
Under review as a conference paper at ICLR 2017

A WAY OUT OF THE ODYSSEY: ANALYZING AND COM-
BINING RECENT INSIGHTS FOR LSTMS

Shayne Longpre
Salesforce Research
Palo Alto, California
slongpre@cs.stanford.edu

Sabeek Pradhan
Stanford University
Palo Alto, California
sabeekp@cs.stanford.edu

Caiming Xiong, Richard Socher
Salesforce Research
Palo Alto, California
{cxiong,rsocher}@salesforce.com

ABSTRACT

LSTMs have become a basic building block for many deep NLP models. In recent
years, many improvements and variations have been proposed for deep sequence
models in general, and LSTMs in particular. We propose and analyze a series of
augmentations and modifications to LSTM networks resulting in improved perfor-
mance for text classification datasets. We observe compounding improvements on
traditional LSTMs using Monte Carlo test-time model averaging, average pooling,
and residual connections, along with four other suggested modifications. Our
analysis provides a simple, reliable, and high quality baseline model.

1 INTRODUCTION

When exploring a new problem, having a simple yet competitive off-the-shelf baseline is fundamental
to new research. For instance, Caruana et al. (2008) showed random forests to be a strong baseline for
many high-dimensional supervised learning tasks. For computer vision, off-the-shelf convolutional
neural networks (CNNs) have earned their reputation as a strong baseline (Sharif Razavian et al.,
2014) and basic building block for more complex models like visual question answering (Xiong
et al., 2016). For natural language processing (NLP) and other sequential modeling tasks, recurrent
neural networks (RNNs), and in particular Long Short-Term Memory (LSTM) networks, with a
linear projection layer at the end have begun to attain a similar status. However, the standard LSTM
is in many ways lacking as a baseline. Zaremba (2015), Gal (2015), and others show that large
improvements are possible using a forget bias, inverted dropout regularization or bidirectionality. We
add three major additions with similar improvements to off-the-shelf LSTMs: Monte Carlo model
averaging, embed average pooling, and residual connections. We analyze these and other more
common improvements.

2 LSTM NETWORK

LSTM networks are among the most commonly used models for tasks involving variable-length
sequences of data, such as text classification. The basic LSTM layer consists of six equations:

it = tanh (Wixt +Riht−1 + bi) (1)
jt = σ (Wjxt +Rjht−1 + bj) (2)
ft = σ (Wfxt +Rfht−1 + bf ) (3)
ot = tanh (Woxt +Roht−1 + bo) (4)
ct = it � jt + ft � ct−1 (5)
ht = ot � tanh (ct) (6)

1



Under review as a conference paper at ICLR 2017

0 20 40 60 80 100 120 140 160 180 200

Monte Carlo Samples

0.495

0.500

0.505

0.510

0.515

0.520

0.525

S
S
T
 5

-C
la

ss
 E

rr
o
r 

R
a
te

Monte Carlo SST

Monte Carlo Error

Inverted Dropout Error

(a) Monte Carlo for SST fine-grained error

0 20 40 60 80 100 120 140 160 180 200

Monte Carlo Samples

0.112

0.114

0.116

0.118

0.120

0.122

0.124

0.126

0.128

0.130

B
in

a
ry

 E
rr

o
r 

R
a
te

IMDB: Monte Carlo

Monte Carlo Error

Inverted Dropout Error

(b) Monte Carlo for IMDB binary error

Figure 1: A comparison of the performance of Monte Carlo averaging, over sample size, to regular
single-sample inverted dropout at test-time.

Where σ is the sigmoid function, � is element-wise multiplication, and vt is the value of variable v
at timestep t. Each layer receives xt from the layer that came before it and ht−1 and ct−1 from the
previous timestep, and it outputs ht to the layer that comes after it and ht and ct to the next timestep.
The c and h values jointly constitute the recurrent state of the LSTM that is passed from one timestep
to the next. Since the h value completely updates at each timestep while the c value maintains part of
its own value through multiplication by the forget gate f , h and c complement each other very well,
with h forming a “fast” state that can quickly adapt to new information and c forming a “slow” state
that allows information to be retained over longer periods of time (Zaremba, 2015). While various
papers have tried to systematically experiment with the 6 core equations constituting an LSTM (Greff
et al., 2015; Zaremba, 2015), in general the basic LSTM equations have proven extremely resilient
and, if not optimal, at least a local maximum.

3 MONTE CARLO MODEL AVERAGING

It is common practice when applying dropout in neural networks to scale the weights up at train
time (inverted dropout). This ensures that the expected magnitude of the inputs to any given layer
are equivalent between train and test, allowing for an efficient computation of test-time predictions.
However, for a model trained with dropout, test-time predictions generated without dropout merely
approximate the ensemble of smaller models that dropout is meant to provide. A higher fidelity
method requires that test-time dropout be conducted in a manner consistent with how the model was
trained. To achieve this, we sample k neural nets with dropout applied for each test example and
average the predictions. With sufficiently large k this Monte Carlo average should approach the true
model average (Srivastava et al., 2014). We show in Figure 1 that this technique can yield more
accurate predictions on test-time data than the standard practice. This is demonstrated over a number
of datasets, suggesting its applicability to many types of sequential architectures. While running
multiple Monte Carlo samples is more computationally expensive, the overall increase is minimal
as the process is only run on test-time forward passes and is highly parallelizable. We show that
higher performance can be achieved with relatively few Monte Carlo samples, and that this number
of samples is similar across different NLP datasets and tasks.

We encountered one ambiguity of Monte Carlo model averaging that to our knowledge remains
unaddressed in prior literature: there is relatively little exploration as to where and how the model
averaging is most appropriately handled. We investigated averaging over the output of the final
recurrent layer (just before the projection layer), over the output of the projection layer (the pre-
softmax unnormalized logits), and the post-softmax normalized probabilities, which is the approach
taken by Gal (2015) for language modeling. We saw no discernible difference in performance
between averaging the pre-projection and post-projection outputs. Averaging over the post-softmax
probabilities showed marginal improvements over these two methods, but interestingly only for
bidirectional models. We also explored using majority voting among the sampled models. This

2



Under review as a conference paper at ICLR 2017

Embed

…

RNN

Softmax

w2w2 w3w3 wN�1wN�1 wNwN

MLP

NX

i=1

wi

N

NX

i=1

wi

N

Average 
Word Vectors

w1w1 wN�2wN�2

Figure 2: An illustration of the embed average pooling extension to a standard RNN model. The
output of the multilayer perceptron is concatenated to the final hidden state output by the RNN.

involves tallying the maximum post-softmax probabilities and selecting the class that received the
most votes. This method differs from averaging the post-softmax probabilities in the same way
max-margin differs from maximum likelihood estimation (MLE), de-emphasizing the points well
inside the decision boundary or the models that predicted a class with extremely high probability.
With sufficiently large k, this voting method seemed to work best of the averaging methods we tried,
and thus all of our displayed models use this technique. However, for classification problems with
more classes, more Monte Carlo samples might be necessary to guarantee a meaningful plurality of
class predictions. We conclude that the majority-vote Monte Carlo averaging method is preferable
in the case where the ratio of Monte Carlo samples to number of classification labels is large
(k/output size).

The Monte Carlo model averaging experiments, shown in Figure 1, were conducted as follows. We
drew k = 400 separate test samples for each example, differentiated by their dropout masks. For each
sample size p (whose values, plotted on the x-axis, were in the range from 2 to 200 with step-size
2) we selected p of our k samples randomly without replacement and performed the relevant Monte
Carlo averaging technique for that task, as discussed above. We do this m = 20 times for each point,
to establish the mean and variance for that number of Monte Carlo iterations/samples p. The variance
is used to visualize the 90% confidence interval in blue, while the red line denotes the test accuracy
computed using the traditional approximation method (inverted dropout at train-time, and no dropout
at test-time).

4 EMBED AVERAGE POOLING

Reliably retaining long-range information is a well documented weakness of LSTM networks
(Karpathy et al., 2015). This is especially the case for very long sequences like the IMDB sentiment
dataset (Maas et al., 2011), where deep sequential models fail to capture uni- and bi-gram occurrences
over long sequences. This is likely why n-gram based models, such as a bi-gram NBSVM (Wang
and Manning, 2012), outperform RNN models on such datasetes. It was shown by Iyyer et al. (2015)
and others that for general NLP classification tasks, the use of a deep, unordered composition (or bag-
of-words) of a sequence can yield strong results. Their solution, the deep averaging network (DAN),
combines the observed effectiveness of depth, with the unreasonable effectiveness of unordered
representations of long sequences.

We suspect that the primary advantage of DANs is their ability to keep track of information that
would have otherwise been forgotten by a sequential model, such as information early in the sequence
for a unidirectional RNN or information in the middle of the sequence for a bidirectional RNN. Our
embed average pooling supplements the bidirectional RNN with the information from a DAN at a
relatively negligible computational cost.

3



Under review as a conference paper at ICLR 2017

LSTM

LSTM

LSTM

Softmax

h(1)
th
(1)
t

h(2)
th
(2)
t

h(3)
th
(3)
t

xtxt… … xt+1xt+1xt�1xt�1

h(1)
t�1h(1)
t�1 h(1)

th
(1)
t

h(2)
t�1h(2)
t�1

h(3)
t�1h(3)
t�1

h(2)
th
(2)
t

h(3)
th
(3)
t

(a) Res-V1: An illustration of vertical residual connec-
tions

LSTM

LSTM

LSTM

Softmax

… …xtxtxt�1xt�1 xt+1xt+1

h(1)
t�1h(1)
t�1 h(1)

th
(1)
t

h(1)
th
(1)
t

h(2)
t�1h(2)
t�1

h(2)
th
(2)
t

h(2)
th
(2)
t

h(3)
t�1h(3)
t�1

h(3)
th
(3)
t

h(3)
th
(3)
t

(b) Res-V2: An illustration of vertical and lateral resid-
ual connections

Figure 3: An illustration of vertical (ResV) and lateral residual (ResL) connections added to a 3-layer
RNN. A model with only vertical residuals is denoted Res-V1, whereas a model with vertical and
lateral residuals is denoted “Res-V2”.

As shown in Figure 2, embed average pooling works by averaging the sequence of word vectors and
passing this average through an MLP. The averaging is similar to an average pooling layer in a CNN
(hence the name), but with the averaging being done temporally rather than spatially. The output of
this MLP is concatenated to the final output of the RNN, and the combined vector is then passed
into the projection and softmax layer. We apply the same dropout mask to the word vectors when
passing them to the RNN as when averaging them, and we apply a different dropout mask on the
output of the MLP. We experimented with applying the MLP before rather than after averaging the
word vectors but found the latter to be most effective.

5 RESIDUAL CONNECTIONS

For feed-forward convolutional neural networks used in computer vision tasks, residual networks, or
ResNets, have obtained state of the art results (He et al., 2015). Rather than having each layer learn a
wholly new representation of the data, as is customary for neural networks, ResNets have each layer
(or group of layers) learn a residual which is added to the layer’s input and then passed on to the next
layer. More formally, if the input to a layer (or group of layers) is x and the output of that layer (or
group of layers) is F (x), then the input to the next layer (or group of layers) is x+ F (x), whereas it
would be F (x) in a conventional neural network. This architecture allows the training of far deeper
models. He et al. (2015) trained convolutional neural networks as deep as 151 layers, compared to 16
layers used in VGGNets (Simonyan and Zisserman, 2014) or 22 layers used in GoogLeNet (Szegedy
et al., 2015), and won the 2015 ImageNet Challenge. Since then, various papers have tried to build
upon the ResNet paradigm (Huang et al., 2016; Szegedy et al., 2016), and various others have tried to
create convincing theoretical reasons for ResNet’s success (Liao and Poggio, 2016; Veit et al., 2016).

4



Under review as a conference paper at ICLR 2017

We explored many different ways to incorporate residual connections in an RNN. The two most
successful ones, which we call Res-V1 and Res-V2 are depicted in Figure 6. Res-V1 incorporates
only vertical residuals, while Res-V2 incorporates both vertical and lateral residuals. With vertical
residual connections, the input to a layer is added to its output and then passed to the next layer,
as is done in feed-forward ResNets. Thus, whereas the input to a layer is normally the ht from
the previous layer, with vertical residuals the input becomes the ht + xt from the previous layer.
This maintains many of the attractive properties of ResNets (e.g. unimpeded gradient flow across
layers, adding/averaging the contributions of each layer) and thus lends itself naturally to deeper
networks. However, it can interact unpredictably with the LSTM architecture, as the “fast” state of
the LSTM no longer reflects the network’s full representation of the data at that point. To mitigate this
unpredictability, Res-V2 also includes lateral residual connections. With lateral residual connections,
the input to a layer is added to its output and then passed to the next timestep as the fast state of the
LSTM. It is equivalent to replacing equation 6 with ht = ot � tanh (ct) + xt. Thus, applying both
vertical and lateral residuals ensures that the same value is passed both to the next layer as input and
to the next timestep as the “fast” state.

In addition to these two, we explored various other, ultimately less successful, ways of adding residual
connections to an LSTM, the primary one being horizontal residual connections. In this architecture,
rather than adding the input from the previous layer to a layer’s output, we added the fast state
from the previous timestep. The hope was that adding residual connections across timesteps would
allow information to flow more effectively across timesteps and thus improve the performance of
RNNs that are deep across timesteps, much as ResNets do for networks that are deep across layers.
Thus, we believed horizontal residual connections could solve the problem of LSTMs not learning
long-term dependencies, the same problem we also hoped to mitigate with embed average pooling.
Unfortunately, horizontal residuals failed, possibly because they blurred the distinction between
the LSTM’s “fast” state and “slow” state and thus prevented the LSTM from quickly adapting to
new data. Alternate combinations of horizontal, vertical, and lateral residual connections were also
experimented with but yielded poor results.

6 EXPERIMENTAL RESULTS

6.1 DATASETS

We chose two commonly used benchmark datasets for our experiments: the Stanford Sentiment
Treebank (SST) (Socher et al., 2013) and the IMDB sentiment dataset (Maas et al., 2011). This
allowed us to compare the performance of our models to existing work and review the flexibility of
our proposed model extensions across fairly disparate types of classification datasets. SST contains
relatively well curated, short sequence sentences, in contrast to IMDB’s comparatively colloquial
and lengthy sequences (some up to 2, 000 tokens). To further differentiate the classification tasks we
chose to experiment with fine-grained, five-class sentiment on SST, while IMDB only offered binary
labels. For IMDB, we randomly split the training set of 25, 000 examples into training and validation
sets containing 22, 500 and 2, 500 examples respectively, as done in Maas et al. (2011).

6.2 METHODOLOGY

Our objective is to show a series of compounding extensions to the standard LSTM baseline that
enhance accuracy. To ensure scientific reliability, the addition of each feature is the only change
from the previous model (see Figures 4 and 5). The baseline model is a 2-layer stacked LSTM with
hidden size 170 for SST and 120 for IMDB, as used in Tai et al. (2015). All models in this paper used
publicly available 300 dimensional word vectors, pre-trained using Glove on 840 million tokens of
Common Crawl Data (Pennington et al., 2014), and both the word vectors and the subsequent weight
matrices were trained using Adam with a learning rate of 10−4.

The first set of basic feature additions were adding a forget bias and using dropout. Adding a bias of
1.0 to the forget gate (i.e. adding 1.0 to the inside of the sigmoid function in equation 3) improves
results across NLP tasks, especially for learning long-range dependencies (Zaremba, 2015). Dropout
(Srivastava et al., 2014) is a highly effective regularizer for deep models. For SST and IMDB we used
grid search to select dropout probabilities of 0.5 and 0.7 respectively, applied to the input of each
layer, including the projection/softmax layer. While forget bias appears to hurt performance in Figure

5



Under review as a conference paper at ICLR 2017

5, the combination of dropout and forget bias yielded better results in all cases than dropout without
forget bias. Our last two basic optimizations were increasing the hidden sizes and then adding shared-
weight bidirectionality to the RNN. The hidden sizes for SST and IMDB were increased to 800 and
360 respectively; we found significantly diminishing returns to performance from increases beyond
this. We chose shared-weight bidirectionality to ensure the model size did not increase any further.
Specifically, the forward and backward weights are shared, and the input to the projection/softmax
layer is a concatenation of the forward and backward passes’ final hidden states.

All of our subsequent proposed model extensions are described at length in their own sections. For
both datasets, we used 60 Monte Carlo samples, and the embed average pooling MLP had one
hidden layer and both a hidden dimension and an output dimension of 300 as the output dimension
of the embed average pooling MLP. Note that although the MLP weights increased the size of their
respective models, this increase is negligible (equivalent to increasing the hidden size for SST from
800 to 804 or the hidden size of IMDB from 360 to 369), and we found that such a size increase had
no discernible effect on accuracy when done without the embed average pooling.

6.3 RESULTS

Since each of our proposed modifications operate independently, they are well suited to use in
combination as well as in isolation. In Figures 4 and 5 we compound these features on top of the
more traditional enhancements. Due to the expensiveness of bidirectional models, Figure 4 also
shows these compounding features on SST with and without bidirectionality. The validation accuracy
distributions show that each augmentation usually provides some small but noticeable improvement
on the previous model, as measured by consistent improvements in mean and median accuracy.

Baseline: 2-LSTM

 + Forget Bias

 + Dropout

 + Hidden Size

 + Bidirectional

 + Monte Carlo

 + Embed Averaging

 + Vertic
al Resid

ual

 + Lateral Resid
ual

Features

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

5
-C

la
ss

 V
a
l 
A

cc
u
ra

cy

SST: Full Compounding Model Features

(a) Compounding feature models on 5-Class SST.

Baseline: 2-LSTM

 + Forget Bias

 + Dropout

 + Hidden Size

 + Monte Carlo

 + Embed Averaging

 + Vertic
al Resid

ual

 + Lateral Resid
ual

Features

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

5
-C

la
ss

 V
a
l 
A

cc
u
ra

cy

SST: Compounding Model Features

(b) Compounding feature models (minus bidirectional)
for 5-Class SST.

Figure 4: These box-plots show the performance of compounding model features on fine-grain SST
validation accuracy. The red points, red lines, blue boxes, whiskers and plus-shaped points indicate
the mean, median, quartiles, range, and outliers, respectively.

We originally suspected that MC would provide marginal yet consistent improvements across datasets,
while embed average pooling would especially excel for long sequences like in IMDB, where n-gram
based models and deep unordered compositions have benefited from their ability to retain information
from disparate parts of the text. The former hypothesis was largely confirmed. However, while
embed average pooling was generally performance-enhancing, the performance boost it yielded for
IMDB was not significantly larger than the one it yielded for SST, though that may have been because
the other enhancements already encompassed most of the advantages provided by deep unordered
compositions.

The only evident exceptions to the positive trend are the variations of residual connections. Which of
Res-V1 (vertical only) and Res-V2 (vertical and residual) outperformed the other depended on the
dataset and whether the network was bidirectional. The Res-V2 architecture dominated in experiments
4b and 5 while the Res-V1 (only vertical residuals) architecture is most performant in Figure 4a. This

6



Under review as a conference paper at ICLR 2017

Baseline: 2-LSTM

 + Forget Bias

 + Dropout

 + Hidden Size

 + Bidirectional

 + Monte Carlo

 + Embed Averaging

 + Vertic
al Resid

ual

 + Lateral Resid
ual

Features

0.870

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

B
in

a
ry

 V
a
l 
A

cc
u
ra

cy

IMDB: Compounding Model Features

Figure 5: These box-plots show the performance of compounding model features on binary IMDB
validation accuracy.

Figure 6: Comparing the effects of layer depth between Vanilla RNNs, Res-V1 and Res-V2 models
on fine-grained sentiment classification (SST). As we increase the layers, we decrease the hidden size
to maintain equivalent model sizes. The points indicate average validation accuracy, while the shaded
regions indicate 90% confidence intervals.

suggests for short sequences, bidirectionality and lateral residuals conflict. Further analysis of the
effect of residual connections and model depth can be found in Figure 6. In that figure, the number of
parameters, and hence model size, are kept uniform by modifying the hidden size as the layer depth
changed. The hidden sizes used for 1, 2, 4, 6, and 8 layer models were 250, 170, 120, 100, and 85
respectively, maintaining ≈ 550, 000 total parameters for all models. As the graph demonstrates,

7



Under review as a conference paper at ICLR 2017

Model # Params (M) Train Time / Epoch (sec) Test Acc (%)
RNTN (Socher et al., 2013) − − 45.7
CNN-MC (Kim, 2014) − − 47.4
DRNN (Irsoy and Cardie, 2014) − − 49.8
CT-LSTM (Tai et al., 2015) 0.317 − 51.0
DMN (Kumar et al., 2016) − − 52.1
NTI-SLSTM-LSTM (Munkhdalai and
Yu, 2016)

− − 53.1

Baseline 2-LSTM 0.553 ≈ 2, 100 46.4
Large 2-LSTM 8.650 ≈ 3, 150 48.7
Bi-2-LSTM 8.650 ≈ 6, 100 50.9
Bi-2-LSTM+MC+Pooling+ResV 8.740 ≈ 8, 050 52.2
2-LSTM+MC+Pooling+ResV+ResL 8.740 ≈ 4, 800 51.6

Table 1: Test performance on the Stanford Sentiment Treebank (SST) sentiment classification task.

Model # Params (M) Train Time / Epoch (sec) Test Acc (%)
SVM-bi (Wang and Manning, 2012) − − 89.2
DAN-RAND (Iyyer et al., 2015) − − 88.8
DAN (Iyyer et al., 2015) − − 89.4
NBSVM-bi (Wang and Manning, 2012) − − 91.2
NBSVM-tri, RNN, Sentence-Vec En-
semble (Mesnil et al., 2014)

− − 92.6

Baseline 2-LSTM 0.318 ≈ 1, 800 85.3
Large 2-LSTM 2.00 ≈ 2, 500 87.6
Bi-2-LSTM 2.00 ≈ 5, 100 88.9
Bi-2-LSTM+MC+Pooling+ResV+ResL 2.08 ≈ 5, 500 90.1

Table 2: Test performance on the IMDB sentiment classification task.

normal LSTMs (“Vanilla”) perform drastically worse as they become deeper and narrower, while
Res-V1 and Res-V2 both see their performance stay much steadier or even briefly rise. While depth
wound up being far from a panacea for the datasets we experimented on, the ability of an LSTM with
residual connections to maintain its performance as it gets deeper holds promise for other domains
where the extra expressive power provided by depth might prove more crucial.

Selecting the best results for each model, we see results competitive with state-of-the-art performance
for both IMDB1 and SST, even though many state-of-the-art models use either parse-tree information
(Tai et al., 2015), multiple passes through the data (Kumar et al., 2016) or tremendous train and
test-time computational and memory expenses (Le and Mikolov, 2014). To our knowledge, our
models constitute the best performance of purely sequential, single-pass, and computationally feasible
models, precisely the desired features of a solid out-of-the-box baseline. Furthermore, for SST, the
compounding enhancement model without bidirectionality, the final model shown in Figure 4b, greatly
exceeded the performance of the large bidirectional model (51.6% vs 50.9%), with significantly less
training time (Table 1). This suggests our enhancements could provide a similarly reasonable and
efficient alternative to shared-weight bidirectionality for other such datasets.

7 CONCLUSION

We explore several easy to implement enhancements to the basic LSTM network that positively
impact performance. These include both fairly well established extensions (biasing the forget gate,
dropout, increasing the model size, bidirectionality) and several more novel ones (Monte Carlo

1For IMDB, we benchmark only against results obtained from training exclusively on the labeled training set.
Thus, we omit results from unsupervised models that leveraged the additional 50, 000 unlabeled examples, such
as Miyato et al. (2016).

8



Under review as a conference paper at ICLR 2017

model averaging, embed average pooling, residual connections). We find that these enhancements
improve the performance of the LSTM in classification tasks, both in conjunction or isolation, with
an accuracy close to state of the art despite being more lightweight and using less information than
the current state of the art models. Our results suggest that these extensions should be incorporated
into LSTM baselines.

REFERENCES

Rich Caruana, Nikos Karampatziakis, and Ainur Yessenalina. An empirical evaluation of supervised
learning in high dimensions. In Proceedings of the 25th international conference on Machine
learning, pages 96–103. ACM, 2008.

Yarin Gal. A theoretically grounded application of dropout in recurrent neural networks. arXiv
preprint arXiv:1512.05287, 2015.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R Steunebrink, and Jürgen Schmidhuber.
Lstm: A search space odyssey. arXiv preprint arXiv:1503.04069, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep networks with
stochastic depth. arXiv preprint arXiv:1603.09382, 2016.

Ozan Irsoy and Claire Cardie. Modeling compositionality with multiplicative recurrent neural
networks. arXiv preprint arXiv:1412.6577, 2014.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. Deep unordered composi-
tion rivals syntactic methods for text classification. In Association for Computational Linguistics,
2015.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Visualizing and understanding recurrent networks.
CoRR, abs/1506.02078, 2015.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882,
2014.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Victor
Zhong, Romain Paulus, and Richard Socher. Ask me anything: Dynamic memory networks for
natural language processing. In ICML, 2016.

Quoc V Le and Tomas Mikolov. Distributed representations of sentences and documents. In ICML,
volume 14, pages 1188–1196, 2014.

Qianli Liao and Tomaso A. Poggio. Bridging the gaps between residual learning, recurrent neural
networks and visual cortex. CoRR, abs/1604.03640, 2016. URL http://arxiv.org/abs/
1604.03640.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies, pages 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Grégoire Mesnil, Tomas Mikolov, Marc’Aurelio Ranzato, and Yoshua Bengio. Ensemble of gen-
erative and discriminative techniques for sentiment analysis of movie reviews. arXiv preprint
arXiv:1412.5335, 2014.

Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Virtual adversarial training for semi-supervised
text classification. arXiv preprint arXiv:1605.07725, 2016.

Tsendsuren Munkhdalai and Hong Yu. Neural tree indexers for text understanding. CoRR,
abs/1607.04492, 2016. URL http://arxiv.org/abs/1607.04492.

9



Under review as a conference paper at ICLR 2017

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–43, 2014.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features
off-the-shelf: An astounding baseline for recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the conference on empirical methods in natural language processing
(EMNLP), volume 1631, page 1642. Citeseer, 2013.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9,
2015.

Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-resnet and the
impact of residual connections on learning. CoRR, abs/1602.07261, 2016. URL http://arxiv.
org/abs/1602.07261.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015.

Andreas Veit, Michael J. Wilber, and Serge J. Belongie. Residual networks are exponential ensembles
of relatively shallow networks. CoRR, abs/1605.06431, 2016. URL http://arxiv.org/
abs/1605.06431.

Sida Wang and Christopher D Manning. Baselines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Short Papers-Volume 2, pages 90–94. Association for Computational Linguistics,
2012.

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic memory networks for visual and
textual question answering. In ICML, 2016.

Wojciech Zaremba. An empirical exploration of recurrent network architectures. 2015.

10


