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ABSTRACT

Recently deep neural networks have received considerable attention due to their
ability to extract and represent high-level abstractions in data sets. Deep neu-
ral networks such as fully-connected and convolutional neural networks have
shown excellent performance on a wide range of recognition and classification
tasks. However, their hardware implementations currently suffer from large sili-
con area and high power consumption due to the their high degree of complexity.
The power/energy consumption of neural networks is dominated by memory ac-
cesses, the majority of which occur in fully-connected networks. In fact, they
contain most of the deep neural network parameters. In this paper, we propose
sparsely-connected networks, by showing that the number of connections in fully-
connected networks can be reduced by up to 90% while improving the accuracy
performance on three popular datasets (MNIST, CIFAR10 and SVHN). We then
propose an efficient hardware architecture based on linear-feedback shift registers
to reduce the memory requirements of the proposed sparsely-connected networks.
The proposed architecture can save up to 90% of memory compared to the con-
ventional implementations of fully-connected neural networks. Moreover, imple-
mentation results show up to 84% reduction in the energy consumption of a single
neuron of the proposed sparsely-connected networks compared to a single neuron
of fully-connected neural networks.

1 INTRODUCTION

Deep neural networks (DNNs) have shown remarkable performance in extracting and represent-
ing high-level abstractions in complex data (Lecun et al. (2015)). DNNs rely on multiple layers
of interconnected neurons and parameters to solve complex tasks, such as image recognition and
classification (Krizhevsky et al. (2012)). While they have been proven very effective in said tasks,
their hardware implementations still suffer from high memory and power consumption, due to the
complexity and size of their models. Therefore, research efforts have been conducted towards more
efficient implementations of DNNs (Han et al. (2016)). In the past few years, the parallel nature
of DNNs has led to the use of graphical processing units (GPUs) to execute neural networks tasks
(Han et al. (2015)). However, their large latency and power consumption have pushed researchers
towards application-specific integrated circuits (ASICs) for hardware implementations (Cavigelli
et al. (2015)). For instance, in (Han et al. (2016)), it was shown that a DNN implemented with
customized hardware can accelerate the classification task by 189× and 13×, while saving 24,000×
and 3,400× energy compared to CPU (Intel i7-5930k) and GPU (GeForce TITAN X), respectively.

Convolutional layers in DNNs are used to extract high level abstractions and features of data. In such
layers, the connectivity between neurons follows a pattern inspired by the organization of the animal
visual cortex. It was shown that the computation in the visual cortex can mathematically be de-
scribed by a convolution operation (LeCun et al. (1989)). Therefore, each neuron is only connected
to a few neurons based on a pattern and a set of weights is shared among all neurons. In contrast,
in a fully-connected layer, each neuron is connected to every neuron in the previous and next layers
and each connection is associated with a weight. These layers are usually used to learn non-linear
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Figure 1: A two-layer fully-connected neural network

combinations of given data. Fig. 1 shows a two-layer fully-connected network. The main compu-
tation kernel performs numerous vector-matrix multiplications followed by non-linear functions in
each layer. In (Courbariaux & Bengio (2016); Horowitz (2014); Han et al. (2016)), it was shown that
the power/energy consumption of DNNs is dominated by memory accesses. Fully-connected layers,
which are widely used in recurrent neural networks (RNNs) and adopted in many state-of-the-art
neural network architectures (Krizhevsky et al. (2012); Simonyan & Zisserman (2014); Zeiler &
Fergus (2013); Szegedy et al. (2015); Lecun et al. (1998)), independently or as a part of convolu-
tional neural networks, contain most of the weights of a DNN. For instance, the first fully-connected
layer of VGGNet (Simonyan & Zisserman (2014)), which is composed of 13 convolution layers
and three fully-connected layers, contains 100M weights out of a total of 140M. Such large storage
requirements in fully-connected networks result in copious power/energy consumption.

To overcome the aforementioned issue, a pruning technique was first introduced in (Han et al.
(2015)) to reduce the memory required by DNN architectures for mobile applications. However,
it makes use of an additional training stage, while information addresses identifying the pruned
connections still need to be stored in a memory. More recently, several works have focused on the
binarization and ternarization of the weights of DNNs (Courbariaux & Bengio (2016); Courbariaux
et al. (2015); Lin et al. (2015); Kim & Smaragdis (2016)). While these approaches reduce weight
quantization and thus the memory width, the number of weights is unchanged.

In (Shafiee et al. (2016b)), an alternative deep network connectivity named StochasticNet and in-
spired from the brain synaptic connection between neurons was explored on low-power CPUs.
StochasticNet is formed by randomly removing up to 61% connections in both fully-connected and
convolution layers of DNNs, speeding up the classification task.

In (Wen et al. (2016)), a method named structured sparsity learning (SSL) was introduced to regu-
larize the convolutional layers’ structures of DNNs. SSL can learn a structured sparsity of DNNs to
efficiently speed up the convolutional computations both on CPU and GPU platforms.

In this paper, we propose sparsely-connected networks by randomly removing some of the con-
nections in fully-connected networks. Random connection masks are generated by linear-feedback
shift registers (LFSRs), which are also used in the VLSI implementation to disable the connec-
tions. Experimental results on three commonly used datasets show that the proposed networks can
improve network accuracy while removing up to 90% of the connections. Additionally, we apply
the proposed algorithm on top of the binarizing/ternarizing technique achieving a better misclassi-
fication rate than the best binarized/ternarized networks reported in literature. Finally, an efficient
very large scale integration (VLSI) hardware architecture of a DNN based on sparsely-connected
network is proposed, which saves up to 90% memory and 84% energy with respect to the traditional
architectures.

The rest of the paper is organized as follows. Section 2 briefly introduces DNNs and their hardware
implementation challenges, while Section 3 describes the proposed sparsely-connected network and
their training algorithm. In Section 4 the experimental results over three datasets are presented and
compared to the state of the art. Section 5 portrays the proposed VLSI architecture for the sparsely-
connected network, and conclusions are drawn in Section 6.
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2 PRELIMINARIES

2.1 DEEP NEURAL NETWORKS

DNNs are constructed using multiple layers of neurons between the input and output layers. These
are usually referred to as hidden layers. They are used in many current image and speech applica-
tions to perform complex tasks as recognition or classification. DNNs are trained through an initial
phase, called the learning stage, that uses data to prepare the DNN for the task that will follow in
the inference stage. Two subcategories of DNNs which are widely used in detection and recognition
tasks are convolutional neural networks (CNNs) and RNNs (Han et al. (2016)). Due to parameter
reuse in convolutional layers, they are well-studied and can be efficiently implemented with cus-
tomized hardware platforms (Chen et al. (2016); Shafiee et al. (2016a); Chen et al. (2016)). On the
other hand, fully-connected layers, which are widely used in RNNs like long short-term memories
and as a part of CNNs, require a large number of parameters to be stored in memories.

DNNs are mostly trained by the backpropagation algorithm in conjunction with stochastic gradient
descent (SGD) optimization method (Rumelhart et al. (1986)). This algorithm computes the gradient
of a cost function C with respect to all the weights in all the layers. A common choice for the
cost function is using the modified hinge loss introduced in (Tang (2013)). The obtained errors
are then backward propagated through the layers to update the weights in an attempt to minimize
the cost function. Instead of using a whole dataset to update parameters, data are first divided
in mini-batches and parameters are updated using each mini-batch several times to speed up the
convergence of the training algorithm. The weight updating speed is controlled by a learning rate η.
Batch normalization is also commonly used to regularize each mini-batch of data (Ioffe & Szegedy
(2015)): it speeds up the training process by allowing the use of a bigger η.

2.2 TOWARDS HARDWARE IMPLEMENTATION OF DNNS

DNNs have shown excellent performance in applications such as computer vision and speech recog-
nition: since the number of neurons has a linear relationship with the ability of a DNN to perform
tasks, high-performance DNNs are extremely complex in hardware. AlexNet (Krizhevsky et al.
(2012)) and VGGNet (Simonyan & Zisserman (2014)) are two models comprising convolutional
layers followed by some fully-connected layers, which are widely used in classification algorithms.
Despite their very good classification performance, they require large amounts of memory to store
the numerous parameters. Most of these parameters (more than 96%) lie in fully-connected layers.
In (Han et al. (2016)), it was shown that the total energy of DNNs is dominated by the required
memory accesses. Therefore, the majority of power in a DNN is dissipated through fully-connected
layers of DNNs. Moreover, the huge memory requirements make possible only for very small DNNs
to be fitted in on-chip RAMs in ASIC/FPGA platforms.

Recently, many works tried to reduce the computational complexity of DNNs. In (Akopyan et al.
(2015)), the spiking neural network based on stochastic computing (Smithson et al. (2016)) was
introduced, where 1-bit calculations are performed throughout the whole architecture. In (Ardakani
et al. (2015)), integral stochastic computing was used to reduce the computation latency, showing
that stochastic computing can consume less energy than conventional binary radix implementations.
However, both works do not manage to reduce the DNN memory requirements.

Network pruning, compression and weight sharing have been proposed in (Han et al. (2016)), to-
gether with weight matrix sparsification and compression. However, additional indexes denoting the
pruned connections are required to be stored along with the compressed weight matrices. In (Han
et al. (2015)), it was shown that the number of indexes are almost the same as the number of non-zero
elements of weight matrices, thus increasing the word length of the required memories. Moreover,
the encoding and compression techniques require inverse computations to obtain decoded and de-
compressed weights, and introduce additional hardware complexity for hardware implementation
compared to the conventional computational architectures. Other pruning techniques presented in
literature such as (Anwar et al. (2015)) try to reduce the memory required to store the pruned lo-
cations by introducing a structured sparsity in DNNs. However, the resulting network yields up to
31.81% misclassification rate on the CIFAR-10 dataset.
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Algorithm 1: Training algorithm for the proposed sparsely-connected network
Data: Fully-connected network with parameters W , b and M for each layer. Input data x, its

corresponding targets t, and learning rate of η.
Result: W and b

1 1. Forward computations
2 for each layer i in range(1,N) do
3 Ws ←Wi ·Mi

4 Compute layer output yi according to (3) and its previous layer output yi−1, Ws and bi.
5 end
6 2. Backward Computations

7 Initialize output layers activation gradient
∂C

∂yN
8 for each layer j in range(2,N-1) do

9 Compute
∂C

∂yj
10 end
11 for each layer j in range(1,N-1) do

12 Compute
∂C

∂Ws
knowing

∂C

∂yj
and yj−1

13 Compute
∂C

∂bj

14 Update Wj :Wj ←Wj − η
∂C

∂Ws

15 Update bj : bj ← bj − η
∂C

∂bj
16 end

3 SPARSELY-CONNECTED NEURAL NETWORKS

Considering a fully-connected neural network layer with n input and m output nodes, the forward
computations are performed as follow

y = act(Wx+ b), (1)

where W represents the weights and b the biases, while act() is the non-linear activation function in
which ReLU(x) = max(0, x) is used in most cases (Nair & Hinton (2010)). The network’s inputs
and outputs are denoted by x and y, respectively.

Let us introduce the sparse weight matrix Ws as the element-wise multiplication

Ws =W ·M, (2)

where Ws and M are sparser than W . The Mask binary matrix M can be defined as

Mn×m =


M11 M12 . . . M1m

M21 M22 . . . M2m

...
...

. . .
...

Mn1 Mn2 . . . Mnm

 ,
where each element of Mask Mij ∈ {0, 1}, i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Note that the
dimensions of M are the same as the weight matrix W . Similarly to a fully-connected network (1),
the forward computation of the sparsely-connected network can be expressed as

y = act(Wsx+ b). (3)

We propose the use of LFSRs to form each column of M , similar to the approach used in stochastic
computing to generate a binary stream (Gaines (1969)). In general, an nb-bit LFSR serially generates
2nb−1 numbers Si ∈ (0, 1), i ∈ {1, 2, . . . 2nb−1}. A random binary stream with expected value of
p ∈ [0 1] can be obtained by comparing Si with a constant value of p. This unit is hereafter referred
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Figure 2: (a) shows the formation of a Mask matrix M using a 3-bit LFSR for p = 0.57. (b) shows
a fully-connected layer. (c) shows a sparsely-connected layer formed based on M .

to as stochastic number generator (SNG). Therefore, a random binary stream element Xi ∈ {0, 1}
is 1 when Si ≥ p, and 0 otherwise. Fig. 2 shows the formation of a small sparsely-connected
network using binary streams generated by LFSR units. Fig. 2(a) shows a 3-bit LFSR unit with
its 7 different values and a random binary stream with expected value of p = 0.57. A total of m
LFSRs of log2(n)-bit length with different seed values are required to form M . By tuning the value
of p it is possible to change the sparsity degree of M , and thus of the sparsely-connected network.
Fig. 2(b) and Fig. 2(c) show the fully-connected network based on W and the sparsely-connected
version based on Ws.

Algorithm 1 summarizes the training algorithm for the proposed sparsely-connected network. The
algorithm itself is very similar to what would be used with a fully-connected network, but considers
each network layer to have a mask that disables some of the connections. The forward propagation
(line 1-5) follows (3), while derivatives in the backward computations (line 6-16) are computed with
respect to Ws. It is worth mentioning that most CNNs use fully-connected layers and the proposed
training algorithm can still be used for those layers in CNNs.

4 EXPERIMENTAL RESULTS

We have validated the effectiveness of the proposed sparsely-connected network and its training
algorithm on three datasets: MNIST (LeCun & Cortes (2010)), CIFAR10 (Krizhevsky (2009)) and
SVHN (Netzer et al. (2011)) using the Theano library (Team (2016)) in Python.
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Table 1: Misclassification rate for Different Network Sizes on MNIST

Case Method
Network Misclassification Number of

Configuration Rate (%) Parameters

1
Fully-Connected 784-512-512-10 1.18 669706

Sparsely-Connected 50% 784-512-512-10 1.19 335370

2
Fully-Connected 784-256-256-10 1.35 269322

Sparsely-Connected 60% 784-512-512-10 1.20 268503
Sparsely-Connected 70% 784-512-512-10 1.31 201636

3
Fully-Connected 784-145-145-10 1.41 136455

Sparsely-Connected 80% 784-512-512-10 1.28 134768

4
Fully-Connected 784-77-77-10 1.75 67231

Sparsely-Connected 90% 784-512-512-10 1.75 67901

5
Fully-Connected 784-12-12-10 4.68 9706

Sparsely-Connected 90% 784-100-100-10 3.16 8961

4.1 EXPERIMENTAL RESULTS ON MNIST

The MNIST dataset contains 60000 gray-scale 28 × 28 images (50000 for training and 10000 for
testing), falling into 10 classes. A deep fully-connected neural network is used for evaluation and
the hinge loss is considered as the cost function. The training set is divided into two separate parts.
The first 40000 images are used as the training set and the rest for the validation and test sets. All
models are trained using SGD without momentum, a batch size of 100, 500 epochs and the batch
normalization method.

Table 1 summarizes the misclassification rate of sparsely-connected neural networks compared
to fully-connected neural networks for different network configurations, using single-precision
floating-point format. We adopted a fully-connected network with 784-512-512-10 network con-
figuration as a reference network, in which each number represent the number of inputs to each
fully-connected layer. From this, we formed sparse weight matrices Ws with different sparsity de-
grees. For instance, sparsely-connected 90% denotes sparse weight matrices containing 90% zero
elements. Case 1 shows that a sparsely-connected neural network with 50% fewer connections
achieves approximately the same accuracy as the fully-connected network using the same network
configuration. In Cases 2 and 3, the sparsely-connected networks with 60% and 80% fewer con-
nections achieve a better misclassification rate than the fully-connected network while having ap-
proximately the same number of parameters. Case 4 shows no gain in performance and number
of parameters for a sparsely-connected 90% and network configuration of 784-512-512-10 com-
pared to the fully-connected at the same number of parameters. However, we can still reduce the
connections up to 90% using a smaller network, as shown in Case 5.

Recently, BinaryConnect and TernaryConnect neural networks have outperformed the state-of-the-
art on different datasets (Courbariaux et al. (2015); Lin et al. (2015)). In BinaryConnect, weights are
represented with either -1 or 1, whereas they can be -1, 0 or 1 in TernaryConnect. These networks
have emerged to facilitate hardware implementations of neural networks by reducing the memory
requirements and removing multiplications. We applied our training method to BinaryConnect and
TernaryConnect training algorithms: the obtained results are provided in Table 2. The source Python
codes used for comparison are the same used in (Courbariaux et al. (2015); Lin et al. (2015)), avail-
able online (Lin et al. (2015)). The simulation results show that up to 70% and 80% of connections
can be dropped by the proposed method from BinaryConnect and TernaryConnect networks with-
out any compromise in performance without using data augmentation, respectively. Moreover, the
binarized and ternarized sparsely-connected 50% improve the accuracy compared to the conven-
tional binarized and ternarized fully-connected networks. Considering data augmentation (affine
transformation), our method can drop up to 50% and 70% of connections from BinaryConnect and
TernaryConnect networks without any compromise in performance, respectively. However, using
data augmentation results in a better misclassification rate when it is used on networks trained with
single-precision floating-point weights as shown in Table 2. In this case, our method still can drop
up to 90% of connections without any performance degradation. It is worth specifying that we only
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Table 2: Misclassification rate for a 784-1024-1024-1024-10 neural network on MNIST

Method
Misclassification Rate (%)

# of ParametersWithout With
Data Augmentation Data Augmentation

Single-Precision Floating-Point (SPFP) 1.33 0.67 2913290
Sparsely-Connected 50% + SPFP 1.17 0.64 1458186
Sparsely-Connected 90% + SPFP 1.33 0.66 294103

BinaryConnecta (Courbariaux et al. (2015)) 1.23 0.76 2913290
TernaryConnectb (Lin et al. (2015)) 1.15 0.74 2913290

Sparsely-Connected 50% + BinaryConnecta 0.99 0.75 1458186
Sparsely-Connected 60% + BinaryConnecta 1.03 0.81 1167165
Sparsely-Connected 70% + BinaryConnecta 1.16 0.85 876144
Sparsely-Connected 80% + BinaryConnecta 1.32 1.06 585124
Sparsely-Connected 90% + BinaryConnecta 1.33 1.36 294103
Sparsely-Connected 50% + TernaryConnectb 0.95 0.63 1458186
Sparsely-Connected 60% + TernaryConnectb 1.05 0.64 1167165
Sparsely-Connected 70% + TernaryConnectb 1.01 0.73 876144
Sparsely-Connected 80% + TernaryConnectb 1.11 0.85 585124
Sparsely-Connected 90% + TernaryConnectb 1.41 1.05 294103

a Binarizing algorithm was only used in the learning phase and single-precision floating-point weights were used during the
test run.
b Ternarizing algorithm was only used in the learning phase and single-precision floating-point weights were used during
the test run.

used the binarized/ternarized algorithm during the learning phase, and we used single-precision
floating-point weights during the test run in Section 4, similar to the approach used in (Lin et al.
(2015)).

4.2 EXPERIMENTAL RESULTS ON CIFAR10

The CIFAR10 dataset consists of a total number of 60, 000 32×32 RGB images. Similar to MNIST,
we split the images into 40, 000, 10, 000 and 10, 000 training, validation and test datasets, respec-
tively. As our model, we adopt a convolutional network comprising {128-128-256-256-512-512}
channels for six convolution/pooling layers and two 1024-node fully-connected layers followed by
a classification layer. This architecture is inspired by VGGNet (Simonyan & Zisserman (2014)) and
was also used in (Courbariaux et al. (2015)). Hinge loss is used for training with batch normalization
and a batch size of 50.

In order to show the performance of the proposed technique, we use sparsely-connected networks
instead of fully-connected networks in the convolutional network. Again, we compare our results
with the binarized and ternarized models since they are the most hardware-friendly models reported
to-date. As summarized in Table 3, simulation results show significant improvement in accuracy
compared to the ordinary network while having significantly fewer parameters.

4.3 EXPERIMENTAL RESULTS ON SVHN

SVHN dataset contains 32 × 32 RGB images (600, 000 images for training and roughly 26, 000
images for testing) of street house numbers. Also, 6, 000 images are separated from the training part
for validation. Similar to the CIFAR10 case, we use a convolutional network comprising {128-128-
256-256-512-512} channels for six convolution/pooling layers and two 1024 fully-connected layers
followed by a classification layer. Hinge loss is used as the cost function with batch normalization
and batch size of 50.

Table 4 summarizes the accuracy performance of using the proposed sparsely-connected network
in the convolutional network model, compared to the hardware-friendly binarized and ternarized
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Table 3: Misclassification rate for a Convolutional Network on CIFAR10

Method
Misclassification Rate (%)

# of ParametersWithout With
Data Augmentation Data Augmentation

Single-Precision Floating-Point (SPFP) 12.45 9.77 14025866
Sparsely-Connected 90% + SPFP 12.05 9.30 5523184

BinaryConnect a (Courbariaux et al. (2015)) 9.91 8.01 14025866
TernaryConnect b (Lin et al. (2015)) 9.32 7.83 14025866

Sparsely-Connected 50% + BinaryConnect a 8.95 7.27 9302154
Sparsely-Connected 90% + BinaryConnect a 8.05 6.92 5523184
Sparsely-Connected 50% + TernaryConnect b 8.45 7.13 9302154
Sparsely-Connected 90% + TernaryConnect b 7.88 6.99 5523184

a Binarizing algorithm was only used in the learning phase and single-precision floating-point weights were used during the
test run.
b Ternarizing algorithm was only used in the learning phase and single-precision floating-point weights were used during the
test run.

Table 4: Misclassification rate for a Convolutional Network on SVHN

Method
Misclassification Number of

Rate (%) Parameters
Single-Precision Floating-Point 4.734615 14025866

BinaryConnect a (Courbariaux et al. (2015)) 2.134615 14025866
TernaryConnect b (Lin et al. (2015)) 2.9 14025866

Sparsely-Connected 90% + BinaryConnect a 2.003846 5523184
Sparsely-Connected 90% + TernaryConnect b 1.957692 5523184

a Binarizing algorithm was only used in the learning phase and single-precision floating-
point weights were used during the test run.
b Ternarizing algorithm was only used in the learning phase and single-precision floating-
point weights were used during the test run.

models. Despite the fewer parameters that the proposed sparsely-connected network provides, it
also yields state-of-the-art results in terms of accuracy performance.

4.4 COMPARISON WITH THE STATE OF THE ART

The proposed sparsely-connected network has been compared to other networks in literature in terms
of misclassification rate in Table 5. In Section 4.1 to 4.3, we used the binarization/ternarization al-
gorithm to train our models in the learning phase while using single-precision floating-point weights
during the test run (i.e. inference phase). The first part of Table 5 applies the same technique,
while in the second part we use binarized/ternarized weights also during the test run. We thus ex-
ploit a deterministic method introduced in (Courbariaux et al. (2015)) to perform the test run using
binarized/ternarized weights. The weights are obtained as follows:

Wb =

{
1 if W ≥ 0
-1 otherwise ,

Wt =


1 if W ≥ 1

3
0 otherwise

-1 if W ≤ -
1

3

,

where Wb and Wt denote binarized and ternarized weights, respectively.

From the results presented in Table 5, we can see that our proposed work outperforms the state-of-
the-art models with binarized/ternarized weights during the test run while achieving performance
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Table 5: Misclassification rate comparison. Sparsity degree for the proposed network is 50% in
MNIST, and 90% in SVHN and CIFAR10.

Datasets
MNIST SVHN CIFAR10

Method Binarized/Ternarized Weights During Test Run

BNN (Torch7) (Courbariaux & Bengio (2016)) 1.40% 2.53% 10.15%
BNN (Theano) (Courbariaux & Bengio (2016)) 0.96% 2.80% 11.40%

(Baldassi et al. (2015)) 1.35% – –
BinaryConnect (Courbariaux et al. (2015)) 1.29% 2.30% 9.90%

EBP (Cheng et al. (2015)) 2.2% – –
Bitwise DNNs (Kim & Smaragdis (2016)) 1.33% – –

(Hwang & Sung (2014)) 1.45% – –
Sparsely-Connected + BinaryConnect 1.08% 2.053846% 8.66%

Sparsely-Connected + TernaryConnect 0.98% 1.992308% 8.24%

Method Single-Precision Floating-Point Weights During Test Run

TernaryConnect (Lin et al. (2015)) 1.15% 2.42% 12.01%
Maxout Networks (Goodfellow et al. (2013)) 0.94% 2.47% 11.68%

Network in Network (Lin et al. (2013)) – 2.35% 10.41%
Gated pooling (Lee et al. (2015)) – 1.69% 7.62%

Sparsely-Connected + BinaryConnect 0.99% 2.003846% 8.05%
Sparsely-Connected + TernaryConnect 0.95% 1.957692% 7.88%

close to the state-of-the-art result of the model with no binarization/ternarization in the test run. The
former are the most suitable and hardware-friendly models for hardware implementation of DNNs:
our model shows a better performance in terms of both accuracy/misclassification rate and memory
requirements. The obtained results suggest that the proposed network acts as a regularizer to prevent
models from overfitting. Similar conclusions were also obtained in (Courbariaux et al. (2015)). It
is worth noting that no data augmentation was used in our simulations throughout this paper except
for the results reported in Table 2 and Table 3.

5 VLSI IMPLEMENTATION OF SPARSELY-CONNECTED NEURAL NETWORKS

In this Section, we propose an efficient hardware architecture for the proposed sparsely-connected
network. In fully-connected networks, the main computational core is the matrix-vector multiplica-
tion that computes (1). This computation is usually implemented in parallel on GPUs. However, par-
allel implementation of this unit requires parallel access to memories and causes routing congestion,
leading to large silicon area and power/energy consumption in customized hardware. Thus, VLSI
architectures usually opt for semi-parallel implementations of such networks. In this approach, each
neuron performs its computations serially, and a certain number of neurons are instantiated in par-
allel (Moreno et al. (2008)). Every neuron is implemented using multiply-and-accumulate (MAC)
units as shown in Fig. 3(a). The number of inputs of each neuron determines the latency of this ar-
chitecture. For example, considering a hidden layer with 1024 inputs and 1024 outputs, 1024 MACs
are required in parallel and each MAC requires 1024 clock cycles to perform computations of this
layer. In general, a counter is required to count from 0 to N − 1 where N is the number of inputs of
each neuron. It provides the addresses for the memory in which a column of the weight matrix W
is stored. In this way, each input and its corresponding weight are fed to the multiplier every clock
cycle (see Fig. 3(a)). For binarized/ternarized networks, the multiplier in 3(a) is substituted with a
multiplexer.

In Section 3, we described the formation of the Mask matrix M using an SNG unit (see Fig. 2(a)).
The value of p, through which it is possible to tune the sparsity degree of networks, also corresponds
to the occurrence of 1 in a binary stream generated by SNG. Therefore, we can save up to 90% of
memory by storing only the weights corresponding to the 1s in the SNG stream. For instance,
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W1

W2

W3

WN

Counter
1~N

Read Address
add. data

Accumulator

WN, …, W3, W2, W1

XN 
…
X3 
X2 
X1

ReLU

(a)

W1

W2

W3

W(1-p)N

Counter
1~(1-p)N

Read Address
add. data

Accumulator

W(1-p)N, …, W3, W2, W1

XN 
…
X3 
X2 
X1

ReLU

in ≥ p

enable

en
able

Binary Values

LFSR Unit

(b)

Figure 3: (a) shows the conventional architecture of a single neuron of a fully-connected network.
(b) shows the proposed architecture of a single neuron of a sparsely-connected network.

considering a Mask matrix M in Fig. 2(a), Ws is formed as

Ws =



0 0
W21 W22

W31 0
W41 0
0 W52

W61 W62

0 W72

 ,
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Table 6: ASIC Implementation Results for a Single Neuron of Sparsely-Connected Network @ 400
MHz in TSMC 65 nm CMOS Technology.

Sparsity Degree
p = 0 p = 0.5 p = 0.75 p = 0.875 p = 0.9375

Fully-Connected (FC) Sparsely-Connected Sparsely-Connected Sparsely-Connected Sparsely-Connected
Memory Size [bits] 1024 512 256 128 64

Area [µm2] (improvement w.r.t. FC) 26265 13859 (47% ↓) 7316 (72% ↓) 4221 (84% ↓) 2662 (90% ↓)
Power [µW] 278 155 86 60 43

Energy [pJ] (improvement w.r.t. FC) 712 397 (44% ↓) 220 (69% ↓) 154 (78% ↓) 110 (84% ↓)
Latency [µs] 2.56 2.56 2.56 2.56 2.56

and the compressed matrix Wc stored in on-chip memories is

Wc =

W21 W22

W31 W52

W41 W62

W61 W72

 .
The smaller memory can significantly reduce the silicon area and the power consumption of DNNs
architectures. Depending on the value of p, the size of the memory varies. In general, the depth of
the weight memory in each neuron is (1− p)×N .

Fig. 3(b) depicts the architecture of a single neuron of the proposed sparsely-connected network.
Decompression is performed using an SNG generating the enable signal of the counter and accu-
mulator. Inputs are fed into each neuron sequentially in each clock cycle. If the output of the SNG
is 1, the counter counts upward and provides an address for the memory. Then, the multiplication
of an input and its corresponding weight is computed, the result stored in the internal register of the
accumulator. If instead the output of the SNG is 0, the counter holds its previous value, while the
internal register of the accumulator is not enabled, and does not load a new value. The latency of the
proposed architecture is the same as that of the conventional architecture.

Table 6 shows the ASIC implementation results of the neuron in Fig. 3(b) supposing 1024 inputs.
The proposed architectures were described in VHDL and synthesized in TSMC 65 nm CMOS tech-
nology with Cadence RTL compiler, for different sparsity degrees p. For the provided syntheses we
used a binarized network. Implementation results show up to 84% decrement in energy consumption
and up to 90% less area compared to the conventional fully-connected architecture.

6 CONCLUSION

DNNs are capable of solving complex tasks: their ability to do so depends on the number of neurons
and their connections. Fully-connected layers in DNNs contain more than 96% of the total neural
network parameters, pushing the designers to use off-chip memories which are band-width limited
and consume large amounts of energy. In this paper, we proposed sparsely-connected networks and
their training algorithm to substantially reduce the memory requirements of DNNs. The sparsity
degree of the proposed network can be tuned by an SNG, which is implemented using an LFSR unit
and a comparator. We used the proposed sparsely-connected network instead of fully-connected net-
works in a VGG-like network on three commonly used datasets: we achieved better accuracy results
with up to 90% fewer connections than the state of the art. Moreover, our simulation results confirm
that the proposed network can be used as a regularizer to prevent models from overfitting. Finally,
we implemented a single neuron of the sparsely-connected network in in 65 nm CMOS technology
for different sparsity degrees. The implementation results show that the proposed architecture can
save up to 84% energy and 90% silicon area compared to the conventional fully-connected network
while having a lower misclassification rate.
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