Under review as a conference paper at ICLR 2017

SAMPLE IMPORTANCE IN TRAINING DEEP NEURAL
NETWORKS

Tianxiang Gao, Vladimir Jojic
Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, NC, 27599 , USA
{tgao,viojic}lcs.unc.edu

ABSTRACT

The contribution of each sample during model training varies across training iter-
ations and the model’s parameters. We define the concept of sample importance
as the change in parameters induced by a sample. In this paper, we explored the
sample importance in training deep neural networks using stochastic gradient de-
scent. We found that “easy” samples — samples that are correctly and confidently
classified at the end of the training — shape parameters closer to the output, while
the “hard” samples impact parameters closer to the input to the network. Further,
“easy” samples are relevant in the early training stages, and “hard” in the late
training stage. Further, we show that constructing batches which contain samples
of comparable difficulties tends to be a poor strategy compared to maintaining a
mix of both hard and easy samples in all of the batches. Interestingly, this con-
tradicts some of the results on curriculum learning which suggest that ordering
training examples in terms of difficulty can lead to better performance.

1 INTRODUCTION

Sample importance is the sample’s contribution to the parameter change during training. In statistics,
the concept “leverage” of a point is used (St Laurent & Cook! (1992))) to measure the impact of a
sample on the training of a model. In the context of SVM, the most important samples are the support
vectors as they define the separating hyperplane. Understanding the importance of the samples
can help us interpret trained models and structure training to speed up convergence and improve
prediction accuracy. For example, Curriculum learning (CL) from Bengio et al.|(2009) shows that
training with easy samples first, then gradually transitioning to difficult samples can improve the
learning. In CL, the “easiness” of a sample is predefined either manually or using an evaluation
model. Self-paced learning (SPL) (Kumar et al.| (2010)) shows that it is possible to learn from
samples in order of easiness. In this framework, easiness is related to the prediction error and can
be estimated from the model. However, easiness of a sample may not be sufficient to decide when
it should be introduced to a learner. Maintaining diversity among the training samples can have a
substantial effect on the training (Jiang et al.[(2014)).

In this work, we explore the sample importance in deep neural networks. Deep learning methods
have been successfully applied in many tasks and routinely achieve better generalization error than
classical shallow methods (LeCun et al.|(2015)). One of the key characteristics of a deep network
is its capacity to construct progressively more complex features throughout its layers (Lee et al.
(2011)). An intuitive question arises: which samples contribute the most to the training of the differ-
ent layer’s parameters? From literature [Saxe et al.| (2011, we know that even randomly generated
filters can compute features that lead to good performance — presumably on easy samples. However,
to learn hard samples correctly, the model may need to construct complex features, which require
both more training time and refined filters from bottom layers. Hence, we hypothesized that the
hard samples shape the bottom layers — closer to the input — and easy samples shape the top layers —
closer to the output.

Under review as a conference paper at ICLR 2017

Motivated by the above hypothesis, we analyzed the sample importance in a 3 layer ReLU network
on two standard datasets. The results reveal several interesting facts about the sample importance in
easy and hard samples:

1. Easy and hard samples impact the parameters in different training stages. The biggest
impact of easy samples on parameters are mostly during the early training stage, while the impact
of hard samples become large in the late training stage.

2. Easy and hard samples impact the parameters in different layers. Easy samples impact have
larger impact on top layer parameters, while hard samples shape the bottom layer parameters.

3. Mixing hard samples with easy samples in each batch helps training. We conducted batches
with homogeneous or mixed “easiness”. We found that use of homogeneous batches hinders the
training. Hence, it is preferable for network to see both easy and hard samples during all stages of
training.

Next, we are going to give the definition of sample importance in Section 2] The empirical analysis
for sample importance in the deep neural network in two real datasets is discussed in Section [3]
Extension about sample importance is showed in Section 4]

2 SAMPLE IMPORTANCE

In this section, we are going to introduce the terminology and provide a quantitative measurement
of sample importance for a training procedure.

2.1 SAMPLE WEIGHT

In supervised learning, a model is trained by optimizing an objective over a set of observed training
samples (x;,y;). Let f(x;, 0) be the output of a model for parameter 8. The training objective can
be written as:

ZL(mJ(xi,e» + R(0), (D)

where L(y;, f(xi,8)) is the loss on sample ¢, and R(0) is the regularization on the parameters. In
order to highlight contribution of each sample, we can introduce sample specific weights v; € [0, 1]
which scale sample’s contribution to the loss. Hence, the objective in (1)) can be rewritten as:

> wil(yi, f(xi,0)) + R(6), 2)
i=1

We define the weight v; as the sample weight. Similar definitions on v; has been proposed in
Self-paced learning (SPL) Kumar et al.[(2010).

In Stochastic Gradient descend (SGD) methods, parameters € are updated with a certain step size
7 in each iteration with regard to a set of training samples. If we allow different sample weights in
different iterations, a single update can be written as:

n
0t+1 _ Bt _ nzvltgf _ ,r]rt7
=1

where @' is the parameter vector at epoch t, g! = %Li(yi, f(x;,0), rt = %R(Ot), and v! is
the weight of ¢th sample at iteration .

2.2 SAMPLE IMPORTANCE

If we change the weight of a sample ¢ at iteration ¢, how would such change impact the parameter
training in that iteration? We can answer this question by calculating the first order derivative of
parameter change A" = 0" — 0" with regard to sample weight vk

P, = %Mt = —ng;.
Ui

Under review as a conference paper at ICLR 2017

We call d)ﬁ the parameter affectibility by ¢th sample at iteration ¢. d)ﬁf is a vector consists of param-
eter affectibility from all parameters in the network. Specifically, ¢§’ ; is the parameter affectibility

for jth parameter in the network. (]5’; reflects the relationship between parameter change and different
samples.

Typical deep networks contains millions of parameters. Hence, we are going to focus on groups of
parameters of interests. We define ith sample’s importance for parameters of dth layer of as:

t t 2
i,d — Z (i, j))
JE€Qa
where Q is a set consists of the indexes of all parameters in layer d. Hence, sample’s importance
for all the parameters in the model is:
t t)2
a; = Z(i, j))

J
; t _ D t
Obviously, we have af = a1 Bi7d.

The sum of sample’s importance across all iterations is defined as overall importance of a sample:

75: t
T = (&%
t

In general, for each sample i, computing /3! ; allows us to decompose its influence in the model’s
training across training stages and different layers.

We note that the sample importance is a high-level measurement of the samples influence on param-
eters at each iteration of the update. This quantity is not an accurate measurement of the relationship
between a sample and final trained model. Refinements of this concept are discussed in Section 4]

3 EMPIRICAL ANALYSIS OF SAMPLE IMPORTANCE

We are going to explore the samples’ importance for different layers at different epoch through a
series of empirical experiments on two standard datasets.

3.1 EXPERIMENT SETUP

Dataset All the analysis are performed on two standard datasets: MNIST E] (LeCun et al.|(1998)),
a benchmark dataset that contains handwritten digit images. Each sample is a 28 x 28 image
from 10 classes. We used 50000 samples for training and 10000 samples for testing. CIFAR-10
E](Krizhevsky & Hinton| (2009))), a dataset contains 32 x 32 tiny color images from 10 classes. Each
sample has 3072 features. We used 50000 samples for training and 10000 samples for testing.

Architecture We used a multilayer feed forward neural network with 3 hidden layers of 512 hid-
den nodes with rectified linear units (ReLU) activation function, a linear output layer, and a softmax
layer on top for classification. The weights in each hidden layer are initialized according to |Glorot
& Bengio| (2010). For hyper-parameters, we used learning rate of 0.1, batch size of 100, 50 total
epochs, and weight-decay of le — 5. No momentum or learning decay was used. All the code are
based on a common deep learning package Theano from Bergstra et al.|(2010); |Bastien et al.[(2012).

3.2 SAMPLE IMPORTANCE IS STABLE WITH RESPECT TO DIFFERENT INITIALIZATIONS

Firstly, we want to explore whether the sample importance is stable under different initializations.
We used three different random seeds to initialize the network parameters and calculated the sample
importance every five epochs. We computed the Spearman’s rank correlation between sample im-
portance to the model, of, in each pair of initializations. This correlation remains high in all epochs,

'nttp://yann.lecun.com/expdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

http://yann.lecun.com/expdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

Under review as a conference paper at ICLR 2017

above 0.9, as shown in Figure[I] This indicates that the sample importance is relatively stable to
initialization of the network. Hence, all the following analysis are based on the results from initial-
ization seed 1. (Details of training and test error for the chosen model can be viewed in Appendix

Figure [9).

0.98 0.99 CIFAR-10
0.97 0.98
S 0.96 5
=2 S 097}
o o
9 0.95 o
5 5096}
© 0.94 o
5 G 095}
£ 0.93 £
© ©
0.94}
é’. 0.92 — Corr 1,2 §. — Corr1,2
0.91] — Corr1,3 0.93} — Corrl,3
— Corr 2,3 — Corr2,3
090 I n n I 092 I n n I
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs

Figure 1: Does initialization affect sample’s importance? Sample importance is preserved be-
tween initializations of the network. For each epoch, and a pair of initializations, we computed
Spearman Correlation of samples’ importance. Across all epochs, the correlation is of greater than
0.9 in both MNIST and CIFAR-10. Early epochs show higher consistency between ranks of sample
importance across different initializations.

3.3 DECOMPOSITION OF SAMPLE IMPORTANCE

To better understand and visualize the sample importance, we firstly calculate the overall sample
importance at each epoch as A! = E:’L:l a!. Similarly, the overall sample importance to layer d
is B, = E:’L:l ,Bf’ 4- We show the overall sample importance and its decomposition in layers for
two datasets in Figure [2| Firstly, we found that even with a fixed learning rate, the overall sample
importance is different under different epochs. Output layer always has the largest average sample
importance per parameter, and its contribution reaches the maximum in the early training stage and
then drops. Each layer contributes differently to the total sample importance. In both MNIST and
CIFAR-10, the 2nd layer contributes more than the 3rd layer. In CIFAR-10, the 1st layer’s provides
largest contribution the total sample importance, as it contains much more parameters than other
layers. Interestingly, all classes do not provide the same amount of sample importance.

We found that most samples have small sample importance (Appendix Figure[T0). To visualize the
contribution of different samples, we split the samples based on their total importance into three
groups: 10%, top 10% — top 20% most important samples, and other 80% samples. We show the
decomposition of importance contribution in each layer in Figure[3] In MNIST, the top 10% samples
contribute almost all the sample importance. In CIFAR-10, most important samples contribute more
in lower layers rather than output layer. This result indicates that top 20 % most important samples
contribute to the majority of the sample importance.

3.4 SAMPLE IMPORTANCE AND NEGATIVE LOG-LIKELTHOOD

Negative log likelihood (NLL) is the loss metric we used for training objective. It has been used
to measure the “easiness” of a sample in Curriculum learning Bengio et al.| (2009) and Self-paced
learning |Kumar et al.|(2010). Intuitively, the samples with large NLL should also have large sample
importance (SI). However, in our experiment, we found that this is not always the case. In Figure 4
we found that 1) NLL and SI become more correlated as training goes on. However, 2) NLL is not
predictive of the SI. There are many points with high NLL but small SI, and otherwise.

Under review as a conference paper at ICLR 2017

Average importance
=
o
n

P —ss—

— 1st Layer
2nd Layer
3rd Layer

— Output Layer

Average importance

0 10 20 30 40 50

Epochs
CIFAR-10

[ary
o
=)

T T——
””____4'_____;

— 1st Layer
2nd Layer
3rd Layer

— Output Layer
T T

0 10 20 30 40 50

Epochs

Total importance

1
1
1
1
1

Total importance

180000 ———MNIST 180000 MNIST =
I 1st Layer

160000 H= 3n4 Layer 160000} e
140000 |{=3 3rd Layer ¢ 140000 = 2
120000 [utputaver § 120000} =3
100000} S 100000t p——
80000} £ 80000} — s
60000} T 60000 =7
40000}, S 40000 = 8

[]

20000

0
0

10 20 30 40 50

20000
0

10 20 30 40 50

Epochs Epochs
800000 _CIFAR-10 1800000 CIFAR-10 = i
Bl 1st Layer
600000 | 2nd Layer 1600000 - B automobile
400000 =3 3rd Layer © 1400000 [bird
O L
200000 || Outeut Laver 5 1200000} =
3 deer
000000+ s 1000000} 1 dog
800000} £ 800000} 0 frog
600000+ © 600000 | — horse
400000} 2 400000} I ship
B truck
200000+ 200000

0
0

10 20 30 40 50

Epochs

0 10 20 30 40 50

Epochs

Figure 2: Which classes and at which stage shape the network’s layer’s parameters? Parameters
of different layers are learned at different times. Parameters in Output layers are learned mostly
during the early training stage. In the lower layers, parameters are learned predominantly during the
middle and late training stage. All classes do not contribute equally to training of the model.

MNIST L1

10000 1
5000

sample importance

sample importance
&
8
o

sample importance

1400000
1200000
1000000
800000
600000
400000
200000

°0 10 20 30 40 50
Epochs

CIFAR-10 L1

sample importance

°0 10 20 30 40 50
Epochs

=R
o w
S o
S o
S o

5000

I

MNIST L2

°0 10 20 30 40 50
Epochs

CIFAR-10 L2

140000
120000
100000

80000
60000

40000
20000

°0 10 20 30 40 50
Epochs

sample importance

sample importance

18000 MNIST L3 ° |V‘|N|‘ST‘OL‘lt
16000 e I topl0%
14000 £
12000 5 [topl0-20%
10000 Q Il other80%
8000 £
Q
[oN
€
0 ° 0
0 1020304050 0 1020304050
Epochs Epochs
50000 CIFAR-10 L3 CIFAR-10 Out
I topl0%
40000 3 topl0-20%
30000 I other80%

20000
10000

sample importance

°0 10 20 30 40 50
Epochs Epochs

°0 10 20 30 40 50

Figure 3: Are all data samples equally important for all layers? The top 20% most important
samples contributes to the majority of parameter learning, especially in lower layers. “L.1” to “L3”
stands for Layer 1 to Layer 3. “Out” stands for output layer.

3.5 CLUSTERING SAMPLES BASED ON SAMPLE IMPORTANCE

To better visualize the importance of different samples, we provide three representative clusters of
samples for each dataset. In MNIST, we clustered all digit “5” samples into 20 clusters based on their
epoch-specific, layer-specific sample importance. In CIFAR-10, we clustered all “horse” samples
into 30 clusters using the same features as MNIST. Kmeans algorithm is used for clustering.

Under review as a conference paper at ICLR 2017

10 MNIST 1600 MNIST
08 D — 1400
06 1200
1000
g 04
% 800
& 02 @
IS 600
0.0
8 400
—0.2 200
—0.4 0
0.6 —200
0 10 20 3 40 50 -2 0 2 4 6 8 10 12 14
Epochs NLL
07 CIFAR-10 3000 CIFAR-10
0.6 2500
05 2000
s 0.4
£ 1500
o p3 @
g 1000
§ oz
01 500
0.0 o
0.1 -500
0 10 20 30 40 50 2 0 2 4 6 8 10 12
Epochs NLL

Figure 4: Is Sample Importance correlated with Negative log-likelihood of a sample? Sample
importance is positively correlated with negative log-likelihood. As training goes on, their corre-
lation becomes higher. However, there remain many samples with high NLL and low SI, and vice
versa. Left column: correlation between sample importance and negative log likelihood for all sam-
ples across epochs. Right column: scatter plot for NLL in the last epoch and all epoch sample
importance for each sample.

MNIST In Figure 5] we showed 3 example clusters on digit “5”. In the cluster of easy samples,
where NLL converges very fast, most of the sample importance is concentrated in the first few
epochs in output layer parameters. The cluster of medium samples has a slow NLL convergence
compared to the easy cluster. The biggest impact is in middle training stage and more towards
bottom layer parameters. Hard samples hardly converge even during the late stage of training. As
training goes on, the sample importance for the bottom layer parameters become larger.

CIFAR-10 In Figure[6] we showed 3 examples clusters on class “horse”. We observed very similar
sample importance changing pattern as for the MNIST examples for easy, medium and hard clusters.
Comparing to MNIST, all three clusters in CIFAR-10 have a very large impact on the parameters
in the bottom layer. We note that the CIFAR-10 has almost 4 times larger number of parameters
(3075 x 512 ~ 1574k) in the first layer than MNIST (785 x 512 ~ 401k).

3.6 BATCH ORDER AND SAMPLE IMPORTANCE

With the observations from empirical analysis on sample importance, we know that time — iteration
— and place — layer — of sample’s impact varies according to its “easiness” . We wanted to know
whether constructing batches based on the sample importance or negative log likelihood would make
a difference in training. Hence, we designed an experiment to explore how the different construction
of batches influence the training. We note that the information used to structure the batches (negative
log-likelihood and sample importance) — was obtained from a full training run.

We split all 50,000 samples into b = 500 batch subsets {81, Ba, ..., By}. Each batch has batch
size |B;| = 100. In our experiment, each training sample must be in exactly one batch. There is no
intersection between batches.

During training, in each epoch, we update the parameters with each batch in order 1,2, ..., b itera-
tively.

We used seven different batch construction methods in this experiment:

Under review as a conference paper at ICLR 2017

Easy Samples (2950 samples)

+

LRLITTTINT
5101520253035404550
Epochs

(65 samples)

5 T I
B
@ N
& 43 Lt
= Z5|= - F
°>» 00044
< 1t Egiif_—
ARSI TTT
0 5101520253035404550

Epochs

(14 samples)

NLL
oORrNWhAUON
+
T T+
{T1r
{1
- T+
T+
HTH
HI
T+
H - -
11

I
I
0 5 101520253035404550
Epochs

Figure 5: When and where does an MNIST sample make the biggest impact? For “easy”
samples, their biggest impact is on output layers and during the early training stage. As sample’s
difficulty increases (medium and hard), the biggest impact moves to lower layers and in the late
training stage. Each row is a sample cluster. In each row, from left to right: example images in
the cluster; average sample importance and layer-wise decomposition across epochs; A boxplot of
average training negative log likelihood across epochs.

1. Rand: Randomly constructed batch. All 50k samples are randomly split into b batches
before training. The batches and orders stay fixed during training.

2. NLO: Negative Log-likelihood Order. We sort all the samples based on their final NLL
from low to high. The batches are constructed based on the sorted samples. First 100
samples with least NLL are in By, 101 to 200 samples are in B5, and so on. Hence, during
training, the batches with small NLL will be trained first.

3. RNLO Reverse-Negative Log-likelihood Order. We construct the batches same as NLO.
During training, we update the batches in reverse order By, B,_1,...,81. Hence, the
batches with large NLL will be trained first.

4. NLM Negative Log-likelihood Mixed. We sort all the samples based on their final NLL
from low to high. Next, for each sample ¢ in the sorted sequence, we put that sample into
batch j = (i mod b) + 1. This ordering constructs batches out of samples with diverse
levels of NLL.

5. SIO: Sample Importance Order. Similar to NLO, except that we sort all the samples based
on their sum sample importance over all epochs from low to high. Hence, batches with
small sample importance will be trained first.

6. RSIO Reverse-Sample Importance Order. We construct the batches same as SIO. During
training, we update the batches in reverse order By, B,_1, . .., B1. Hence, during training,
the batches with large sample importance will be trained first.

Under review as a conference paper at ICLR 2017

Easy Samples (1331 samples)

>3l §
2.0;':
1.5}

Lof E

05 101520253035404550
Epochs

+

NLL

(284 samples)

T
_ 30§,
° 2518 11y
) :I'Z-O’ | i*
g Z 1.5} $ % g i
> 1.0+ ! £
S
0.5} ‘;1%"%'%'¢|¢§é
00— -
0 5101520253035404550
Epochs
8 (19 samples)
‘ R
7t J
n 6 + - T,
& 350 - T
5 Z 4t -
> 3| ﬁ Q
< 27'}"%' R
Lost s
05 101520253035404550
Epochs

Figure 6: When and where does a CIFAR-10 sample make the biggest impact? For “easy” sam-
ples, their biggest impact is on the first layer during the early training stage. As samples’s difficulty
increases (medium and hard), the biggest impact moves to lower layers and to late training stage.
Each row is a sample cluster. In each row, from left to right: example images in the cluster; aver-
age sample importance and layer-wise decomposition across epochs; A boxplot of average training
negative log likelihood across epochs.

7. SIM Sample Important Mixed. Similar to NLM, but we sort the samples based on overall
sample importance. Thus, batches contain samples with divers sample importance.

We performed five different runs (with different random initializations) on MNIST and CIFAR-10.
The result is shown in Figure m From the result, we found that: 1) In both MNIST and CIFAR-10,
Rand, SIS, and NLS have the lowest test error compared to all other methods. This indicates that
diverse batches are helpful for training. 2) NLO and SIO got the worst performance in CIFAR-
10. Their training error even goes up after the early stage. RNLO and RSIO have same batch
constructions as NLO and SIO, but their performances are drastically different. This indicates that
the order of batches during training is important. Further, training on easy samples first and hard
later seems to be counter-productive.

To better understand the impact of different batch construction, we performed the principle compo-
nent analysis on the learned parameters in each epoch (Figure[8). In MNIST, the impact of batch
construction is not very significant. In CIFAR-10, batch construction and even the order of batch
training do have a large impact on the training.

Our experiment result shows a different conclusion to Curriculum Learning and Self-paced learning,
where easy samples are trained on before introducing hard samples. We found that constructing and
ordering the batches — hard to easy and easy to hard — seems to hinder the performance of learning.
Having hard samples mixed in with the easy ones in each batch helps the training.

Also, the results show that we want to learn from the hard samples in early epochs and “see” hard
samples more frequently, even if their major impact on parameters is during the late stage. As hard

Under review as a conference paper at ICLR 2017

0.9 CI‘FAR‘10
F Rand
0.8} F NLO
5 5 F RNLO
i o 07}] NLM
i i
e 2 0.6} i sio
RSIO
0.5} F sim
0.00 ‘ ‘ : : : : : :
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs

Figure 7: Does organizing batches by “easiness” affect training? When batches are constructed
with homogeneous easiness, the training performance become worse. Batches with mixed easiness
have lower test error. The solid color line represents the mean over 5 runs. The error bar indicates
the standard error over 5 runs.

2.0 MNIST 4 CIFAR10
15| re=strt 3 Lee||®® Rand
o
10/ \\ | 21 Start . ./0 1|1@ @ NLO
o5l 1H o Cod]e e RNLO
- B o 3
O 2 \ O ol ZS\"‘)“OC-JOSQC-Q—.-QQQ_ o o NLM
< 0.0t \ | a e 4
\ S {le © sio
—0.5L0 .] Rand,NLM,SIM
0-5 v g7 -2f S {[e ¢ RsIO
~ e
—-1.0} é 1 -3} oogoD 1| e-e SIM
_15 L L L L L L L _4 L L L L ‘C‘ L
-5-4-3-2-10 1 2 3 -4-3-2-10 1 2 3 4
PC1 PC1

Figure 8: Do parameters converge differently under different batch construction? In MNIST,
the converging path for all batch constructions are very similar. In CIFAR-10, batch construction
with mixed easiness (Rand, NLM, SIM) has a very different converging path with all other methods.
Notably, we found that even with same batch constructions but just reversed order (NLO vs. RNLO,
SIO vs. RSIO), the parameters converge to different points. Each circle dotted line shows the path
of the first two principle components of all parameters in different epochs. Note that in CIFAR-10,
the paths of Rand, NLS and SIS are very similar and they are overlapped in the plot.

examples are few compared to easy samples and hard examples need a longer time to train, we do
want to mix the hard samples into each batch to start learning from those samples early and learn
longer.

4 EXTENSIONS OF SAMPLE IMPORTANCE

We calculated the sample importance in each iteration in Stochastic Gradient Descent. However,
such quantity only reflects the impact on the change in parameters within each iteration. The influ-
ence of a sample at a particular iteration can be accumulated through updates and impact the final
model. Here, we are going to derive the exact calculation of the sample’s influence to the model.
We rewrite the Objective (2)) in Section [2] here:

rrgnZ:lviL(yi7 f(x;,0)) + R(6), 3)

Under review as a conference paper at ICLR 2017

Here, we deem the sample weight v; is fixed across all iterations. The update rule for stochastic
gradient descent in each iteration is:

0" =0"—nd vigl —

3
The derivative of '™ with respect to sample weight v; is:

0

9 pin1 0 t t t
Z ottt — 29t _pgt —pH(O")——0"
70, oo, ng; — nH(0") o,
d 1 0
08 = _pgt
81]1 ng7,7

where H (8") is the Hessian matrix of the objective in (2) with regard to all parameters in iteration t.

If we iterate the updates until convergence, then we can assume that 0" isa fix-point, 8 = 07Tt =
0T, and we obtain:
0 7141 0 .1 0

— gttt _ ~ ¢ — _pol — pH(0%)-_0*

o0, o0, ng; —nH (67) 5>
Hence, the derivative of parameters in the final model with regard to a sample weight is:

0 g _ —~H(0") gl @)
6’01; ¢

Equation () indicates that we can calculate the sample specific impact on final trained model by
using the parameters learned at the convergence point. In deep learning methods, due to early
stopping, fix point might not be achieved, and Equation (4)) might not be an accurate.

For any target quantity 7 (6™) that depends on the final trained parameter 8, we can calculate the
impact of a particular sample on that target as:

& e O D
8vi T(0) N 80* T(a)8’01‘

0" (&)

For example, if we are interested in the sum of predictions on a set of samples 7(0%) =
> ies, f(xi, "), we can use Equation H to calculate the derivative:

8 * _ a . t i *
TT0) = % st Lo

ov;
i€S, '

We note evaluating the exact impact of a sample, as shown above, is computationally cumbersome
for all but the simplest models.

5 DISCUSSION

Samples’ impact on the deep network’s parameters vary across stages of training and network’s
layers. In our work, we found that easy samples predominantly shape parameters the top layers
at the early training stages, while hard samples predominantly shape the parameters of the bottom
layers at the late training stage. Our experiments show that it is important to mix hard samples into
different batches rather than keep them together in the same batch and away from other examples.

There are many future extensions to the current work. Firstly, we want to expand our sample impor-
tance analysis to different deep learning structures, like Convolution Neural Network and Recurrent
Neural Networks. Secondly, we want to use the sample importance as a guidance to extract a mini-
mal subset of samples that are sufficient to achieve performance comparable to a network trained on
the full dataset.

10

Under review as a conference paper at ICLR 2017

REFERENCES

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow, Arnaud
Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41-48. ACM,
2009.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume
Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a CPU and GPU
math expression compiler. In Proceedings of the Python for Scientific Computing Conference
(SciPy), June 2010. Oral Presentation.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics, pp. 249-256, 2010.

Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, Shiguang Shan, and Alexander Hauptmann.
Self-paced learning with diversity. In Advances in Neural Information Processing Systems, pp.
2078-2086, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images, 2009.

M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In Advances in Neural Information Processing Systems, pp. 1189-1197, 2010.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The MNIST database of handwritten
digits, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444,
2015.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and A. Y. Ng. Unsupervised learning of hierarchical
representations with convolutional deep belief networks. Communications of the ACM, 54(10):
95-103, 2011.

Andrew Saxe, Pang W Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh, and Andrew Y Ng.
On random weights and unsupervised feature learning. In Proceedings of the 28th international
conference on machine learning (ICML-11), pp. 1089-1096, 2011.

Roy T St Laurent and R Dennis Cook. Leverage and superleverage in nonlinear regression. Journal
of the American Statistical Association, 87(420):985-990, 1992.

11

Under review as a conference paper at ICLR 2017

APPENDIX
05 MNIST
— Train Error
0.4 — Test Error |]
s
]
i
[}
[
00 L L L L
0 10 20 30 40 50
Epochs
0.80 CIFAR-10 ‘
0.75 — Train Error | |
— Test Error
0.70 -
§ 0.65
wo.60f
n
()
= 0.55}
0.50
0.451
0.40
0 10 20 30 40 50
Epochs

Figure 9: The training and test error on MNIST (first row) and CIFAR-10 (second row). The left

Class NLL

Class NLL

2.5

MNIST

O 00 ~NOULA WNKH O

0.0
0

2.4

10

2‘0 30
Epochs
CIFAR-10

0.8

airplane
automobile
bird

cat

deer

dog

frog

horse

ship

truck

10

20 30 40
Epochs

column showed the average class-specific negative log likelihood.

50000 _MNIST

40000

30000

Counts

20000

10000

00 200 400 600 800 100012001400

Sample importance

Counts

40000 CIIFAIR-IIO

35000
30000
25000
20000
15000
10000
5000
0

0 500 1000 1500 2000 2500 3000

Sample importance

Figure 10: Histogram of total sample importance.

12

	Introduction
	Sample importance
	Sample Weight
	Sample Importance

	Empirical Analysis of sample importance
	Experiment Setup
	Sample importance is stable with respect to different initializations
	Decomposition of sample importance
	Sample importance and negative log-likelihood
	Clustering samples based on sample importance
	Batch order and sample importance

	Extensions of sample importance
	Discussion

