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ABSTRACT

We present an approach for learning state representations in multi-task reinforce-
ment learning. Our method learns multiple low-dimensional state representations
from raw observations in an unsupervised fashion, without any knowledge of
which task is executed, nor of the number of tasks involved. The method is based
on a gated neural network architecture, trained with an extension of the learning
with robotic priors objective. In simulated experiments, we show that our method
is able to learn better state representations for reinforcement learning, and we an-

alyze why and when it manages to do so.

1 INTRODUCTION

In many reinforcement learning problems, the agent has
to solve a variety of different tasks to fulfill its overall
goal. A common approach to this problem is to learn a
single policy for the whole problem, and leave the de-
composition of the problem into subtasks to the learner.

In many cases, this approach is successful (Mnih et al.,
[2015}, [Zahavy et all, [2016), but it comes at the expense

of requiring large amounts of training data. Alternatively,
multiple policies dedicated to different subtasks can be
learned. This, however, requires prior knowledge about
how the overal problem decomposes into subtasks. More-

(a) (b)

Figure 1: Slot car racing — the agent
has learn how to drive any of the cars
as far as possible (left), based on its raw
observations (right).

over, it can run into the same issue of requiring large amounts of data, because the subtasks might

overlap and thus afford shared computation to solve them.

A common approach to address overlapping problems is multi-task learning 1997): by
learning a single policy with different subgoals, knowledge between the different tasks can be trans-

ferred. This not only allows to learn a compact representation more efficiently, but also improves

the agent’s performance on all the individual subtasks (Rusu et al.|[2016).

Multi-task learning, however, faces two problems: it requires the decomposition of the overall prob-
lem into subtasks to be given. Moreover, it is not applicable if the subtasks are unrelated, and are
better solved without sharing computation. In this case, the single-policy approach results in an

agent that does not perform well on any of the individual tasks (Stulp et al. or that unlearns

IThe first two authors contributed equally to this work.
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the successful strategy for one subtasks once it switches to another one, an issue known as catas-
trophic forgetting (McCloskey & Cohen,|1989).

In this work, we address the problem of identifying and isolating individual unrelated subtasks,
and learning multiple separate policies in an unsupervised way. To that end, we present MT-LRP,
an algorithm for learning state representations for multiple tasks by learning with robotic priors.
MT-LRP is able to acquire different low-dimensional state representations for multiple tasks in
an unsupervised fashion. Importantly, MT-LRP does not require knowledge about which task is
executed at a given time or about the number of tasks involved. The representations learned with
MT-LRP enable the use of standard reinforcement learning methods to compute effective policies
from few data.

As explained before, our approach is orthogonal to the classical multi-task learning approach, and
constitutes a problem of its own right due to the issues of underperformance and catastrophic forget-
ting. Therefore, we disregard the shared knowledge problem in this paper. However, any complete
reinforcement learning system will need to combine both flavors of multi-task learning, for related
and unrelated tasks, and future work will have to address the two problems together.

MT-LRP is implemented as two neural networks, coupled by a gating mechanism (Sigaud et al.,
20155 |Droniou et al., [2015) as illustrated in Figure @ The first network, ¥, detects which task is
being executed and selects the corresponding state representation. The second network, @, learns
task-specific state representations. The networks are trained simultaneously using the robotic priors
learning objective (Jonschkowski & Brockl, 2015)), exploiting physics-based prior knowledge about
how states, actions, and rewards relate to each other. Both networks learn from raw sensor data,
without supervision and solely based on the robot’s experiences.
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Figure 2: Overview of the gated network for state representation learning for multiple tasks.

In a simulated experimental scenario, we show that MT-LRP is able to learn multiple state represen-
tations and task detectors from raw observations and that these representations allow to learn better
policies from fewer data when compared with other methods. Moreover, we analyze the contribution
to this result of each the method’s individual components.

2 RELATED WORK

MT-LRP combines three ideas into a novel approach for task discovery and state representation
learning: 1) extracting state representations for each task with robotic priors (Jonschkowski &
Brock,[2015); 2) discovering discrete tasks and corresponding actions/policies in a RL context (Stulp
et al.,[2014} Hofer & Brock, 2016)); 3) using gated networks to implement a “mixture of experts” (Ja-
cobs et al., 1991} Droniou et al.,[2015]).

State Representation Learning: Learning from raw observations is considered a holy grail in re-
inforcement learning (RL). Deep RL has had major success in this, using model-free (Mnih et al.,
2015) but also by combining model-free and model-based RL (Levine et al.| 2015). These ap-
proaches apply end-to-end learning to get from raw input to value functions and policies. A dif-
ferent approach is to explicitly learn state representations using unsupervised learning, e.g. using
auto-encoders (Lange et al. [2012). Recently, [Watter et al.| (2015) extended this idea to learn state
representations jointly with dynamic models and apply optimal control to compute a policy. We use
learning with robotic priors (Jonschkowski & Brock, 2015)), a state representation learning method
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that exploits information about temporal structure, actions, and rewards. We go beyond previous
work by not only learning single state representations, but learning multiple state representations
given raw data from multiple tasks.

Options and Parameterized Skills: A common approach to factorizing a RL problem into subtasks
are macro-actions, often called options (Sutton et al.,|{1999; Hengst, [2002)). The main difference with
our approach is that options are used to hierarchically decompose one high-level task into subtasks
(and learn sub-policies for these subtasks), whereas we learn task-specific state representations for
different high-level tasks. However, options bear resemblance on a technical level, since they are
often implemented by a high-level “selection” policy that parametrizes low-level policies (Daniel
et al.l 2012} [Kupcsik et al., 2013} |Stulp et al., [2014). Continuous versions of options, referred to as
parametrized skills, have been proposed, too (Da Silva et al.,|2012; Deisenroth et al., 2014} [Doshi-
Velez & Konidaris, [2016). However, in all the work above, the state representation is given. To the
best of our knowledge, state representation learning has not yet been considered in the context of
RL with options or parameterized skills.

Gated Networks for Mixtures of Experts and Submanifold Learning: Gated networks are net-
works that contain gating connections, in which the outputs of at least two neurons are multi-
plied (Sigaud et all [2015). This allows a gating neuron g to prohibit (or limit) the flow of in-
formation from one neuron x to another neuron y, similar to how transistors function. An early
example of gated networks is the mixture of experts approach (Jacobs et al., [1991}; Jacobs & Jor-
danl 1993 Haruno et al., 2001), where separate networks in a modular neural network specialize in
predicting subsets of training examples from a database. Our contribution is to extend mixtures of
experts by state representation learning (e.g. from raw images) and to the more difficult RL (rather
than supervised learning) context. Our gated network architecture is similar to the one proposed by
Droniou et al.|(2015). Their network simultaneously learns discrete classes jointly with continuous
class variations (called submanifolds) in an unsupervised way, e.g., discrete digit classes and shape
variations within each class. We use a similar architecture, but in a different way: rather than learn-
ing discrete classes, we learn discrete tasks; class-specific submanifolds correspond to task-specific
state representations; and finally, we consider a RL rather than an unsupervised learning context.

As mentioned in the introduction, our work is orthogonal to multi-task learning (Caruana, |1997)
which has been extensively studied in recent reinforcement learning literature, too (Parisotto et al.,
2016)). Our approach can be trivially combined with multi-task learning by by prepending the gate
and state extraction modules with a subnetwork that shares knowledge across tasks. Another inter-
esting multi-task approach is policy distillation (Rusu et al.,2016). This method combines different
policies for multiple tasks into a single network, which enables to share information between tasks
and to learn a compact network that can even outperform the individual policies.

3 BACKGROUND: STATE REPRESENTATION LEARNING FOR
REINFORCEMENT LEARNING

We formulate MT-LRP in a reinforcement learning (RL) setting using a Markov decision process
(MDP) (S,A,T,R,y): Based on the current state s € S, the agent chooses and executes an action
a € A, obtains a new state 8’ € S (according to the transition function T') and collects a reward r € R.
The agent’s goal is to learn a policy 7 : § — A that maximizes the expected return E(Y.;> , ¥'r;), with
r; being the reward collected at time # and 0 < y < 1 the discount factor. We consider an episodic
setting with episodes of finite length, a continuous state space S and a discrete action space A.

In this work, we assume that the agent cannot directly observe the state s but only has access
to observations o0 € O, which are usually high-dimensional and contain task-irrelevant distractors.
This requires us to extract the state from the observations by learning an observation-state-mapping
¢ : O — S, and use the resulting state representation S to solve the RL problem (assuming that a
Markov state can be extracted from a single observation). To learn the state representation, we apply
learning with robotic priors (Jonschkowski & Brock! (2015)), from now on referred to as LRP). This
method learns ¢ from a set of temporally ordered experiences D = {(oy,a;, rt)};"=1 by optimizing
the following loss:

L‘RP (D; (P) = wt/:'temp. (D7 <P) + wp[fprop. (Da (P) + wcccaus.(D7 (P) + wrﬁrep.(D> (P) (])
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This loss consists of four terms, each expressing a different prior about suitable state representations
for robot RL. We optimize it using gradient descent, assuming ¢ to be differentiable. We now
explain the four robotic prior loss terms in Eq. (T).

Temporal Coherence enforces states to change gradually over time (Wiskott & Sejnowskil, 2002):
Limp.(D,9) = E|8s,]],

where As; = s, —s; denotes the state change. (To increase readability we replace ¢(0) by s.)
Proportionality expresses the prior that the same action should change the state by the same magni-
tude, irrespective of time and the location in the state space:

Lorop.(D,9) = E[ (145, | = 153 ? | @y, = ]

Causality enforces two states sy, ,8;, to be dissimilar if executing the same action in s;, generates a
different reward than in s, .

2
—|Ist, —s
Lcaus.(Da(P) :E{e sty = ’ Ay = Apy 5 Ty +1 7£ r12+1} .

Repeatability requires actions to have repeatable effects by enforcing that the same action produces
a similar state change in similar states:

N _ _ 2
Liep.(D, @) = E[e It =51, [|As, — Asy, Hz ’ an = atz}'

Additionally, the method enforces simplicity by requiring s to be low-dimensional.

Note that learning with robotic priors only makes use of the actions a, rewards r, and temporal
information ¢ during optimization, but not at test time for computing @(0) = s. Using «, r and ¢ in
this way is an instance of the learning with side information paradigm (Jonschkowski et al., 2015).

4  MULTI-TASK STATE REPRESENTATIONS: MT-LRP

Now consider a scenario in which an agent is learning multiple distinct tasks. For each task 7 €
{1,...,T}, the agent now requires a task-specific policy 7; : S; — A. We approach the problem by
learning a task-specific state representation @ : O — Sy for each policy, and a task detector x which
determines the task, given the current observation. We will consider a probabilistic task-detector
2 : 0 — [0,1]7 that assigns a probability to each task being active.

In order to solve the full multi-task RL problem, we must learn %, {@c}ccq1,..7y and {7r foeqy, . 1)
We propose to address this problem by MT-LRP, a method that jointly learns ) and {(pr}fe{l,mj}
from raw observations, actions, and rewards. MT-LRP then uses the state representations {¢;} to
learn task-specific policies {7177}76{17._.7” (using standard RL methods), and switches between them
using the task detector . To solve the joint learning problem, MT-LRP generalizes LRP (Jon-
schkowski & Brockl 2015) in the following regards: (i) we replace the linear observation-state-
mapping from the original method with a gated neural network, where the gates act as task detectors
that switch between different task-specific observation-state-mappings; (ii) we extend the list of
robotic priors by the prior of fask coherence, which allows us to train multiple task-specific state
representations without any specification (or labels) of tasks and states.

4.1 GATED NEURAL NETWORK ARCHITECTURE

We use a gated neural network architecture as shown schematically in Fig. 2] The key idea is that
both the task detector ¥ as well as the state representation ¢ are computed from raw inputs. However,
the output of the task detector gates the output of the state representation. Effectively, this means
the output of ) (0) decides which task-specific state representation @ is passed further to the policy,
which is also gated by the output of (o).

Formally, x(0) = 6(Xpre(0)) is composed of a function . with T-dimensional output and a soft-
max 6(z) = Zi&ejfk . The softmax ensures that y computes a proper probability distribution over tasks.

The probabilities are then used to gate ¢. To do this, we decompose @ into a pre-gating function
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@pre that extracts features shared across all tasks (i.e. “multi-task” in the sense of |Caruanal (1997),
unless set to the identity), and a T x M x N gating tensor G that encodes the T (linear) observation-
state mappings (M = dim(s) and N is the output dimension of ¢p..). The value of the state’s i-th
dimension s; computes as the expectation of the dot product of gating tensor and @p.(0) over the
task probabilities X (0):

T
si=0;(0) = Y 2(0) (Gyi:; Ppre(0)).- 2)
k=1

4.2 LEARNING OBJECTIVE

To train the network, we extend the robotic prior loss Lrp (Eq. , by a task-coherence prior L:
EZERP(D7§0)+0)T£T(D7%)a (3)

where @; is a scalar weight balancing the influence of the additional loss term. Task coherence is
the assumption that a task only changes between training episodes, not within the same episode. It
does not presuppose any knowledge about the number of tasks or the task presented in an episode,
but it exploits the fact that task switching weakly correlates with training episodes. Moreover, this
assumption only needs to hold during training: since ) operates directly on the observation o, it can
in principle switch the task at every point in time during execution. Task-coherence applies directly
to the output of the task detector, ¥(0), and consists of two terms:

E?ron+sep — Econ _|_£§rep (4)
o .
The first term enforces task consistency during an episode:
L =E [H(x(ol] ). x(04,)) episode, = episode,z} , 5)
where H denotes the cross-entropy H(p,q) = — Y p(x) logg(x). It can be viewed as a measure of

dissimilarity between probability distributions p and g. We use it to penalize ¥ if it assigns different
task distributions to inputs oy, , 0, that belong to the same episode. Note that task-consistency can
be viewed as a temporal coherence prior on the task level (Wiskott & Sejnowski, [2002).

The second term expresses task separation and encourages J to assign tasks to different episodes:
LyP=E [e_H (x(0r) ). 2(01)) ‘ episode,, # episodetz]. (6)

This loss is complementary to task consistency, as it penalizes y if it assigns similar task distributions
to oy, , 0, from different episodes. Note that L5 will in general not become zero. The reason is that
the number of episodes usually exceeds the number of tasks, and therefore two observations from
different episodes sometimes do belong to the same task. We will evaluate the contribution of each
of the two terms to learning success in Section [5.2]

5 EXPERIMENTS

We evaluate MT-LRP in two scenarios. In the multi-task slot-car racing scenario (inspired by Lange
et al.|(2012)), we apply MT-LRP to a linearly solvable problem, allowing us to easily inspect what
and how MT-LRP learns. In slot-car racing, the agent controls one of multiple cars (Figure [I)),
with the goal of traversing the circuit as fast as possible without leaving the track due to speeding
in curves. However, the agent does not know a priori which car it controls, and only receives the
raw visual signal as input. Additionally, uncontrolled cars driving at random velocity, act as visual
distractors. We turn this scenario into a multi-task problem in which the agent must learn to control
each car, where controlling the different cars corresponds to separate tasks. We will now provide
the technical details of our experimental set-up.

5.1 EXPERIMENTAL SET-UP: SLOT-CAR RACING

The agent controls the velocity of one car (see Fig. [T}, receives a reward proportional to the car’s
velocity, chosen from [0.01, 0.02, ..., 0.1], and a negative reward of —10 if the car goes too fast
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Figure 3: Reinforcement learning curves (mean and standard error) for different state representations
for the two-slot car scenarios. Left: static visual cue. Right: dynamic visual cue.

in curves. The velocity is subject to Gaussian noise (zero mean, standard deviation 10%) of the
commanded velocity. All cars move on independent lanes and do not influence each other. The
agent observes the scenario by getting a downscaled 16x16 RGB top-down view (dimension N =
16 x 16 x 3 = 768) of the car circuit (Fig. [I(b)).

In our experiments, there are two or three cars on the track, and the agent controls a different one
in every episode. To recognize the task, the agent must be able to extract a visual cue from the
observation which correlates with the task. We study two types of visual cues:

Static Visual Cue: The arrangement of cars stays the same in all episodes and a static visual cue (a
picture of the controlled car) in the top-left image corner indicates which car is currently controlled.
Dynamic Visual Cue: The agent always controls the same car (with a certain color), but in each task
the car is located on a different lane (as in Fig. [I(D)).

Data Collection and Learning Procedure: The agent collects 40 episodes per task, each episode
consisting of 100 steps. To select an action in each step, the agent performs £-greedy exploration by
picking a random action with probability € = 0.3 and the best action according to its current policy
otherwise. The agent computes a policy after every T episodes, by first learning the observation-state
mapping ¢ (state representation) and then computing policies 7,. .., 7; (based on the outcomes of
the learned x and ¢). To monitor the agent’s learning progress, we measure the average reward
the agent attains on T test episodes, i.e. one test episode of length 100 per task (using the greedy
policy), amounting to 8000 experiences in total. To collect sufficient statistics, the whole experiment
is repeated 10 times.

Policy Learning: We consider the model-free setting with continuous states S, discrete actions A
and solve it using nearest-neighbor Q-learning kNN-TD-RL (Martin H et al., 2009) with k£ = 10.
More recent approaches to model-free RL would be equally applicable (Mnih et al., 2015)).
Learning Strategies and Baselines: We compare five strategies. We run a) MT-LRP with 5
gate units (two/three more than necessary), state dimensionality M = 2 and using £5""*" as task-
coherence prior. We compare MT-LRP to several state representation methods; for each method
we evaluate different M and report only the best performing M: a) robotic priors without gated
network, LRP (M = 4), b) principal components analysis (PCA) on the observations (M = 20) and
c) raw observations (M = 768). Additionally, we evaluate d) a lower baseline in the form of a
randomly moving agent and e) an upper baseline by applying RL on the known 2D-position of
the slot car under control (M = 2). We use the same RL algorithm for all methods. To learn the
state representations with robotic priors, we base our implementation on Theano and lasagne, us-
ing the Adam optimizer with learning rate 0.005, batch size 100, Glorot’s weight initialization and
=10, =5,0. =1, =5, ®; = 10. Moreover, we apply an L1 regularization of 0.001 on ¢.
Additionally, we analyze the contribution of task coherence priors by applying MT-LRP to the full
set of 8000 experiences a) without task-coherence, b) with task consistency £5°" only ¢) with task
separation £5°" only) and d) without task consistency and separation £3 " .
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5.2 RESULTS

We will now present the three main results of our experiments: (i) we show that MT-LRP enables
the agent to extract better representations for RL; (ii) we provide insight in how the learner detects
the task and encodes the state representations; and finally, (iii) we show the contribution of each of
the task-coherence loss terms.

MT-LRP Extracts Better State Representations for RL  Figure [3| shows the learning curves
for RL based on state representations learned by the different methods in the two-slot-car sce-
nario (static visual cue on the left, dynamic on the right). No method reaches the performance
of the upper baseline, mainly due to aliasing errors resulting from the low image resolution.
The random baseline ranges around an average re-

ward of —84.9 with standard error 0.72 and was 3

omitted from the Figure. The state representation @ rosk1
learning baselines without robotic priors perform 2 A Tesk2
poorly because they are unable to identify the task- Bl ceteunit1
irrelevant distractions. MT-LRP gets very close to L B cate unit2

the performance of the upper baseline, especially
for very low amounts of training data (d < 2500),
whereas LRP does not even attain this level of per-
formance for the full training set d = 8000 in the
static task. The gap between MT-LRP and LRP in-
creases even more if we add another car (Figure [3)
because LRP can only learn one state representation
for all three tasks. Including the three slot cars in = -2 -t o 1 2 3 4
. . . . . First State Dimension

this representation results in distractions for the RL

method. However, in the dynamic-visual-cue sce-
nario LRP-4 performs on par with MT-LRP. Sur-
prisingly, running LRP with only fwo dimensions
suffices to achieve the performance of MT-LRP. We
will explain this phenomenon below. To conclude, MT-LRP allows to learn as good or better poli-
cies than the baselines in all slot-car scenarios.

Second State Dimension

Figure 4: State representation learned per
task (different markers) and per gate unit
(different colors)

MT-LRP Detects All Tasks and Learns 3 cars 12000 steps
Good State Representations To gain more MT-LRP
insight into what is learned, we analyze the

LRP
state representations extracted by MT-LRP and

LRP. Figure [] shows the state representation PCA -
learned by MT-LRP for the static-visual-cue Observations

scenario. Each point in the figure corresponds  known Car Position
to one observation, markers indicate the task

and colors the most active gate unit. We see ° 1Xverage2roeward pgé[; episodzo ”
that the first gate unit (blue) is always active for

task 1 (circle), and the second gate unit for task  Figure 5: Reinforcement learning performance in
2. This shows that the task is detected with high  the three-slot car scenario with static visual cue.
accuracy. The task detector y is also highly cer-

tain which is reflected in the fact that its entropy evaluated on the data is close to zero. Moreover,
the states reflect the circular structure of the slot car racing track. We thus conclude that MT-LRP
has learned to identify the tasks and to represent the position of each car on the track.

The RL experiments raised the question why LRP manages to solve the dynamic, but not the
static-visual-cue scenario as well as MT-LRP. We hypothesize that, for the dynamic cue, LRP
is able to extract the position of the car on regardless of which lane it is in using a single lin-
ear mapping. Figure [f] confirms this hypothesis: LRP filters for the car’s color (blue) along the
track and assigns increasing weights to these pixels which results in the extraction of its posi-
tion. It also assigns constant weights along the track in the red channel using the lane change
of the two cars as an offset. This results in a mapping to two circles similar to Fig. ] where
the state encodes both the position and the task. Such a mapping can be expressed by a linear
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function precisely because the features that are relevant for one task do not reappear in another
task (e.g. a blue slot car in track 1 does not appear in the task where the blue car is in track 2).
However, there exists no equivalent linear map-

ping for the static-visual-cue variant of the slot- ©
car problem, because cars that are relevant for £ ) 0.60
one task are also present in every other task. % L J 0.45

. . 5 > " By 0.30
We can generalize from this insight as follows. 2 0.15
A single linear observation-state-mapping is 0' 00
sufficient for multiple tasks if the state repre- € L q’ N VYL ; _'0 15
sentation for every task can be extracted by O (‘ ' " < '
a linear function using only features that stay % — - - :I —0.30
constant for all other tasks. If this is the case, & R G 5 —0.45

than there is no need for decoupling the extrac-

tion of task and state. Figure 6: ¢ learned by LRP (M = 2) for the two-

car dynamic visual cue tasks. Row corresponds to

Task-Consistency is Critical for Learning state dimension, column to RGB color channel.

Performance To understand the influence of

the different task-coherence prior variants, we compared their performance in Figure [/] We see
that relying solely on the robotic priors gives poor results, mainly because the gate units are not
used properly: more than one gate unit is activated per task () has high entropy). Adding the task-
separation prior forces the network to use as many gates as possible (5 in our case), leading to bad
state representations. Interestingly, using task consistency only gives roughly the same result as
using task consistency and task separation.

Discussion The experiments showed that MT-LRP is  pcon+sep
. . T
able to solve the representation and reinforcement learn-

ing tasks better than the baselines. Important questions L 3‘

for future work concern: the necessity and influence of L5€p
. . . . T
the task-separation loss, in particular for short episode

lengths and if the number of expected tasks exceeds the %) _E
number of actual tasks; and transferring knowledge by T ¥ verage reward per episode

adding a shared neural network layers before gating.

Figure 7: Task coherence: Average re-
6 CONCLUSION ward per episode (8000 samples).

We have presented MT-LRP, a method for multi-task state representation learning with robotic pri-
ors. The method learns in an unsupervised fashion, solely based on the robots own observations,
actions, and rewards. Our experiments confirmed that MT-LRP is effective in simultaneously iden-
tifying tasks and learning task-specific state representations. This capability is beneficial for scaling
reinforcement learning to realistic scenarios that require dedicated skills for different tasks.
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