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ABSTRACT

Many powerful machine learning models are based on the composition of mul-
tiple processing layers, such as deep nets, which gives rise to nonconvex objec-
tive functions. A general, recent approach to optimise such “nested” functions is
the method of auxiliary coordinates (MAC). MAC introduces an auxiliary coordi-
nate for each data point in order to decouple the nested model into independent
submodels. This decomposes the optimisation into steps that alternate between
training single layers and updating the coordinates. It has the advantage that it
reuses existing single-layer algorithms, introduces parallelism, and does not need
to use chain-rule gradients, so it works with nondifferentiable layers. We describe
ParMAC, a distributed-computation model for MAC. This trains on a dataset dis-
tributed across machines while limiting the amount of communication so it does
not obliterate the benefit of parallelism. ParMAC works on a cluster of machines
with a circular topology and alternates two steps until convergence: one step trains
the submodels in parallel using stochastic updates, and the other trains the coor-
dinates in parallel. Only submodel parameters, no data or coordinates, are ever
communicated between machines. ParMAC exhibits high parallelism, low com-
munication overhead, and facilitates data shuffling, load balancing, fault tolerance
and streaming data processing. We study the convergence of ParMAC and its par-
allel speedup, and implement ParMAC using MPI to learn binary autoencoders for
fast image retrieval, achieving nearly perfect speedups in a 128-processor cluster
with a training set of 100 million high-dimensional points.

1 INTRODUCTION

Serial computing has reached a plateau and parallel, distributed architectures are becoming widely
available, from machines with a few cores to cloud computing with 1000s of machines. The combi-
nation of powerful nested models with large datasets is a key ingredient to solve difficult problems in
machine learning, computer vision and other areas, and it underlies recent successes in deep learning
(Hinton et al., 2012; Le et al., 2012; Dean et al., 2012). Unfortunately, parallel computation is not
easy, and many good serial algorithms do not parallelise well. The cost of communicating (through
the memory hierarchy or a network) greatly exceeds the cost of computing, both in time and energy,
and will continue to do so for the foreseeable future. Thus, good parallel algorithms must minimise
communication and maximise computation per machine, while creating sufficiently many subprob-
lems (ideally independent) to benefit from as many machines as possible. The load (in runtime) on
each machine should be approximately equal. Faults become more frequent as the number of ma-
chines increases, particularly if they are inexpensive machines. Machines may be heterogeneous and
differ in CPU and memory; this is the case with initiatives such as SETI@home, which may become
an important source of distributed computation in the future. Big data applications have additional
restrictions. The size of the data means it cannot be stored on a single machine, so distributed-
memory architectures are necessary. Sending data between machines is prohibitive because of the
size of the data and the high communication costs. In some applications, more data is collected
than can be stored, so data must be regularly discarded. In others, such as sensor networks, limited
battery life and computational power imply that data must be processed locally.
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In this paper, we focus on machine learning models of the form y = FK+1(. . .F2(F1(x)) . . . ), i.e.,
consisting of a nested mapping from the inputx to the outputy. Such nested models involve multiple
parameterised layers of processing and include deep neural nets, cascades for object recognition in
computer vision or for phoneme classification in speech processing, wrapper approaches to classifi-
cation or regression, and various combinations of feature extraction/learning and preprocessing prior
to some learning task. Nested and hierarchical models are ubiquitous in machine learning because
they provide a way to construct complex models by the composition of simple layers. However,
training nested models is difficult even in the serial case because function composition produces
inherently nonconvex functions, which makes gradient-based optimisation difficult and slow, and
sometimes inapplicable (e.g. with nonsmooth or discrete layers).

Our starting point is a recently proposed technique to train nested models, the method of auxiliary
coordinates (MAC) (Carreira-Perpiñán and Wang, 2012; 2014). This reformulates the optimisation
into an iterative procedure that alternates training submodels independently with coordinating
them. It introduces significant model and data parallelism, can often train the submodels using
existing algorithms, and has convergence guarantees with differentiable functions to a local
stationary point, while it also applies with nondifferentiable or even discrete layers. MAC has been
applied to various nested models (Carreira-Perpiñán and Wang, 2014; Wang and Carreira-Perpiñán,
2014; Carreira-Perpiñán and Raziperchikolaei, 2015; Raziperchikolaei and Carreira-Perpiñán,
2016; Carreira-Perpiñán and Vladymyrov, 2015). However, the original papers proposing MAC
(Carreira-Perpiñán and Wang, 2012; 2014) did not address how to run MAC on a distributed
computing architecture, where communication between machines is far costlier than computation.
This paper proposes ParMAC, a parallel, distributed framework to learn nested models using MAC,
analyses its parallel speedup and convergence, implements it in MPI for the problem of learning
binary autoencoders, and demonstrates its ability to train on large datasets and achieve large
speedups on a distributed cluster.

Related work Distributed optimisation and large-scale machine learning have been steadily gain-
ing interest in recent years, with the development of parallel computation abstractions tailored
to machine learning, such as Spark (Zaharia et al., 2010), GraphLab (Low et al., 2012), Petuum
(Xing et al., 2015) or TensorFlow (Abadi et al., 2015), which have the goal of making cloud com-
puting easily available to train machine learning models. Most work has centred on convex optimi-
sation, particularly when the objective function has the form of empirical risk minimisation (data
fitting term plus regulariser) (Cevher et al., 2014). This includes many important models in machine
learning, such as linear regression, LASSO, logistic regression or SVMs. Such work is typically
based on stochastic gradient descent (SGD) (Bottou, 2010), coordinate descent (CD) (Wright, 2016)
or the alternating direction method of multipliers (ADMM) (Boyd et al., 2011). This has resulted in
several variations of parallel SGD (Bertsekas, 2011; Zinkevich et al., 2010; Niu et al., 2011), paral-
lel CD (Bradley et al., 2011; Richtárik and Takáč, 2013; Liu and Wright, 2015) and parallel ADMM
(Boyd et al., 2011; Ouyang et al., 2013; Zhang and Kwok, 2014).

Little work has addressed nonconvex models. Most of it has focused on deep nets (Dean et al.,
2012; Le et al., 2012). Google’s DistBelief (Dean et al., 2012) uses asynchronous parallel SGD
(with gradients for the full model computed with backpropagation) to achieve data parallelism, and
some form of model parallelism. The latter is achieved by carefully partitioning the neural net into
pieces and allocating them to machines to compute gradients. This is difficult to do and requires a
careful match of the neural net structure (number of layers and hidden units, connectivity, etc.) to the
target hardware. Also, parallel SGD can diverge with nonconvex models, which requires heuristics
to make sure we average replica models that are close in parameter space and thus associated with
the same optimum. Although this has managed to train huge nets on huge datasets by using tens
of thousands of CPU cores, the speedups achieved were very modest. Other work has used similar
techniques but for GPUs (Coates et al., 2013; Seide et al., 2014).

Finally, there also exist specific approximation techniques for certain types of large-scale ma-
chine learning problems, such as spectral problems, using the Nyström formula or other landmark-
based methods (Williams and Seeger, 2001; Bengio et al., 2004; Drineas and Mahoney, 2005;
Talwalkar et al., 2008; Vladymyrov and Carreira-Perpiñán, 2013; 2016).

ParMAC is specifically designed for nested models, which are typically nonconvex and include deep
nets and many other models, some of which have nondifferentiable layers. As we describe below,
ParMAC has the advantages of being simple and relatively independent of the target hardware, while
achieving high speedups.
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2 OPTIMISING NESTED MODELS USING AUXILIARY COORDINATES (MAC)

Many optimisation problems in machine learning involve mathematically “nested” functions of the
form F(x;W) = FK+1(. . .F2(F1(x;W1);W2) . . . ;WK+1) with parameters W, such as deep
nets. Such problems are traditionally optimised using methods based on gradients computed using
the chain rule. However, such gradients may sometimes be inconvenient to use, or may not exist
(e.g. if some of the layers are nondifferentiable, as with binary autoencoders). Also, they are hard
to parallelise, because of the inherent sequentiality in the chain rule. The method of auxiliary co-
ordinates (MAC) (Carreira-Perpiñán and Wang, 2012; 2014) is designed to optimise nested models
without using chain-rule gradients while introducing parallelism. The idea is to break nested func-
tional relationships judiciously by introducing new variables (the auxiliary coordinates) as equality
constraints. These are then solved by optimising a penalised function using alternating optimi-
sation over the original parameters (which we call the W step) and over the coordinates (which
we call the Z step). The result is a coordination-minimisation (CM) algorithm: the minimisation
(W) step updates the parameters by splitting the nested model into independent submodels and
training them using existing algorithms, and the coordination (Z) step ensures that corresponding
inputs and outputs of submodels eventually match. MAC algorithms have been developed for sev-
eral nested models so far: deep nets (Carreira-Perpiñán and Wang, 2014), low-dimensional SVMs
(Wang and Carreira-Perpiñán, 2014), binary autoencoders (Carreira-Perpiñán and Raziperchikolaei,
2015), affinity-based loss functions for binary hashing (Raziperchikolaei and Carreira-Perpiñán,
2016) and parametric nonlinear embeddings (Carreira-Perpiñán and Vladymyrov, 2015). Although
this paper proposes and analyses ParMAC in general, our MPI implementation is for the particular
case of binary autoencoders. These define a nonconvex nondifferentiable problem, yet its MAC
algorithm is simple and effective.

MAC algorithm for binary autoencoders A binary autoencoder (BA) is a usual autoencoder but
with a binary code layer. It consists of an encoder h(x) that maps a real vector x ∈ R

D onto
a binary code vector with L < D bits, z ∈ {0, 1}L, and a linear decoder f(z) which maps z
back to R

D in an effort to reconstruct x. We will call h a binary hash function (see later). Let
us write h(x) =  (Ax) (A includes a bias by having an extra dimension x0 = 1 for each x)

where A ∈ R
L×(D+1) and  (t) is a step function applied elementwise, i.e.,  (t) = 1 if t ≥ 0 and

 (t) = 0 otherwise. Given a dataset of D-dimensional patterns X = (x1, . . . ,xN ), our objective
function, which involves the nested model y = f(h(x)), is the usual least-squares reconstruction
error EBA(h, f) =

∑N
n=1 ‖xn − f(h(xn))‖2. Optimising this nonconvex, nonsmooth function is

NP-complete. Where the gradients do exist wrt A they are zero, so optimisation of h using chain-
rule gradients does not apply. We introduce as auxiliary coordinates the outputs of h, i.e., the codes
for each of the N input patterns, and obtain the following equality-constrained problem:

min
h,f ,Z

N
∑

n=1

‖xn − f(zn)‖2 s.t. zn = h(xn), zn ∈ {0, 1}L, n = 1, . . . , N. (1)

Note the codes are binary. We now apply the quadratic-penalty method and minimise the following
objective function while progressively increasing µ, so the constraints are eventually satisfied:

EQ(h, f ,Z;µ) =

N
∑

n=1

‖xn − f(zn)‖2 + µ ‖zn − h(xn)‖2 s.t. zn ∈ {0, 1}L, n = 1, . . . , N. (2)

Finally, we apply alternating optimisation over Z and W = (h, f). This gives the following steps:

• Over Z for fixed (h, f), this is a binary optimisation on NL variables, but it separates into
N independent optimisations each on only L variables, with the form of a binary proximal
operator (where we omit the index n): minz ‖x− f(z)‖2 + µ‖z− h(x)‖2 s.t. z ∈ {0, 1}L.
This can be solved approximately by alternating optimisation over bits.

• Over W = (h, f) for fixed Z, we obtain L + D independent problems: for each of the
L single-bit hash functions (which try to predict Z optimally from X), each solvable by
fitting a linear SVM; and for each of the D linear decoders in f (which try to reconstruct X
optimally from Z), each a linear least-squares problem.

The user must choose a schedule for the penalty parameter µ (sequence of values 0 < µ1 < · · · <
µ∞). This should increase slowly enough that the binary codes can change considerably and explore

3



Under review as a conference paper at ICLR 2017

input XD×N = (x1, . . . ,xN ), L ∈ N

Initialise ZL×N = (z1, . . . , zN ) ∈ {0, 1}LN

for µ = 0 < µ1 < · · · < µ∞

parfor l = 1, . . . , L W step: h

hl(·)← fit SVM to (X,Zl·)
parfor d = 1, . . . , D W step: f

fd(·)← least-squares fit to (Z,Xd·)
parfor n = 1, . . . , N Z step

zn ← argminzn∈{0,1}L ‖xn − f(zn)‖2 + µ ‖zn − h(xn)‖2
if no change in Z and Z = h(X) then stop

return h, Z = h(X)

X training points

Z auxiliary coordinates

h: RD → {0, 1}L,
h = (h1, . . . , hL)

encoders (hash fcn.)

f : RL → R
D,

f = (f1, . . . , fD)
decoders

Figure 1: MAC algorithm for binary autoencoders. “parfor” indicates a for loop whose iterations
are carried out in parallel. The steps over h and f can be run in parallel as well.

better solutions before the constraints are satisfied and the algorithm stops. With BAs, MAC stops
for a finite value of µ, which occurs whenever Z does not change compared to the previous Z step.
This gives a practical stopping criterion. Carreira-Perpiñán and Raziperchikolaei (2015) give proofs
of these statements and further details about the algorithm. Fig. 1 gives the MAC algorithm for BAs.

The BA was proposed as a way to learn good binary hash functions for fast, approximate information
retrieval (Carreira-Perpiñán and Raziperchikolaei, 2015). Binary hashing (Grauman and Fergus,
2013) has emerged in recent years as an effective way to do fast, approximate nearest-neighbour
searches in image databases. The real-valued, high-dimensional image vectors are mapped onto a
binary space with L bits and the search is performed there using Hamming distances at a vastly
faster speed and smaller memory (e.g. N = 109 points with D = 500 take 2 TB, but only 8 GB
using L = 64 bits, which easily fits in RAM). As shown by Carreira-Perpiñán and Raziperchikolaei
(2015), training BAs with MAC beats approximate optimisation approaches such as relaxing the
codes or the step function in the encoder, and yields state-of-the-art binary hash functions h in un-
supervised problems, improving over established approaches such as iterative quantisation (ITQ)
(Gong et al., 2013). We focus mostly on linear hash functions because these are, by far, the most
used type of hash functions in the literature of binary hashing, due to the fact that computing the
binary codes for a test image must be fast at run time.

MAC in general With a nested function with K layers, we can introduce auxiliary coordinates at
each layer. For example, with a neural net, this decouples the weight vector of every hidden unit in
the W step, which can be solved as a logistic regression (see Carreira-Perpiñán and Alizadeh, 2016).
For a large net with a large dataset, this affords an enormous potential for parallel computation.

MAC and EM MAC is very similar to expectation-maximisation (EM) at a conceptual level. EM
(McLachlan and Krishnan, 2008) applies generally to many probabilistic models. The resulting
algorithm can be very different (e.g. EM for Gaussian mixtures vs EM for hidden Markov models),
but it always alternates two steps that conceptually do the following. The E step updates in parallel
the posterior probabilities. This separates over data points and is like the Z step in MAC, where
the posterior probabilities are the auxiliary coordinates, and where the step may be in closed-form
or require optimisation, depending on the model. The M step updates in parallel the “submodels”.
For a mixture with M components, these are the M Gaussians (means, covariances, proportions).
This separates over submodels and is like the W step in MAC. For BAs, the submodels are the L
encoders (linear SVMs) and the D decoders (linear regressors); for a neural net, each weight vector
of a hidden unit is a submodel (a logistic regressor). For Gaussian mixtures, the M step can be done
exactly in one “epoch” because it is a simple average. For MAC, it usually requires optimisation,
and so multiple epochs. In fact, ParMAC applies to EM by using e = 1 epoch: in the W step, the
Gaussians visit each machine circularly and (their averages) are updated on its data; in the Z step,
each machine updates its posterior probabilities.

In the rest of the paper, some readers may find this analogy useful and think of EM for Gaussian mix-
tures instead of MAC, replacing “submodels” and “auxiliary coordinates” in MAC with “Gaussians”
and “posterior probabilities” in EM, respectively.
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Figure 2: ParMAC model with P = 4 machines, M = 12 submodels “wh” and N = 40 data points.
Submodels h, h +M , h+ 2M and h + 3M are copies of submodel h, but only one of them is the
most currently updated. At the end of the W step all copies are identical.

3 PARMAC: A PARALLEL, DISTRIBUTED COMPUTATION MODEL FOR MAC

A specific MAC algorithm depends on the model and objective function and on how the auxiliary
coordinates are introduced. We can achieve steps that are closed-form, convex, nonconvex, binary,
or others. However, we will assume the following always hold: (1) Separability over data points.
In the Z step, the N subproblems for z1, . . . , zN are independent, one per data point. Each zn
step depends on the current model. (2) Separability over submodels. In the W step, there are
M independent submodels, where M depends on the problem. For example, M is the number
of hidden units in a deep net, or the number of hash functions and linear decoders in a BA. Each
submodel depends on all the data and coordinates. We now show how to turn this into a distributed,
low-communication ParMAC algorithm.

The basic idea in ParMAC is as follows. With large datasets in distributed systems, it is imperative
to minimise data movement over the network because the communication time generally far exceeds
the computation time in modern architectures. In MAC we have 3 types of data: the original train-
ing data (X,Y), the auxiliary coordinates Z, and the model parameters (the submodels). Usually,
the latter type is far smaller. In ParMAC, we never communicate training or coordinate data; each
machine keeps a disjoint portion of (X,Y,Z) corresponding to a subset of the points. Only model
parameters are communicated, during the W step, following a circular topology, which implicitly
implements a stochastic optimisation. The model parameters are the hash functions h and the de-
coder f for BAs, and the weight vector wh of each hidden unit h for deep nets. Let us see this in
detail (refer to fig. 2).

Assume we have P identical processing machines, each with its own memory and CPU, connected
through a network in a circular unidirectional topology. Each machine stores a subset of the data
points and corresponding coordinates (xn,yn, zn) such that the subsets are disjoint and their union
is the entire data. Before the Z step starts, each machine contains all the (just updated) submodels.
This means that in the Z step each machine processes its auxiliary coordinates {zn} independently
of all other machines, i.e., no communication occurs. The W step is more subtle. At the beginning
of the W step, each machine will contain all the submodels and its portion of the data and (just
updated) coordinates. Each submodel must have access to the entire data and coordinates in order
to update itself and, since the data cannot leave its home machine, the submodel must go to the data.
We achieve this in the circular topology with an asynchronous processing, as follows. Each machine
keeps a queue of submodels to be processed, and repeatedly performs the following operations:
extract a submodel from the queue, process it on its data and send it to the machine’s successor
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(which will insert it in its queue). If the queue is empty, the machine waits until it is nonempty. The
queue of each machine is initialised with a portion M/P of submodels associated with that machine
(e.g. in fig. 2, machine 1’s queue contains submodels 1–3, machine 2 submodels 4–6, etc.). Each
submodel carries a counter that is initially 1 and increases every time it visits a machine. When
it reaches P , the submodel has visited all machines in sequence and has completed an epoch. We
repeat this for e epochs and, to ensure all machines have all final submodels before starting the Z
step, we run a communication-only epoch e + 1 (without computation), where submodels simply
move from machine to machine.

Since each submodel is updated as soon as it visits a machine, rather than computing the exact
gradient once it has visited all machines and then take a step, the W step is really carrying out
stochastic steps for each submodel. For example, if the update is done by a gradient step, we are
actually implementing stochastic gradient descent (SGD) where the minibatches are of size N/P
(or smaller, if we subdivide a machine’s data portion into minibatches, which should be typically
the case in practice). From this point of view, we can regard the W step as doing SGD on each
submodel in parallel by having each submodel visit the minibatches in each machine.

As described, and as implemented in our experiments, the entire model parameters are communi-
cated e + 1 times in a MAC iteration if running e epochs in the W step. We can also run e epochs
with only 2 rounds of communication by having a submodel do e consecutive passes within each
machine’s data. This reduces the amount of shuffling, but should not be a problem if the data are
randomly distributed over machines.

Extensions of ParMAC Data shuffling, which improves the SGD convergence speed, can be
achieved without data movement by accessing the local data in random order at each epoch (within-
machine), and by randomising the circular topology at each epoch (across-machine). Load bal-
ancing is simple because the work in both W and Z steps is proportional to the number of data
points N . Hence, if the processing power of machine p is proportional to αp > 0, we allocate
to it Nαp/(α1 + · · · + αP ) data points. Streaming, i.e., discarding old data and adding new data
during training, can be done by adding/removing data within-machine, or by adding/removing ma-
chines and updating the circular topology. Fault tolerance is possible because we can still learn
a good model even if we lose the data from a machine that fails, and because in the W step we
can revert to older copies of the lost submodels residing in other machines. See further details in
Carreira-Perpiñán and Alizadeh (2016).

A theoretical model of the parallel speedup We can estimate the runtime of the W and Z steps
assuming there are M independent submodels of the same size in the W step, using e epochs, on a
dataset with N training points, distributed over P identical machines (each with N/P points). Let
tWr be the computation time per submodel and data point in the W step, tZr the computation time
per data point in the Z step, and tWc the communication time per submodel in the W step. Then the
runtime of the W and Z steps is TW(P ) = ⌈M/P ⌉(tWr N

P + tWc )Pe+⌈M/P ⌉tWc P and TZ(P ) =
M N

P tZr , respectively. Hence the parallel speedup is (see details in Carreira-Perpiñán and Alizadeh,
2016):

S(P ) =
T (1)

T (P )
=

ρ 1
⌈M/P⌉MP

1
N P 2 + ρ2P + ρ1

1
⌈M/P⌉M

ρ1 = tZr /(e+ 1)tWc , ρ2 = etWr /(e+ 1)tWc
ρ = ρ1 + ρ2 = (etWr + tZr )/(e+ 1)tWc

(3)

where ρ, ρ1 and ρ2 are ratios of computation vs communication, dependent on the optimisation
algorithm in the W and Z steps, and on the performace of the distributed system and MPI library.

Hence, if P ≤ M and M is divisible by P we have S(P ) = P/(1 + P
ρN ) and if P > M we

have S(P ) = ρM/(ρ2+ρ1
M
P + P

N ). In practice, typically we have ρ≪ 1 (because communication
dominates computation in current architectures) and ρ2N ≫ 1 (large dataset). If we take P ≪ ρ2N ,
then S(P ) ≈ P if P ≤ M and S(P ) ≈ ρM/(ρ2 + ρ1

M
P ) if P > M . Hence, the speedup is

nearly perfect if using fewer machines than submodels, and otherwise it peaks at S∗
1 = ρM/(ρ2 +

2
√

ρ1M/N) > M for P = P ∗
1 =
√
ρ1MN > M and decreases thereafter. This affords very large

speedups for large datasets and large models. This theoretical speedup matches well our measured
ones (see the experiments section), and can be used to determine optimal values for the number of
machines P to use in practice (subject to additional constraints, e.g. cost of the machines).
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Eq. (3) also shows that we can leave the speedup unchanged by trading off dataset size and com-
putation/communication times, as long as one of these holds: NtWr and NtZr remain constant; or
N/tWc remains constant; or tWr /tWc and tZr /t

W
c remain constant.

In the BA, we have submodels of different size: encoders of size D and decoders of size L < D.
We can model this by “grouping” the D decoders into L groups of D/L decoders each, resulting
in M = 2L equal-size submodels (assuming the ratio of computation and communication times of
decoder vs encoder is L/D < 1).

Convergence of ParMAC The only approximation that ParMAC makes to the original MAC algo-
rithm is using SGD in the W step. Since we can guarantee convergence of SGD under certain condi-
tions (e.g. Robbins-Monro schedules), we can recover the original convergence guarantees for MAC
to a local stationary point with differentiable layers (see details in Carreira-Perpiñán and Alizadeh,
2016). This convergence guarantee is independent of the number of layers, models and proces-
sors. With nondifferentiable layers, the convergence properties of MAC (and ParMAC) are not well
known. In particular, for the binary autoencoder the encoding layer is discrete and the problem is
NP-complete. While convergence guarantees are important theoretically, in practical applications
with large datasets in a distributed setting one typically runs SGD for just a few epochs, even one
or less than one (i.e., we stop SGD before passing through all the data). This typically reduces the
objective function to a good enough value as fast as possible, since each pass over the data is very
costly. In our experiments, 1–2 epochs in the W step make ParMAC very similar to MAC using an
exact step.

Circular vs parameter-server topologies We also considered implementing ParMAC using a
parameter-server (PS) topology rather than a circular one, but the latter is better. With a PS we do
parallel SGD on each submodel independently, i.e., each worker runs SGD on its own submodel
replica for a while, sends it to the PS, and this broadcasts an “average” submodel back to the work-
ers, asynchronously. The circular topology does true SGD on each submodel independently from
the others. We can show the runtime per iteration using a PS is equal to that of the circular topol-
ogy only if the server can communicate with P workers simultaneously (rather than sequentially),
otherwise it is slower. The reason is the PS has more communication. The PS has some additional
disadvantages: parallel SGD converges more slowly than true SGD and is difficult to apply if the W
step is nonconvex; and it needs extra machine(s) to act as parameter server(s). The fundamental is-
sue is that both topologies differ in how they employ the available parallelism: the circular topology
updates different, independent submodels, while the PS updates replicas of the same submodels.

4 EXPERIMENTS

MPI implementation of ParMAC for BAs. We have used C/C++, the GSL and BLAS libraries for
mathematical operations, and the Message Passing Interface (MPI) (Gropp et al., 1999) for inter-
process communication. MPI is a widely used framework for high-performance parallel computing,
available in multiple platforms. It is particularly suitable for ParMAC because of its support of the
SPMD (single program, multiple data) model. In MPI, processes in different machines communicate
through messages. To receive data, we use the synchronous blocking receive function MPI Recv;
the process calling this blocks until the data arrives. To send data we use the buffered blocking send
function MPI Bsend. We allocate enough memory and attach it to the system. The process calling
MPI Bsend blocks until the buffer is copied to the MPI internal memory; after that, the MPI library
takes care of sending the data. See a code snippet in Carreira-Perpiñán and Alizadeh (2016).

Distributed-memory cluster. We used General Computing Nodes from the UCSD Triton Shared
Computing Cluster (TSCC), available to the public for a fee. Each node contains 2 8-core Intel
Xeon E5-2670 processors (16 cores in total), 64GB RAM (4GB/processor) and a 500GB hard
drive. The nodes are connected through a 10GbE network. We used up to P = 128 proces-
sors. Carreira-Perpiñán and Alizadeh (2016) give detailed specs as well as experiments in a shared-
memory machine.

Datasets. We have used 3 well-known colour image retrieval benchmarks. (1) CIFAR (Krizhevsky,
2009) contains 60 000 images (N = 50 000 training and 10 000 test), represented by D = 320 GIST
features. (2) SIFT-1M (Jégou et al., 2011a) contains N = 106 training and 104 test images, each
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represented by D = 128 SIFT features. (3) SIFT-1B (Jégou et al., 2011a) has three subsets: 109

base vectors where the search is performed, N = 108 learning vectors used to train the model and
104 query vectors.

Performance measures. Regarding the quality of the BA and hash functions learnt, we report the
retrieval precision (%) in the test set using as true neighbours the K nearest images in Euclidean
distance in the original space, and as retrieved neighbours in the binary space we use the k nearest
images in Hamming distance. We set (K, k) = (1 000, 100) for CIFAR and (10 000, 10 000) for
SIFT-1M. For SIFT-1B, as suggested by the dataset creators, we report the recall@R: the average
number of queries for which the nearest neighbour is ranked within the top R positions (for varying
values of R); in case of tied distances, we place the query as top rank. All these measures are
computed offline once the BA is trained. Carreira-Perpiñán and Alizadeh (2016) give additional
measures and experiments.

Models and their parameters. We use BAs with linear encoders (linear SVM) except with SIFT-1B,
where we also use kernel SVMs. The decoder is always linear. We set L = 16 bits (hash functions)
for CIFAR and SIFT-1M and L = 64 bits for SIFT-1B. We initialise the binary codes from truncated
PCA ran on a subset of the training set (small enough that it fits in one processor). To train the
encoder (L SVMs) and decoder (D linear mappings) with stochastic optimisation, we used the SGD
code from (Bottou and Bousquet, 2008), using its default parameter settings. The SGD step size is
tuned automatically in each iteration by examining the first 1 000 datapoints. We use a multiplicative
µ schedule µi = µ0a

i where the initial value µ0 and the factor a > 1 are tuned offline in a trial
run using a small subset of the data. For CIFAR we use µ0 = 0.005 and a = 1.2 over 26 iterations
(i = 0, . . . , 25). For SIFT-1M and SIFT-1B we use µ0 = 10−4 and a = 2 over 10 iterations.

Effect of stochastic steps in the W step Fig. 3 shows the effect on the precision on CI-
FAR of varying the number of epochs within the W step and shuffling the data as a function
of the number of processors P . As the number of epochs increases, the W step is solved
more exactly (8 epochs is practically exact in this data). Fewer epochs, even just one, cause
only a small degradation. The reason is that, although these are relatively small datasets, they
contain sufficient redundance that few epochs are sufficient to decrease the error considerably.
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Figure 3: Precision in CIFAR dataset.

This is also helped by the accumulated effect
of epochs over MAC iterations. Running more
epochs increases the runtime and lowers the
parallel speedup in this particular model, be-
cause we use few bits (L = 16) and therefore
few submodels (M = 2L = 32) compared to
the number of machines (up to P = 128), so
the W step has less parallelism. The positive
effect of data shuffling in the W step is clear:
shuffling generally increases the precision with
no increase in runtime.

Speedup The fundamental advantage of ParMAC and distributed optimisation in general is the
ability to train on datasets that do not fit in a single machine, and the reduction in runtime because
of parallel processing. Fig. 4 shows the “strong scaling” speedups achieved, as a function of the
number of machines P for fixed problem size (dataset and model), in CIFAR and SIFT-1M (N =
50K and 1M training points, respectively). Even though these datasets and especially the number of
independent submodels (M = 2L = 32 effective submodels of the same size, as discussed earlier)
are relatively small, the speedups we achieve are nearly perfect for P ≤ M and hold very well for
P > M up to the maximum number of machines we used (P = 128 in the distributed system). The
speedups flatten as the number of W-step epochs (and consequently the amount of communication)
increases, because for this experiment the bottleneck is the W step, whose parallelisation ability
(i.e., the number of concurrent processes) is limited by M = 2L (the Z step has N independent
processes and is never a bottleneck, since N is very large). However, as noted earlier, using 1 to 2
epochs gives a good enough result, very close to doing an exact W step. The runtime for SIFT-1M
on P = 128 machines with 8 epochs was 12 minutes and its speedup 100×. This is particularly
remarkable given that the original, nested model did not have model parallelism.
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Figure 4: Speedup S(P ) as a function of the number of machines P (top: experiment, bottom:
theory). The dataset size and number of submodels (N,M) is (50 000, 32) for CIFAR, (106, 32) for
SIFT-1M and (108, 128) for SIFT-1B.

Fig. 4 also shows the speedups predicted by our theoretical model. We set the parameters e and
N to their known values, and M = 2L = 32 for CIFAR and SIFT-1M and M = 2L = 128 for
SIFT-1B. For the time parameters, we set tWr = 1 to fix the time units, and we set tWc and tZr by
trial and error to achieve a reasonably good fit to the experimental speedups: tWc = 104 for both
datasets, and tZr = 200 for CIFAR and 40 for SIFT-1M. Although these are fudge factors, they are
in rough agreement with the fact that communicating a weight vector over the network is orders of
magnitude slower than updating it with a gradient step, and that the Z step is quite slower than the
W step because of the binary optimisation it involves.

Large-scale experiment SIFT-1B is one of the largest datasets, if not the largest one, that are
publicly available for comparing nearest-neighbour search algorithms with known ground-truth (i.e.,
precomputed exact Euclidean distances for each query to its k nearest vectors in the base set). The
training set contains N = 100M vectors, each consisting of 128 SIFT features. We used L = 64
hash functions (M = 128 submodels): linear SVMs as before, and kernel SVMs. These have fixed
Gaussian radial basis functions (2 000 centres picked at random from the training set and bandwidth
σ = 160), so the only trainable parameters are the weights, and the MAC algorithm does not change
except that it operates on a 2 000-dimensional input vector of kernel values, instead of the 128 SIFT
features. We use e = 2 epochs with shuffling. All these decisions were based on trials on a subset of
the training dataset. We initialised the binary codes from truncated PCA trained on a subset of size
1M (recall@R=100: 55.2%), which gave results comparable to the baseline in (Jégou et al., 2011b).

We ran ParMAC on the whole training set in the distributed system with 128 processors for 6 it-
erations and achieved a recall@R=100 of 61.5% in 29 hours (linear SVM) and 66.1% in 83 hours
(kernel SVM). Using a scaled-down model and training set, we estimated that training in one ma-
chine (with enough RAM to hold the data and parameters) would take months. The theoretical
speedup (fig. 4 right plot, using the same parameters as in SIFT-1M), is nearly perfect (note the plot
goes up to P = 1 024 machines, even though our experiments are limited to P = 128). This is
because M is quite larger and N is much larger than in the previous datasets.

5 DISCUSSION

Developing parallel, distributed optimisation algorithms for nonconvex problems in machine learn-
ing is challenging, as shown by recent efforts by large teams of researchers (Le et al., 2012;
Dean et al., 2012). One important advantage of ParMAC is its simplicity. Data and model paral-
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lelism arise naturally thanks to the introduction of auxiliary coordinates. The corresponding opti-
misation subproblems can often be solved reusing existing code as a black box (as with the SGD
training of SVMs and linear mappings in the BA). A circular topology is sufficient to achieve a
low communication between machines. There is no close coupling between the model structure and
the distributed system architecture. This makes ParMAC suitable for architectures as different as
supercomputers and data centres.

Further improvements can be made in specific problems. For example, we may have more paral-
lelisation or less dependencies (e.g. the weights of hidden units in layer k of a neural net depend
only on auxiliary coordinates in layers k and k + 1). This may reduce the communication in the W
step, by sending to a given machine only the model portion it needs, or by allocating cores within a
multicore machine accordingly. The W and Z step optimisations can make use of further paralleli-
sation by GPUs or by distributed convex optimisation algorithms. Many more refinements can be
done, such as storing or communicating reduced-precision values with little effect of the accuracy.
In this paper, we have tried to keep our implementation as simple as possible, because our goal was
to understand the parallelisation speedups of ParMAC in a setting as general as possible, rather than
trying to achieve the very best performance for a particular dataset, model or distributed system.

6 CONCLUSION

We have proposed ParMAC, a distributed model for the method of auxiliary coordinates for training
nested, nonconvex models in general, analysed its parallel speedup and convergence, and demon-
strated it with an MPI-based implementation for a particular case, to train binary autoencoders. MAC
creates parallelism by introducing auxiliary coordinates for each data point to decouple nested terms
in the objective function. ParMAC is able to translate the parallelism inherent in MAC into a dis-
tributed system by 1) using data parallelism, so that each machine keeps a portion of the original
data and its corresponding auxiliary coordinates; and 2) using model parallelism, so that independent
submodels visit every machine in a circular topology, effectively executing epochs of a stochastic
optimisation, without the need for a parameter server and therefore no communication bottlenecks.
The convergence properties of MAC (to a stationary point of the objective function) remain essen-
tially unaltered in ParMAC. The parallel speedup can be theoretically predicted to be nearly perfect
when the number of submodels is comparable or larger than the number of machines, and to eventu-
ally saturate as one continues to increase the number of machines, and indeed this was confirmed in
our experiments. ParMAC also makes it easy to account for data shuffling, load balancing, streaming
and fault tolerance. Hence, we expect that ParMAC could be a basic building block, in combination
with other techniques, for the distributed optimisation of nested models in big data settings.
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