to the local model for certain number of
instances. Along with the local model, another vector g is computed which indicates the confidence
in an update for the weight of a feature in the local model. After the learning phase, the local
weight vectors are averaged based on the confidence vectors from each thread. We implemented
this approach similarly using MKL calls and manual vectorization.

A.5 SPEEUPS ON REMAINING BENCHMARKS
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Figure 4: Speedups on remaining benchmarks
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