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ABSTRACT

This paper introduces an architecture for an open-vocabulary neural language
model. Word representations are computed on-the-fly by a convolution network
followed by pooling layer. This allows the model to consider any word, in the
context or for the prediction. The training objective is derived from the Noise-
Contrastive Estimation to circumvent the lack of vocabulary. We test the ability of
our model to build representations of unknown words on the MT task of IWSLT-
2016 from English to Czech, in a reranking setting. Experimental results show
promising results, with a gain up to 0.7 BLEU point. They also emphasize the
difficulty and instability when training such models with character-based repre-
sentations for the predicted words.

1 INTRODUCTION

Most of neural language models, such as n-gram models Bengio et al. (2003) are word based and
rely on the definition of a finite vocabulary V . As a consequence, a Look-up table is associated to
V in which each word w ∈ V is mapped to a vector of dE real valued features stored in a matrix
L ∈ R|V|∗dE . While this approach has proven successful for a variety of tasks and languages, see for
instance Schwenk (2007) in speech recognition and Le et al. (2012); Devlin et al. (2014); Bahdanau
et al. (2014) in machine translation, it induces several limitations.

For morphologically-rich languages, like Czech or German, the lexical coverage is still an important
issue, since there is a combinatorial explosion of word forms, most of which are hardly observed on
training data. On the one hand, growing the Look-up table is not a solution, since it would increase
the number of parameters without having enough training example for a proper estimation. On the
other hand, rare words can be replaced by a special token. Nevertheless, this acts as a word class
merging very different words without any distinction and using different word classes to handle out-
of-vocabulary words Allauzen & Gauvain (2005) does not really solve this issue, since rare words
are difficult to classify.

Moreover, for most inflected or agglutinative forms, as well as for compound words, the word struc-
ture is overlooked, wasting parameters for modeling forms that could be more efficiently handled
by word decomposition. While the use of subword units Botha & Blunsom (2014); Sennrich et al.
(2016) could improve the generalization power of such models, it relies on a proper and efficient
method to induce these subword units.

To overcome these issues, we propose to investigate a word based language model with an open
vocabulary. Since most of existing models and training criteria rely on the assumption of a finite
vocabulary, the definition of an open vocabulary model, along with a training criterion, constitutes
a scientific challenge. Our goal is to build word representations every words. Word representations
are inferred on-the-fly from its character sequence, using convolution filters which implicitly cap-
ture subword patterns, as described in section 2. The architecture is based on a neural ngram model
inspired from Bengio et al. (2003), while this idea can be extended to other kind of models. By
relaxing the normalized constraint, the objective function borrows from the noise contrastive esti-
mation Gutmann & Hyvärinen (2012) to allow our model to consider a possibly infinite vocabulary.
This paper focusses on this challenge and its related training issues. To assess the efficiency of
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this approach, the experimental setup described in section 3 uses a large scale translation task in a
reranking setting. The experimental results summarized in section 4 show promising results as well
as training issues.

2 MODEL DESCRIPTION

Word embeddings are parameters, stored in a Look-up matrix L. The embedding ewordw of a word
w is simply the column of L corresponding to its index in the vocabulary:

ewordw = [L]w

2.1 CHARACTER-LEVEL WORD EMBEDDINGS

To infer a word embedding from its character embeddings, we use a convolution layer Waibel et al.
(1990); Collobert et al. (2011), similar to layers used in Santos & Zadrozny (2014); Kim et al.
(2015). As illustrated in figure 1, a word w is a character sequence {c1, .., c|w|} represented by their
embeddings {Cc1 , ..,Cc|w|}, where Cci denotes the vector associated to the character ci. A convo-
lution filter Wconv ∈ Rde × Rdc∗nc is applied over a sliding window of nc characters, producing
local features :

xn = Wconv(Ccn−nc+1
: .. : Ccn)T + bconv

where xn is a vector of size de obtained for each position n in the word1. The notation (Ccn−1
: Ccn )

denotes the concatenation of two embeddings. The i-th element of the embedding of w is the mean
over the i-th elements of the feature vectors, passed by the activation function φ :

[echar]i = φ

|w|−nc+1∑
n=1

[xn]i
|w| − nc + 1

 (1)

Using a mean after a sliding convolution window ensures that the embedding combines local features
from the whole word, and that the gradient is redistributed at scale for each character n-gram. The
parameters of the layer are the matrices C and Wconv and the bias bconv .

2.2 MODELS

Our model follows the classic n-gram feedforward architecture. The input of the network is a n-
words context Hi = (wi−1, . . . , wN−i+1), and its output the probability P (w|Hi) for each word
w ∈ V . The embeddings of the word in the context are concatenated and fed into a hidden layer:

hHi = φ(Whidden(ei−1 : . . . : eN−i+1) + bhidden)

A second hidden layer my be added. Finally, the output layer computes scores for each word:

sHi = exp (WouthHi + bout)

Whidden, bhidden, Wout and bout are the parameters of the model. As the input Lookup-matrix
L, the output weight matrix Wout contains word embeddings, that are output representations of the
words in the vocabulary:

eoutw = [Wout]w

Then, the output probabilities are expressed as:

P (w|Hi) =
exp eoutw hHi∑

1<j<|V|
exp eoutj hHi

Later, we will use three different input layer to obtain word representations:
1Two padding character tokens are used to deal with border effects. The first is added at the beginning and

the second at the end of the word, as many times as it is necessary to obtain the same number of windows than
the length of the word. Their embeddings are added to C.
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Figure 1: CWE Model architecture

• A classic NLM using word-level embeddings only, that we will note WE, which uses |V| ∗
de parameters.
• A NLM using embeddings constructed from character n-grams by convolution + pooling,

that we will note CE, which uses |Vc| ∗ dc + dc ∗ nc ∗ de parameters.
• A NLM using a concatenation of these two types of embeddings as word representation,

that we will note CWE.

2.3 OBJECTIVE FUNCTION FOR OPEN VOCABULARY MODELS

Usually, such a model is trained by maximizing the log-likelihood. For a given word given its
context, the model parameters θ are estimated in order to maximize the following function for all
the n-grams observed in the training data:

LL(θ) =
∑

1<i<|D|

logPθ(wi|Hi).

This objective function raises two important issues. For conventional word models, it implies a very
costly summation imposed by the softmax activation of the output layer. More importantly, this
objective requires the definition of a finite vocabulary, while the proposed model may use character-
based word embeddings, especially at the output, making the notion of vocabulary obsolete.

Therefore, the parameters estimation relies on Noise Contrastive Estimation (NCE) introduced
in Gutmann & Hyvärinen (2012); Mnih & Teh (2012). This criterion allows us to train both types
of models based on conventional word embeddings, along with character-based embeddings. The
NCE objective function aims to discriminate between examples sampled from the real data and from
a noise distribution. When presented with examples coming from a mixture of one sample from the
data distribution Pd and k from the noise distribution Pn, PH(w ∈ D) denotes the posterior proba-
bility of a word w given its context H to be sampled from the training data D. This probability can
be expressed as follows:

PH(w ∈ D) =
PHd (w)

PHd (w) + kPn(w)

As suggested in Mnih & Teh (2012), Pn only depends on w here, since we chose the unigram
distribution estimated on the training data. If

sHθ (w) = exp (eouthH + bout) (2)

denotes the non-normalized score given by the model to a specific word w, as a function of the
parameters θ and the context H , the final NCE objective function has the following form Gutmann
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& Hyvärinen (2012):

JHθ = EsHθ

[
log

sHθ (w)

sH(w) + kPn(w)

]
+ kEPn

[
log

kPn(w)

sHθ (w) + kPn(w)

]
,

where sHθ will tend to PHd without the need for an explicit normalization.

2.4 CHARACTER-BASED OUTPUT WEIGHTS WITH NOISE-CONTRASTIVE ESTIMATION

The output weights representing each word in the vocabulary eout can also be replaced by embed-
dings computed by a convolution layer on character n-grams. In this case the model can efficiently
represent and infer a score to any word, observed during the training process or not, while with
conventional word embeddings, out of vocabulary words only share the same representation and
distribution. Instead of using a parameter matrix Wout to estimate the score like in equation 2, the
output representation of a word w, eoutw can be replaced by a vector echar−outw estimated on the fly
based on its character sequence as described in equation 1, using |Vc| ∗dc +dc ∗nc ∗dh parameters.
With this extension the model does not rely on a vocabulary anymore, hence motivating our choice
of the NCE. This unnormalized objective allows us to handle an open vocabulary, since we only need
to compute k+ 1 word representations for each training examples. Models that use character-based
embeddings both for input and output words are denoted by CWE-CWE.

Moreover, with this extension, the representations of words sharing character n-grams are tied. This
is an important property to let the model generalize to unseen words. However, it can be also an
issue: the limited number of updates for output representations (k+ 1 words) has a “rich get richer”
effect: the most frequent words are usually short and will get most of the update. They may therefore
”contaminate” the representation of longer words with which they share character n-grams, even if
these words are not related. This issue is further addressed in section 4.1.

3 EXPERIMENTAL SET-UP

The impact of the models described in section 2 is evaluated within the machine translation (MT)
shared task of IWSLT-20162 from Englih to Czech. This language pair is highly challenging since
Czech is a morphologically-rich language. Neural language models are integrated in a two steps
approach: the first step uses a conventional MT system to produce an n-best list (the n most likely
translations); in the second step, these hypothesis are re-ranked by adding the score of the neural
language model. To better benefit from the open vocabulary models introduced in section 2.1, a more
complex system is also used: first an MT system is used to translate from English to a simplified
form of Czech which is reinflected. With this pipeline we expect n-best lists with more diversity and
also words unseen during the training process. The neural language models are then used to re-rank
the reinflected n-best lists.

3.1 DATA

The IWSLT16 MT task is focused on the translation of TED talks. The translation systems are
trained on parallel data from the TED, QED and europarl. Our Neural language models are trained
on the same data, but training examples are sampled from these corpora given weights that are
computed to balance between in-domain parallel data (TED), out-of domain parallel data, and ad-
ditional monolingual data. Finally, we use the concatenation of TED.dev2010, TED.dev2011 and
TED.tst2010 as development set, while TED.tst2012 and TED.tst2013 provide the test set.

3.2 CZECH RE-INFLECTION

In Czech, a morphologically rich language, each lemma can take a lot of possible word forms. Most
of them won’t appear - or with a very low frequency - in training data. For an important part of the
words found in test data and unseen during training, their lemmas however can be observed but with
a different morphological derivation.

2http://workshop2016.iwslt.org
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A non-observed word form can’t be generated by the translation system, and one seen too rarely
won’t be used in a relevant way. To circumvent this limitation, in a similar fashion as the method
described in Marie et al. (2015), each noun, pronoun and adjective is replaced in the training corpora
by its lemma along with some morphological features. These word forms are considered in factored
way, where some of the POS tags are discarded to reduce the vocabulary. After the translation pro-
cess, a cascade of Conditional Random Fields (CRF) are used to reintroduce the discarded features,
such as gender, number and case, and to generate a new word form.

Formally, the MT system translates English into a simplified version of Czech, that is reinflected.
Within this process, the MT system can produce a n-best list, that can be extended to a nk-best list,
considering for each translation hypothesis the k-best reinflected sentences given by the factorized
CRF. Intuitively, this process can introduce word forms potentially not yet seen in training data, but
based on known paradigms, which can give an advantage to language models able to build a word
representation from character n-grams.

3.3 BASELINE TRANSLATION SYSTEM

Our baseline is built with a Statistical Machine Translation system based on bilingual n-grams,
NCODE3, described in Crego et al. (2011). We follow the same setup as in Marie et al. (2015).

3.4 NLM TRAINING AND OPTIMIZATION

First, some comparative experiments on a smaller dataset are carried out to better understand how
open vocabulary NLM behave and to set the hyper-parameters. First trained using stochastic gra-
dient descent, we observed a quite unstable training process, restricting a proper hyper-parameters
choices. We found that especially the embedding dimensions, and the activation functions used
could make the NCE-objective hard to optimize. This was aggravated in Czech, which we found
more difficult to work with than other morphologically complex languages, like German and Rus-
sian. The use of Adagrad Duchi et al. (2010) clearly helps to solve most of these issues, but adds
consequent computation time. Following preliminary results on our work with a similar model on
a different task Labeau et al. (2015), we made the choice of not implementing LSTMs to obtain
character-level word representations. It gave similar results, at the cost of unstable training and ex-
tended computation time. We then train using batches of 128, for various context sizes, WE, CWE,
and CWE-CWE models. The ReLu activation function is used, along with an embedding size of
de = 128. When relevant, we used a character embedding size of dc = 32 and a convolution on
nc = 5-grams of characters for all experiments4. Concerning the NCE training, we sampled k = 25
examples from the unigram distribution obtained from the training data, for each example sampled
from the data. The models were implemented using C++5.

3.5 RERANKING

The re-ranking step uses additional features to find a better translation among the n-best generated
by the decoder (in our case, n = 300): we use the score (probability) of WE, CWE and CWE-
CWE models given to each sentence by our models as such a feature. Tuning for re-ranking was
performed with KB-MIRA Cherry & Foster (2012), and evaluation using BLEU score.

4 EXPERIMENTAL RESULTS

The first set of experiments investigates the impact of the padding design on the character-level
representation followed by a study of the learning behavior of our proposed models and training
criterion. Then, the proposed models are evaluated within the MT task. The final set of experiments
analyzes the issues of the model based on character-level representation for output words, in order
to propose remedies.

3http://ncode.limsi.fr
4Results did not differ significantly when increasing these embedding sizes, with an impact on convergence

speed and computation time.
5Implementation will be made available.
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4.1 TIES BETWEEN CHARACTER-LEVEL REPRESENTATION OF OUTPUT WORDS

Preliminary results on smaller dataset are quite poor for models using character-level representation,
and far worse when used for the output layer. We suspect that groups of characters are updated far
more together, yielding a ”contamination” of several character n-grams by very frequent short words.

Indeed, our simple padding scheme, as shown in the left part of table 1, makes words sharing first
or last letter(s) systematically share at least one character n-gram: we suppose it gives the models
more chance to detect similarities in word forms sharing prefixes and suffixes.

The representations of any of the character n-grams that are included in the frequent words will
thus be re-used in a large part of the other words in the corpus. A huge number of word forms are
affected: a little more than one third of the training data shares its first character n-gram with one of
the ten most frequent words, and a little more than one quarter shares its last.

While considering varying size of character n-grams when building our word representation, as
in Kim et al. (2015), would certainly help, it would increase our computation time. We thus choose to
alleviate our padding scheme, as shown on the right part of table 1. We add only one character token
at the beginning of the word, and one at the end6. While it may inhibit the capacity of the model
to build links between words sharing prefixes or suffixes, it improves results drastically, especially
when using character-level outputs, as shown in figure 3. This limited padding scheme is used for
the following experiments.

◦ ◦ ◦ ◦ a • • • • ◦ ◦ a • •
◦ ◦ ◦ ◦ a l e • • • • ◦ ◦ ◦ ◦ n a • • • • ◦ a l e • ◦ ◦ n a •
◦ ◦ ◦ ◦ a b y • • • • ◦ ◦ ◦ ◦ z a • • • • ◦ a b y • ◦ ◦ z a •
◦ ◦ ◦ ◦ a z̆ • • • • ◦ ◦ ◦ ◦ b y l a • • • • ◦ ◦ a z̆ • ◦ b y l a •
◦ ◦ ◦ ◦ a n i • • • • ◦ ◦ ◦ ◦ d v a • • • • ◦ a n i • ◦ d v a •
◦ ◦ ◦ ◦ a s i • • • • ◦ ◦ ◦ ◦ t r̆ e b a • • • • ◦ a s i • ◦ t r̆ e b a •

Table 1: Padding for word decomposition in character 5-grams: ◦ is a character token indicating
the beginning of the word, while • indicates the end of the word. The left part of the table shows
our original padding scheme, which makes very different words share character 5-grams, especially
with short, frequent words. The right part of the table shows our alleviated padding scheme.

4.2 NLM TRAINING

While the perplexity of our language models is not our main focus, it is still related to the quantity
that our training seeks to optimize - since the NCE gradient approaches the maximum likelihood
gradient Mnih & Teh (2012). On figure 2 are shown perplexity values of each model during training.
These values are based on a vocabulary containing the 250K most frequent words on the training data
- it is also the vocabulary used in the model when relevant. They are computed on the development
set after each epoch. An epoch includes 2,5M N-grams sampled from the training data. On table 2
are shown the best perplexity obtained on the development set by each model, during training.

Context size (Number of words) 3 6

WE 227 193
CWE 207 185
CWE-CWE 308 243

Table 2: Best perplexity reached on the development set, on a 250K output vocabulary, after 15
epochs of 2,5M n-grams

Table 2 shows that a character-level word representation helps to decrease the perplexity, even if
a larger context closes the gap. To compute the perplexity of CWE-CWE models, we use the

6For short words, we add the numbers of tokens necessary for the word to have at least nC = 5 characters,
as shown in table 1
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Figure 2 Figure 3

Figure 4: Model perplexity measured on the development set during training. The context size is
3 words. Figure 3 shows models based on character-level word representations, with and without
complete padding. Models are trained on the same data than Figure 2 but on smaller epochs (250K
n-grams).

same vocabulary as for other models, and use the ’unknown’ tokens for words and characters-based
representations. Hence, the perplexity computed is difficult to interpret. The main downside of
Adagrad is that the learning rate determined by accumulating the history of past gradients is usually
too aggressive and stops learning rather early. We simply reset this history every five epochs to give
the model a chance to improve, which explains the flattening followed by small improvements we
see for WE and CWE models. We choose to do that reset 2 times, based on previous experiments.
Despite adaptive gradient, training of CWE-CWE models stays unstable.

4.3 RERANKING

System to be re-ranked BLEU Reference CWE CWE-CWE WE
n=3 n=6 n=3 n=6 n=3 n=6

En→ Cz Baseline system 19.6 20.1 20.3 19.8 20.0 20.0 20.2

En→ Simplified Cz
Reinflected baseline system 19.5 20.0 20.2 19.6 20.1 20.1 20.0
3-best Reinflected baseline system 19.9 20.3 19.6 20.0 20.1 20.1
5-best Reinflected baseline system 19.9 20.3 19.5 19.9 20.0 20.1

Table 3: Best BLEU score obtained after n-best reranking of the hypothesis given by the translation
and translation + k-best reinflection systems. n is the context size (in number of words)

The reranking results are shown in table 3. The first line corresponds to experiments with a di-
rect translation from English to Czech, where n-best lists generated by the MT system are simply
rescored by our models. The best result is given by the longest-context CWE model, which produces
a +0.7 BLEU score improvement. CWE models gives on average +0.1 BLEU point compared to
WE models, while CWE-CWE are−0.2 BLEU point under. Doubling the context size consistently
improves results of +0.2 BLEU point.

Experimental results on reinflected Czech seems to follow a similar trend: CWE models behave a
little better than WE models, while CWE-CWE models are under. While simply reranking n-best
lists is not as efficient as doing it directly in Czech, reranking nk-best lists extended by the factorized
CRF gives a small improvement, reaching an improvement of +0.7 BLEU point. As a general rule,
small context models seem to have difficulties with reinflected Czech. The main advantage given
by the CWE model is an ability to better rerank nk-best lists. These results suggest that, while
the normalization + reinflection procedure may introduce diversity in the output to be reranked, our
models are not able to draw any significant advantage from it.
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4.4 ANALYSIS OF CHARACTER-LEVEL OUTPUT REPRESENTATIONS PERFORMANCE

Models using character-level output representations gave sub-par results on re-ranking. It is sur-
prising, especially for re-inflected Czech: such a model is supposed to behave better on unknown
words, and thus should benefit from diversity given by generating new words. However, as we can
see in table 4, re-inflection doesn’t add that much diversity (About 0.1 % of OOV words, and about
0.001 % of words never seen by the model before). Diversity is also inhibited by our training algo-
rithm: while we train open-vocabulary models, the negative examples used with Noise-contrastive
estimation come from a closed vocabulary.

Full training vocabulary 250K words vocabulary

Reference 0.131 % 0.995 %

En→ Cz (300-best) 0.566 % 1.173 %

En→ Simplified Cz + Reinflection 0.567 % 1.263 %
En→ Simplified Cz + 3-Best reinflection 0.567 % 1.277 %
En→ Simplified Cz + 5-Best reinflection 0.568 % 1.285 %

Table 4: Ratio of unknown words in system outputs measured on the test set.

This can related to the nature of the unigram distribution used to sample negative examples. As
explained in section 4.1, it makes frequent short words completely outweigh the others in number
of updates, and we are forced to reduce the ability of the model to find common morphological
attributes between words to avoid ’contamination’ of character n-gram representations.

5 RELATED WORKS

There is a number of different strategies to efficiently train NNLMs with large vocabularies, such as
different types of hierarchical softmax Mnih & Hinton (2009); Le et al. (2011), importance sampling
Bengio & Sénécal (2003), and Noise contrastive estimation Gutmann & Hyvärinen (2012); Mnih &
Teh (2012). Vaswani et al. (2013) has showed the interest of training a NLM with NCE to re-rank
k-best lists, while Devlin et al. (2014) uses a self-normalization. Recently, a comparative study Chen
et al. (2016) has been made on how to deal with a large vocabulary. However, the purpose of this
paper is to explore models with open vocabulary rather large vocabulary.

There is a surge of interest into using character-level information for a wide range of NLP tasks,
with improved results in POS Tagging Santos & Zadrozny (2014), Text classification Zhang &
LeCun (2015), Parsing Ballesteros et al. (2015), Named entity recognition Lample et al. (2016).

In language modeling, first applications to language modeling were strictly using characters, and
performed less than word-level models Mikolov et al. (2012), while showing impressive results for
text generation Sutskever et al. (2011); Graves (2013), using bi-directional LSTM Graves et al.
(2013). Recently, Ling et al. (2015) has used bi-directional LSTM to build word representations
from characters, with improvements in language modeling and POS-tagging.

The recent work of Kim et al. (2015), that uses convolutional networks and pooling to construct
a word representation from character n-grams, coupled with highway networks Srivastava et al.
(2015), showed on various languages that using characters improves results on the language mod-
eling task (for a small corpus), even more so for languages with complex morphology. A similar
architecture was used Józefowicz et al. (2016) on a larger dataset, conjointly with bi-directional
LSTMs, and trained with importance sampling, showing great results.

On the study of NNLMs in the context of Machine Translation, we can mention the work of Luong
et al. (2015) on the effect of the number of layers on reranking n-best lists. Finally, while not
directly related to our work, Luong & Manning (2016) very recently showed great improvements
on a translation task by handling rare words with character-level recurrent networks, with a neural
translation model.
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6 CONCLUSION

In this work, we addressed the challenge of designing an open vocabulary Neural Language Model.
For that purpose, word representations are estimated on-the-fly from n-grams of characters. Two
kinds of models are introduced: first, NLMs using word and character-level embeddings to represent
the input context (CWE); then its extension to an open-vocabulary even for the predicted words
(CWE-CWE). These models were used to re-rank outputs of translation systems from English to
Czech. We also carried out experiments on translation systems from English to a simplified Czech,
which is then re-inflected into Czech before re-ranking.

We obtained a slight improvement in BLEU score using a CWE model, which, given the little
variety of the words generated by translation systems, makes us suppose there is room for more. We
plan to investigate with more complex translation systems, as well as with other applications, such
as morphological re-inflection.

While the performance of our open-vocabulary models are to some extent disappointing, they open
questions about the learned representations we will explore. We also plan to investigate on a more
fitted noise distribution to use with NCE when training open-vocabulary models.
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