
Under review as a conference paper at ICLR 2019

The Conditional Entropy Bottleneck

Anonymous authors
Paper under double-blind review

Abstract

We present a new family of objective functions, which we term the Conditional
Entropy Bottleneck (CEB). These objectives are motivated by the Minimum Nec-
essary Information (MNI) criterion. We demonstrate the application of CEB to
classification tasks. We show that CEB gives: well-calibrated predictions; strong
detection of challenging out-of-distribution examples and powerful whitebox ad-
versarial examples; and substantial robustness to those adversaries. Finally, we
report that CEB fails to learn from information-free datasets, providing a possible
resolution to the problem of generalization observed in Zhang et al. (2016).

1 Introduction

The field of Machine Learning has suffered from the following well-known problems in recent years1:

• Vulnerability to adversarial examples. Essentially all machine-learned systems are currently
believed by default to be highly vulnerable to adversarial examples. Many defenses have been
proposed, but very few have demonstrated robustness against a powerful, general-purpose adversary.
Lacking a clear theoretical framework for adversarial attacks, most proposed defenses are ad-hoc
and fail in the presence of a concerted attacker (Carlini & Wagner, 2017a; Athalye et al., 2018).

• Poor out-of-distribution detection. Classifiers do a poor job of signaling that they have received
data that is substantially different from the data they were trained on. Ideally, a trained classifier
would give less confident predictions for data that was far from the training distribution (as well as
for adversarial examples). Barring that, there would be a clear, principled statistic that could be
extracted from the model to tell whether the model should have made a low-confidence prediction.
Many different approaches to providing such a statistic have been proposed (Guo et al., 2017;
Lakshminarayanan et al., 2016; Hendrycks & Gimpel, 2016; Liang et al., 2017; Lee et al., 2017;
DeVries & Taylor, 2018), but most seem to do poorly on what humans intuitively view as obviously
different data.

• Miscalibrated predictions. Related to the issues above, classifiers tend to be very overconfident in
their predictions (Guo et al., 2017). This may be a symptom, rather than a cause, but miscalibration
does not give practitioners confidence in their models.

• Overfitting to the training data. Zhang et al. (2016) demonstrated that classifiers can memorize
fixed random labelings of training data, which means that it is possible to learn a classifier with
perfect inability to generalize. This critical observation makes it clear that a fundamental test of
generalization is that the model should fail to learn when given what we call information-free
datasets.

This paper does not set out to solve any of these problems. Instead, our sole interest is the learning of
optimal representations. In pursuit of that goal, we attempt to be as general as possible, considering
only how to define optimal representations, what objective function might be capable of learning
them, and what requirements such an objective function places on the form of the model.

Given an optimal (according to our criterion) objective function, however, it is natural to explore the
problems listed above, to see if such an objective function can ameliorate some of the core issues in
the field of machine learning. We make those explorations in this paper, and find that our objective
function, the Conditional Entropy Bottleneck (CEB) appears to impact all of the issues listed above.

1These problems existed before recent years, but not all of them were known. In particular, adversarial
examples were unknown prior to 2013, and the severity of the overfitting problem was not known until 2016.

1

Under review as a conference paper at ICLR 2019

H(X) H(Y)

H(X|Y) H(Y |X)

I(X; Y)

H(X) H(Y)

H(ZX)
I(Y; ZX)

I(X; ZX |Y)

Figure 1: (Left): Information Venn diagram showing the joint distribution over X,Y . (Right): The
joint distribution ZX ← X ↔ Y . ZX is carefully positioned to indicate its conditional independence
from Y given X.

2 Optimal Representations

Consider a joint distribution, p(x, y), represented by the graphical model:

X ↔ Y

This joint distribution is our data, and may take any form. We don’t presume to know how the data
factors. It may factor as p(x, y) = p(x)p(y|x), p(x, y) = p(y)p(x|y), or even p(x, y) = p(x)p(y).

The first two factorings are depicted in Figure 1 in a standard information diagram showing the
various entropies and the mutual information. We can ask: given this generic setting, what is the
optimal representation? It seems there are only two options: capture all of the information in both X
and Y (measured by the joint entropy, H(X,Y)), or capture only the information shared between X
and Y (measured by the mutual information, I(X; Y)).

The field of lossless compression is concerned with representations that perfectly maintain all of
the information in both X and Y , as are the closely related studies of Kolmogorov Complexity (Kol-
mogorov, 1965) and Minimum Description Length (MDL) (Grünwald, 2007), all three of which are
concerned with perfect reconstruction of inputs or messages.

In contrast, we think that the field of machine learning is primarily concerned with making optimal
predictions on unseen data. The requirements of perfect reconstruction from a compressed represen-
tation may result in the retention of much more information in the model than may be needed for
prediction or stochastic generation tasks. For most such machine learning tasks, this points towards
learning representations that capture only the information shared between X and Y , which is measured
by the mutual information, I(X; Y).

The mutual information is defined in a variety of ways; we will use two (Cover & Thomas, 2006):

I(X; Y) = H(X) − H(X|Y) = H(Y) − H(Y |X) (1)

I(X; Y) measures the amount of information necessary to define the relationship between X and Y .
For some fixed dataset X,Y , any information less than I(X; Y) must be insufficient to predict Y from
X or vice-versa with minimal error. Equivalently, any information more than I(X; Y) must contain
some superfluous information for those two tasks. For example, consider a labeled dataset, where X
is high-dimensional and information-rich, and Y is a single integer. All of the information in X that is
not needed to correctly predict the single value Y = y is useless for the prediction task defined by
the dataset, and may be harmful to the performance of a machine learning system if retained in the
learned representation, as we will show empirically below. Next, we formalize this intuition about
the information required for an optimal representation.

3 Minimum Necessary Information

We propose the Minimum Necessary Information (MNI) criterion for a learned representation. We
can define MNI in three parts. First is Information: we would like a representation that captures
semantically meaningful information. In order to measure how successfully we capture meaningful

2

Under review as a conference paper at ICLR 2019

information, we must first know how to measure information. Thus, the criterion prefers information-
theoretic approaches, given the uniqueness of entropy as a measure of information (Shannon, 1948).
The semantic value of information is given by a task, which is specified by the set of variables in the
dataset. I.e., the dataset X,Y defines two tasks: predict Y given X, or predict X given Y . This brings
us to Necessity: the information we capture in our representations must be necessary to solve the
task.2 Finally, Minimality: this simply refers to the amount of information – given that we learn a
representation that can solve the task, we require that the representation we learn retain the smallest
amount of information about the task out of the set of all representations that solve the task. This part
of the criterion restricts us from incorporating “non-semantic” information into our representation,
such as noise or spurious correlation.

More formally, in the case of two observed variables, X and Y , a necessary set of conditions for a
representation Z to satisfy the MNI criterion is the following:

I(X; Y) = I(X; Z) = I(Y; Z) (2)

This fully constrains the amount of information.

To constrain the necessity of the information in the representation Z, the following conditions must
be satisfied:

p(y|x) =

∫
dz p(y|z)p(z|x) p(x|y) =

∫
dz p(x|z)p(z|y) (3)

These four distributions of z correspond to the two tasks: predict Y given X and predict X given Y .3

4 The Conditional Entropy Bottleneck

One way to satisfy Equation (2) is to learn a representation ZX of X only, indicated by the Markov
chain ZX ← X ↔ Y . We show this Markov chain as an information diagram in Figure 1 (Right). The
placement of H(ZX) in that diagram carefully maintains the conditional independence between Y and
ZX given X, but is otherwise fully general. Some of the entropy of ZX is unassociated with any other
variable; some is only associated with X, and some is associated with X and Y together. Figure 1
(Right), then, shows diagrammatically the state of the learned representation early in training. At
the end of training, we would like ZX to satisfy the equalities in Equation (2), which corresponds
to Figure 1 (Left), where the gray region labeled I(X; Y) also corresponds to I(X; ZX) and I(Y; ZX).

Given the conditional independence ZX y Y |X in our Markov chain, I(Y; ZX) is maximal at I(X; Y),
by the data processing inequality. However, I(X; ZX) does not clearly have a constraint that targets
I(X; Y). We cannot maximize I(X; ZX) in general while being compatible with the MNI criterion,
as that is only constrained from above by H(X) ≥ I(X; Y). Instead, we could use the Information
Bottleneck objective (Tishby et al., 2000) which starts from the same Markov chain and minimizes
βI(X; ZX) − I(Y; ZX), but it is not immediately clear what value of β will achieve the MNI.

Thus, we need a different approach to hit the MNI. Considering the information diagram in Figure 1
(Left), we can notice the following identities when when we have achieved the MNI:

I(X; Y |ZX) = I(X; ZX |Y) = I(Y; ZX |X) = 0 (4)

With our Markov chain and the chain rule of mutual information (Cover & Thomas, 2006), we have:

I(X; ZX |Y) = I(X,Y; ZX) − I(Y; ZX) = I(X; ZX) − I(Y; ZX) (5)

This conditional information is guaranteed to be non-negative, as both terms are mutual informations,
and the Markov chain guarantees that I(Y; ZX) is no larger than I(X; ZX), by the data processing
inequality. From an optimization perspective, this is ideal – we have a term that we can minimize,
and we can directly know how far we are from the optimal value of 0 (measured in nats, so it is

2Achille & Soatto (2018) and other authors call this “sufficiency”. We avoid the term because it leads to
confusion with minimum sufficient statistics, which maintain the mutual information between data and the true
model that generates it.

3Note that a δ distribution for p(z|x) and p(z|y) could satisfy this condition, but those distributions would
not satisfy Equation (2) unless Y = f (X) and X = g(Y). Anything other than a bijective relationship would give
I(X; Y) < max(H(X),H(Y)).

3

Under review as a conference paper at ICLR 2019

interpretable), when we are done (when it’s close enough to 0 that we are satisfied), and when our
model is insufficient for the task (i.e., when this term isn’t close enough to 0). This leads us to the
general Conditional Entropy Bottleneck objective:

CEB ≡ I(X; ZX |Y) − I(Y; ZX) (6)

Typically we would add a Lagrange multiplier on one of the two terms. In Appendix A, we present
some geometric arguments to prefer leaving the two terms balanced.

It is straightforward to turn this into a variational objective function that we can minimize. Taking the
terms in turn:4

I(X; ZX |Y) = I(X; ZX) − I(Y; ZX) = H(ZX) − H(ZX |X) − H(ZX) + H(ZX |Y) (7)
=−H(ZX |X) + H(ZX |Y) =

〈
log e(zX |x)

〉
−

〈
log p(zX |y)

〉
(8)

≤
〈
log e(zX |x)

〉
−

〈
log p(zX |y)

〉
+ KL[p(zX |y)||b(zX |y)] (9)

=
〈
log e(zX |x)

〉
−

〈
log b(zX |y)

〉
(10)

e(zX |x) is our encoder. It is not a variational approximation, even though it has learned parameters.
b(zX |y) is the backward encoder, a variational approximation of p(zX |y).

In the second term, H(Y) can be dropped because it is constant with respect to the model:

I(Y; ZX) = H(Y) − H(Y |ZX)⇒ −H(Y |ZX) =
〈
log p(y|zX)

〉
(11)

≥
〈
log p(y|zX)

〉
− KL[p(y|zX)||c(y|zX)] (12)

=
〈
log c(y|zX)

〉
(13)

c(y|zx) is the classifier (although that name is arbitrary, given that Y may not be labels), which
variationally approximates p(y|zX).

The variational bounds derived above give us a fully tractable objective function that works on
large-scale problems and supports amortized inference, Variational Conditional Entropy Bottleneck
(VCEB):

CEB ≡ I(X; ZX |Y) − I(Y; ZX)⇒
〈
log e(zX |x)

〉
−

〈
log b(zX |y)

〉
−

〈
log c(y|zX)

〉
≡ VCEB (14)

The distributions with letters other than p are assumed to have learned parameters, which we otherwise
omit in the notation. In other words, all three of e(·), b(·), and c(·) have learned parameters, just as in
the encoder and decoder of a normal VAE (Kingma & Welling, 2014), or the encoder, classifier, and
marginal in a VIB model.

We will name the I(X; ZX |Y) term the Residual Information – this is the excess information in our
representation beyond the information shared between X and Y:

ReX/Y ≡
〈
log e(zX |x)

〉
−

〈
log b(zX |y)

〉
≥ −H(ZX |X) + H(ZX |Y) = I(X; ZX |Y) (15)

There are a number of natural variations on this objective. We describe a few of them in Appendix E.

5 The Information Bottleneck

The Information Bottleneck (IB) (Tishby et al., 2000) learns a representation of X and Y subject to a
soft information constraint:

IB ≡ min βI(Z; X) − I(Z; Y) (16)
where β controls the size of the constraint.

In Figure 2 we show the optimal surfaces for CEB and IB, labeling the MNI point on both. In Figure 4
we show the same surfaces for finite models and that adjusting β determines a unique point in these
information planes relative to I(X; Y).

As described in Tishby et al. (2000), IB is a tabular method, so it is not usable for amortized
inference.5 Two recent works have extended IB for amortized inference. Both of these approaches

4 We write expectations
〈
log e(zX |x)

〉
. They are always with respect to the joint distribution; here, that is

p(x, y, zX) = p(x, y)e(zX |x).
5The tabular optimization procedure used for IB trivially applies to CEB, just by setting β = 1

2 . A recent
work on IB using tabular methods is the Deterministic Information Bottleneck Strouse & Schwab (2017), which
learns hard clusterings, rather than the soft clusterings of earlier IB approaches.

4

Under review as a conference paper at ICLR 2019

IB CEB

Figure 2: Geometry of the optimal surfaces for IB and CEB, with all points labeled. CEB rectifies
IB’s parallelogram by subtracting I(Y; Z) at every point.

rely on sweeping β, and do not propose a way to set β directly to train models where I(X; Z) =
I(Y; Z) = I(X; Y). Achille & Soatto (2018) presents InfoDropout, which uses IB to motivate a
variation on Dropout (Srivastava et al., 2014). A varational version of IB is presented in Alemi et al.
(2017). That objective is the Variational Information Bottleneck (VIB):

VIB ≡ β(
〈
log e(zX |x)

〉
−

〈
log m(zX)

〉
) −

〈
log c(y|zX)

〉
(17)

Instead of the backward encoder, VIB has a marginal posterior, m(zX), which is a variational
approximation to e(zX) =

∫
dx p(x)e(zX |x). Additionally, it has a hyperparameter, β. We show

in Appendix A that the optimal value for β = 1
2 when attempting to adhere to the MNI criterion.

Following Alemi et al. (2018), we define the Rate (R):

R ≡
〈
log e(zX |x)

〉
−

〈
log m(zX)

〉
≥ I(X; ZX) (18)

We can compare variational CEB with VIB by taking their difference at β = 1
2 . Note that both

objectives have an elided dependence on
〈
log p(y)

〉
from the I(Y; ZX) term that we must track:

CEB − VIBβ= 1
2

=
〈
log b(zX |y)

〉
−

〈
log m(zX)

〉
−

〈
log c(y|zX)

〉
+

〈
log p(y)

〉
(19)

Solving for m(zX) when that difference is 0:

m(zX) =
b(zX |y)p(y)

c(y|zX)
(20)

Since the optimal m∗(zX) is the marginalization of e(zX |x), at convergence we must have:

m∗(zX) =

∫
dx p(x)e(zX |x) =

p(zX |y)p(y)
p(y|zX)

(21)

Depending on the distributional families and the parameterizations, this point may be difficult to find,
particularly given that m(zX) only gets information about y indirectly through e(zX |x). Consequently,
for otherwise equivalent models, we may expect VIB 1

2
to converge to a looser approximation of

I(X; Z) = I(Y; Z) = I(X; Y) than CEB. Since VIB optimizes an upper bound on I(X; Z), that means
that VIB 1

2
will report R converging to I(X; Y), but will capture less than the MNI. In contrast, if

ReX/Y converges to 0, the variational tightness of b(zX |y) to the optimal p(zX |y) depends only on the
tightness of c(y|zX) to the optimal p(y|zX).

5

Under review as a conference paper at ICLR 2019

Table 1: Accuracy and rates (R) for each model. Bold indicates the best score in that column. Determ
doesn’t have a rate, since it doesn’t have an explicit encoder distribution. The final rate for the other
four models is reported, as well as the peak rate achieved during training. The true mutual information
for Fashion MNIST is I(X; Y) = 2.3 nats, so achieving R = 2.3 is optimal according to MNI.

Model Accuracy Train R
final (peak)

Determ 92.7 n/a
VIB0.01 93.0 2.6 (11.6)
VIB0.1 92.7 2.3 (3.2)
VIB0.5 90.0 2.3 (2.4)
CEB 92.9 2.3 (2.3)

6 MNI Optimality of CEB

In this work we do not attempt to give a formal proof that CEB representations learn the optimal
information about the observed data (and certainly the variational form of the objective will prevent
that from happening in general cases). However, CEB’s targeting of the MNI is motivated by the
following simple observations: If I(X; Z) < I(X; Y), then we have thrown out relevant information
in X for predicting Y . If I(X; Z) > I(X; Y), then we are including information in X that is not useful
for predicting Y . Thus I(X; Z) = I(X; Y) is the “correct” amount of information, which is one of the
equalities required in order to satisfy the MNI criterion. Only models that successfully learn that
amount of information can possibly be MNI-optimal.

The second condition of MNI (Equation (3)) is only fully satisfied when optimizing the bidirec-
tional CEB objective, described in Appendix E.2, as

〈
log e(zX |x)

〉
−

〈
log b(zX |y)

〉
and

〈
log b(zY |y)

〉
−〈

log e(zY |x)
〉

are both 0 only when b(z|y) = p(z|y) and e(z|x) = p(z|x) and the corresponding decoder
terms are both maximal. We leave such models for future work.

7 Classification Experiments

Our primary experiments are focused on comparing the performance of otherwise identical models
when we change only the objective function. Consequently, we aren’t interested in demonstrating
state-of-the-art results for a particular classification task. Instead, we are interested in relative
differences in performance that can be directly attributed to the difference in objective.

With that in mind, we present results for classification of Fashion MNIST (Xiao et al., 2017) for
five different models. The five models are: a deterministic model (Determ); three VIB models, with
β ∈ { 12 , 10−1, 10−2} (VIB0.5, VIB0.1, VIB0.01); and a CEB model. These same models are used in the
calibration, out-of-distribution, and adversarial experiments (Sections 8 to 10). Critically, all five
models share the same inference architecture mapping X to Y . See Appendices C and D for details
on training and the architectures.

Since Fashion MNIST doesn’t have a prespecified validation set, it offers an opportunity to test
training algorithms that only look at training results, rather than relying on cross validation. To that
end, the five models presented here are the first models with these hyperparameters that we trained
on Fashion MNIST.6 The learning rate for the CEB model was lowered according to the training
algorithm described in Appendix C. The other four models followed the same algorithm, but instead
of tracking ReX/Y , they simply tracked their training loss. All five models were required to retain the
initial learning rate of 0.001 for 40 epochs before they could begin lowering the learning rate. At
no point during training did any of the models exhibit non-monotonic test accuracy, so we do not
believe that this approach harmed any performance – all five models converged essentially smoothly
to their final, reported performance. In spite of the dynamic learning rate schedule, all five models
took approximately the same number of epochs to reach the minimum learning rate.

6 Development focused on MNIST (LeCun et al., 1998) and 2 dimensional latent vectors for ease of
visualization. See Figure 8 for an example 2D latent space.

6

Under review as a conference paper at ICLR 2019

a b

c d

Figure 3: Calibration plots with 90% confidence intervals for four of the models after 2,000 steps,
20,000 steps, and 40,000 steps (left, center, and right of each trio, respectively): a is CEB, b is
VIB0.5, c is VIB0.1, d is Determ. Perfect calibration corresponds to the dashed diagonal lines.
Underconfidence occurs when the points are above the diagonal. Overconfidence occurs when the
points are below the diagonal.

In the case of a simple classification problem with a uniform distribution over classes in the training
set, we can directly compute I(X; Y) as log C, where C is the number of classes.7 See Table 1 for
a comparison of the rates between the four variational models, as well as their accuracies. All but
VIB0.5 achieve the same accuracy. All four stochastic models get close to the ideal rate of 2.3 nats,
but they get there by different paths. For the VIB models, the lower β is, the higher the rate goes early
in training, before converging down to (close to) 2.3 nats. CEB never goes above 2.3 nats.

8 Calibration

In Figure 3, we show calibration plots at various points during training for the four models. Calibration
curves help analyze whether models are underconfident or overconfident. Each point in the plots
corresponds to a 5% confidence range. Accuracy is averaged for each bin. A well-calibrated model
is correct half of the time it gives a confidence of 50% for its prediction.

All of the networks move from under- to overconfidence during training. However, CEB and VIB0.5
are only barely overconfident, while β = 0.1 is sufficent to make it nearly as overconfident as the
deterministic model. This overconfidence is one of the issues that is correlated with exceeding the
MNI during training (Table 1). See Appendix A for a geometric explanation for how this can occur.

9 Out-of-Distribution Detection

We test the ability of the five models to detect three different out-of-distribution (OoD) detection
datasets. U(0, 1) is uniform noise in the image domain. MNIST uses the MNIST test set. Vertical Flip
is the most challenging, using vertically flipped Fashion MNIST test images, as originally proposed
in Alemi et al. (2018).

We use three different metrics for thresholding. The first two, H and R, were proposed in Alemi et al.
(2018). H is the classifier entropy. R is the rate, defined in Section 5. The third metric is specific to
CEB: ReX/Ŷ . This is the predicted residual information – since we don’t have access to the true value
of Y at test time, we use ŷ ∼ c(y|zX) to calculate H(ZX |Ŷ). This is no longer a valid bound on ReX/Y ,
as ŷ may not be from the true distribution p(x, y, zX). However, the better the classifier, the closer the
estimate should be.

These three threshold scores are used with the standard suite of proper scoring rules: False Positive
Rate at 95% True Positive Rate (FPR 95% TPR), Area Under the ROC Curve (AUROC), and Area
Under the Precision-Recall Curve (AUPR). See Lee et al. (2018) for definitions.

7We are relying on the mild assumption that X (the high-dimensional data) has higher entropy than Y (the
labels). I(X; Y) ≤ min(H(X),H(Y)).

7

Under review as a conference paper at ICLR 2019

Table 2: Results for out-of-distribution detection (OoD). Thrsh. is the threshold score used: H is
the entropy of the classifier; R and ReX/Ŷ are defined in Section 9. Arrows denote whether higher or
lower scores are better. Bold indicates the best score in that column for a particular OoD dataset.

OoD Method Thrsh. FPR @
95% TPR ↓

AUROC
↑

AUPR
In ↑

U(0,1)

Determ H 35.8 93.5 97.1

VIB0.01
H 41.1 92.5 96.0
R 0.0 100.0 100.0

VIB0.1
H 43.5 94.5 96.2
R 0.0 100.0 100.0

VIB0.5
H 73.2 87.0 90.5
R 80.6 57.1 51.4

CEB
H 63.4 92.8 95.1
R 0.0 100.0 100.0

ReX/Ŷ 0.0 100.0 100.0

MNIST

Determ H 59.0 88.4 90.0

VIB0.01
H 42.3 91.6 95.9
R 0.0 100.0 100.0

VIB0.1
H 60.3 84.7 89.7
R 0.5 86.8 99.8

VIB0.5
H 70.2 79.6 86.8
R 12.3 66.7 91.1

CEB
H 70.6 77.8 73.0
R 0.1 94.4 99.9

ReX/Ŷ 0.2 92.0 99.9

Vertical
Flip

Determ H 66.8 88.6 90.2

VIB0.01
H 57.6 82.6 80.3
R 0.0 100.0 100.0

VIB0.1
H 65.3 84.5 85.2
R 0.0 99.2 100.0

VIB0.5
H 79.7 79.8 81.4
R 17.3 52.7 91.3

CEB
H 68.0 84.9 85.5
R 0.0 90.7 100.0

ReX/Ŷ 0.0 92.6 100.0

The core result is that VIB0.5 performs much less well at the OoD tasks than the other two VIB models
and CEB. We believe that this is another result of VIB0.5 learning the right amount of information, but
not learning all of the right information, thereby demonstrating that it is not a valid MNI objective, as
explored in Appendix A. On the other hand, the other two VIB objectives seem to perform extremely
well, which is the benefit they get from capturing a bit more information about the training set. We
will see below that there is a price for that information, however.

10 Adversarial Example Robustness and Detection

Adversarial examples were first noted in Szegedy et al. (2013). The first practical attack, Fast Gradient
Method (FGM) was introduced shortly after (Goodfellow et al., 2015). Since then, many new attacks
have been proposed. Most relevant to us is the Carlini-Wagner (CW) attack (Carlini & Wagner,
2017b), which was the first practical attack to directly use a blackbox optimizer to find minimal
perturbations.8 Many defenses have also been proposed, but almost all of them are broken (Carlini
& Wagner, 2017a; Athalye et al., 2018). This work may be seen as a natural continuation of the
adversarial analysis of Alemi et al. (2017), which showed that VIB naturally had robustness to
whitebox adversaries, including CW. In that work, the authors did not train any VIB models with a
learned m(zX), which results in much weaker models, as shown in Alemi et al. (2018). We believe this
is the first work that trains a VIB model with a learned marginal and using it in an adversarial setting.

8Szegedy et al. (2013) initially used L-BFGS to find the adversaries. Carlini & Wagner (2017b) showed that
it was possible to use Adam (Kingma & Ba, 2015), which is much faster.

8

Under review as a conference paper at ICLR 2019

Table 3: Results for adversarial example detection (Attack). All attacks are targeting the “trousers”
class in Fashion MNIST. CW is Carlini & Wagner (2017b). CW, (C = 1) is CW with an additional
confidence penalty set to 1. CW, (C = 1) Det. is a custom CW attack targeting CEB’s detection
mechanism, ReX/Ŷ . L0, L1, L2, L∞ report the corresponding norm (mean ±1 std.) of successful
adversarial perturbations. Higher norms on CW indicate that the attack had a harder time finding
adversarial perturbations, since it starts by looking for the smallest possible perturbation. The
remaining columns are as in Table 2. Arrows denote whether higher or lower scores are better. Bold
indicates the best score in that column for a particular adversarial attack.

Attack Model Attack
Success ↓ L0 ↑ L1 ↑ L2 ↑ L∞ ↑ Thrsh. FPR @

95% TPR ↓
AUROC
↑

AUPR
In ↑

CW

Determ 100.0% 377.1
±100.3

16.2
±10.2

1.4
±1.7

0.2
±0.1 H 15.4 90.7 86.0

VIB0.01 55.2% 389.6
±100.9

17.1
±10.3

1.5
±1.8

0.2
±0.1

H 11.2 59.9 90.0
R 0.0 100.0 100.0

VIB0.1 68.8% 392.1
±101.6

29.2
±18.1

5.1
±7.5

0.4
±0.2

H 16.5 77.4 80.0
R 0.0 100.0 100.0

VIB0.5 35.8% 432.0
±99.6

40.1
±32.1

9.4
±14.4

0.5
±0.3

H 64.2 62.5 55.3
R 0.0 98.7 100.0

CEB 35.8% 416.4
±97.7

33.6
±30.3

7.4
±15.0

0.3
±0.2

H 62.2 65.2 57.1
R 0.0 99.7 100.0

ReX/Ŷ 0.0 99.5 100.0

CW
(C = 1)

Determ 100.0% 378.7
±100.3

16.6
±10.4

1.4
±1.9

0.2
±0.1 H 17.9 90.9 85.7

VIB0.01 96.7% 381.3
±101.5

17.4
±10.5

1.6
±1.9

0.2
±0.1

H 19.6 72.1 89.6
R 0.0 100.0 100.0

VIB0.1 97.3% 382.8
±100.4

28.2
±17.2

4.8
±7.4

0.4
±0.2

H 28.7 86.0 79.1
R 0.0 100.0 100.0

VIB0.5 50.4% 422.0
±101.3

36.4
±28.6

7.8
±12.3

0.4
±0.2

H 86.5 59.8 54.1
R 0.1 96.2 100.0

CEB 48.0% 417.6
±95.5

33.3
±29.8

7.3
±15.4

0.4
±0.2

H 77.4 63.5 56.4
R 0.0 99.3 100.0

ReX/Ŷ 0.0 98.7 100.0
CW

(C = 1)
Det.

CEB 25.1% 416.4
±92.2

84.1
±44.0

34.4
±22.8

0.9
±0.1

H 95.1 56.4 45.0
R 66.5 69.3 88.5

ReX/Ŷ 72.9 69.9 87.6

We consider CW in the whitebox setting to be the current gold standard attack, even though it is more
expensive than FGM or the various iterative attacks like DeepFool (Moosavi-Dezfooli et al., 2016) or
iterative variants of FGM (Kurakin et al., 2016). Running an optimizer directly on the model to find
the perturbation that can fool that model tells us much more about the robustness of the model than
approaches that focus on attack efficiency. CW searches over the space of perturbation magnitudes,
which makes the attack hard to defend against, and thus a strong option for testing robustness.

Here, we explore three variants of the CW L2 targeted attack. The implementation the first two CW
attacks are from Papernot et al. (2018). CW and CW (C = 1) are the baseline CW attack, and CW
with a confidence adjustment of 1. Note that in order for these attacks to succeed at all on CEB, we
had to increase the default CW learning rate to 5 × 10−1. Without that increase, CW found almost
no adversaries in our early experiments. All other parameters are left at their defaults for CW, apart
from setting the clip ranges to [0, 1]. The final attack, CW (C = 1) Det. is a modified version of CW
(C = 1) that additionally incorporates a detection tensor into the loss that CW minimizes. For CEB,
we had it target minimizing ReX/Ŷ in order to break the network’s ability to detect the attack.

All of the attacks are targeting the trouser class of Fashion MNIST, as that is the most distinctive
class. Targeting a less distinctive class, such as one of the shirt classes, would confuse the difficulty of
classifying the different shirts and the robustness of the model to adversaries. We run each of the first
three attacks on the entire Fashion MNIST test set (all 10,000 images). For the stochastic networks,
we permit 32 encoder samples and take the mean classification result (the same number of samples is
also used for gradient generation in the attacks to be fair to the attacker). CW is expensive, but we are
able to run these on a single GPU in about 30 minutes. However, CW (C = 1) Det. ends up being

9

Under review as a conference paper at ICLR 2019

about 200 times more expensive – we were only able to run 1000 images and only 8 encoder samples,
and it took 2 1

2 hours. Consequently, we only run CW (C = 1) Det. on the CEB model.

Our metric for robustness is the following: we count the number of adversarial examples that change
a correct prediction to an incorrect prediction of the target class, and divide by the number of correct
predictions the model makes on the non-adversarial inputs. We additionally measure the size of the
resulting perturbations using the L0, L1, L2, and L∞ norms. For CW, a larger perturbation generally
indicates that the attack had to work harder to find an adversarial example, making this a secondary
indication of robustness. Finally, we measure adversarial detection using the same thresholding
techniques from Table 2.

The results of these experiments are in Table 3. We show all 20,000 images for four of the models
in Figure 9. The most striking pattern in the models is how well VIB0.01 and VIB0.1 do at detection,
while VIB0.5 is dramatically more robust. We think that this is the most compelling indication of the
importance of not overshooting I(X; Y) – even minor amounts of overshooting appear to destroy the
robustness of the model. On the other hand, VIB0.5 has a hard time with detection, which indicates
that, while it has learned a highly compressed representation, it has not learned the optimal set of
bits. Thus, as we discuss in Appendix A, VIB trades off between learning the necessary information,
which allows it to detect attacks perfectly, and learning the minimum information, which allows it to
be robust to attacks.

The CEB model permits both – it maintains the necessary information for detecting powerful whitebox
attacks, but also retains the minimum information, providing robustness. This is again visible in
the CW (C = 1) Det. attack, which directly targets CEB’s detection mechanism. Even though it no
longer does well detecting the attack, the model becomes more robust to the attack, as indicated both
by the much lower attack success rate and the much larger perturbation magnitudes.

11 Information-Free Generalization Experiments

We replicate the basic experiment from Zhang et al. (2016): we use the images from Fashion MNIST,
but replace the training labels with fixed random labels. This dataset is information-free in the sense
that I(X; Y) = 0. We use that dataset to train multiple deterministic models, CEB models, and a
range of VIB models. We find that the CEB model never learns (even after 100 epochs of training),
the deterministic model always learns (after about 40 epochs of training it begins to memorize the
random labels), and the VIB models only learn with β ≤ 0.001.

The fact that CEB and VIB with β near 1
2 manage to resist memorizing random labels is our final

empirical demonstration that MNI is a powerful criterion for objective functions.

12 Conclusion

We have presented the basic form of the Conditional Entropy Bottleneck (CEB), motivated by the
Minimum Necessary Information (MNI) criterion for optimal representations. We have shown through
careful experimentation that simply by switching to CEB, you can expect substantial improvements
in OoD detection, adversarial example detection and robustness, calibration, and generalization.
Additionally, we have shown that it is possible to get all of these advantages without using any
additional form of regularization, and without any new hyperparameters. We have argued empirically
that objective hyperparameters can lead to hard-to-predict suboptimal behavior, such as memorizing
random labels, or reducing robustness to adversarial examples. In Appendix E and in future work, we
will show how to generalize CEB beyond the simple case of two observed variables.

It is our perspective that all of the issues explored here – miscalibration, failure at OoD tasks,
vulnerability to adversarial examples, and dataset memorization – stem from the same underlying
issue, which is retaining too much information about the training data in the learned representation.
We believe that the MNI criterion and CEB show a path forward for many tasks in machine learning,
permitting fast, amortized inference while ameliorating major problems.

Acknowledgments

REDACTED

10

Under review as a conference paper at ICLR 2019

References
Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations

through noisy computation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2018.

A. A. Alemi, B. Poole, I. Fischer, J. V. Dillon, R. A. Saurous, and K. Murphy. Fixing a Broken
ELBO. ICML2018, 2018. URL http://arxiv.org/abs/1711.00464.

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep Variational Information
Bottleneck. In International Conference on Learning Representations, 2017. URL http://arxiv.
org/abs/1612.00410.

Alexander A Alemi, Ian Fischer, and Joshua V Dillon. Uncertainty in the variational information
bottleneck. arXiv preprint arXiv:1807.00906, 2018.

Rana Ali Amjad and Bernhard C. Geiger. How (Not) To Train Your Neural Network Using the
Information Bottleneck Principle. CoRR, 2018.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420, 2018.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

William Bialek and Naftali Tishby. Predictive information. arXiv preprint cond-mat/9902341, 1999.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, pp. 3–14. ACM, 2017a.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017b.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in neural information processing systems, pp. 2172–2180, 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Thomas M Cover and Joy A Thomas. Elements of information theory 2nd edition. John Wiley &
Sons, 2006.

T. DeVries and G. W. Taylor. Learning Confidence for Out-of-Distribution Detection in Neural
Networks. arXiv: 1802.04865, 2018. URL https://arxiv.org/abs/1802.04865.

Michael Figurnov, Shakir Mohamed, and Andriy Mnih. Implicit reparameterization gradients. arXiv
preprint arXiv:1805.08498, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In CoRR, 2015.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Peter D Grünwald. The Minimum Description Length Principle. MIT press, 2007.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On Calibration of Modern Neural Networks. arXiv:
1706.04599, 2017. URL https://arxiv.org/abs/1706.04599.

D. Hendrycks and K. Gimpel. A Baseline for Detecting Misclassified and Out-of-Distribution
Examples in Neural Networks. arXiv: 1610.02136, 2016. URL https://arxiv.org/abs/1610.
02136.

11

http://arxiv.org/abs/1711.00464
http://arxiv.org/abs/1612.00410
http://arxiv.org/abs/1612.00410
https://arxiv.org/abs/1802.04865
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/1610.02136
https://arxiv.org/abs/1610.02136

Under review as a conference paper at ICLR 2019

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Adam Trischler, and
Yoshua Bengio. Learning deep representations by mutual information estimation and maximization.
arXiv preprint arXiv:1808.06670, 2018.

Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, and Masashi Sugiyama. Learning
discrete representations via information maximizing self-augmented training. arXiv preprint
arXiv:1702.08720, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. URL https://arxiv.org/abs/1412.6980.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In International Conference
on Learning Representations, 2014.

Andrei N Kolmogorov. Three approaches to the quantitative definition ofinformation’. Problems of
information transmission, 1(1):1–7, 1965.

Andreas Krause, Pietro Perona, and Ryan G Gomes. Discriminative clustering by regularized
information maximization. In Advances in neural information processing systems, pp. 775–783,
2010.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles. arXiv: 1612.01474, 2016. URL https://arxiv.org/abs/
1612.01474.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

K. Lee, H. Lee, K. Lee, and J. Shin. Training Confidence-calibrated Classifiers for Detecting Out-of-
Distribution Samples. arXiv: 1711.09325, 2017. URL https://arxiv.org/abs/1711.09325.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. arXiv preprint arXiv:1807.03888, 2018.

S. Liang, Y. Li, and R. Srikant. Enhancing The Reliability of Out-of-distribution Image Detection in
Neural Networks. arXiv: 1706.02690, 2017. URL https://arxiv.org/abs/1706.02690.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2574–2582, 2016.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Alexey Ku-
rakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, Alexander Matyasko, Vahid Behzadan,
Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin Juang, Zhi Li, Ryan Sheatsley, Abhibhav Garg,
Jonathan Uesato, Willi Gierke, Yinpeng Dong, David Berthelot, Paul Hendricks, Jonas Rauber,
and Rujun Long. Technical report on the cleverhans v2.1.0 adversarial examples library. arXiv
preprint arXiv:1610.00768, 2018.

Claude Elwood Shannon. A Mathematical Theory of Communication. The Bell System Technical
Journal, 27:379–423, 1948.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

12

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1711.09325
https://arxiv.org/abs/1706.02690

Under review as a conference paper at ICLR 2019

DJ Strouse and David J Schwab. The deterministic information bottleneck. Neural computation, 29
(6):1611–1630, 2017.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. arXiv: 1312.6199, 2013. URL https://arxiv.org/abs/1312.
6199.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. In SSW, pp. 125, 2016.

Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, and Kevin Murphy. Generative models of
visually grounded imagination. International Conference on Learning Representations, 2018. URL
https://arxiv.org/abs/1705.10762.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103. ACM, 2008.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The Marginal Value of Adaptive
Gradient Methods in Machine Learning. arXiv: 1705.08292, 2017. URL https://arxiv.org/
abs/1705.08292.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

S. Zagoruyko and N. Komodakis. Wide Residual Networks. arXiv: 1605.07146, 2016. URL
https://arxiv.org/abs/1605.07146.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

13

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1705.10762
https://arxiv.org/abs/1705.08292
https://arxiv.org/abs/1705.08292
https://arxiv.org/abs/1605.07146

Under review as a conference paper at ICLR 2019

a

b

Figure 4: Geometry of the optimal surfaces for both CEB (purple) and IB (green) for models that
can only come within ε of the optimal surface (a: ε = 0.1I(X; Y); b: ε = 0.01I(X; Y)). The tangent
lines have the slope of the corresponding β – the tangent point on the ε ball corresponds to the point
on the pareto-optimal frontier for the corresponding model. Note that β determines the “exchange
rate” between bits of I(X; Z) and I(Y; Z), which is how we determine the coordinate of the center
of the ε ball. For IB to achieve the MNI point, 2 bits of I(Y; Z) are needed for every bit of I(X; Z).
Consequently, even for an infitely powerful model (corresponding to ε = 0), the only value of β
that hits the MNI point is β = 2. Thus, knowing the function ε(β) for a given model and dataset
completely determines the model’s pareto-optimal frontier.

Here we collect a number of results that are not critical to the core of the paper, but may be of interest
to particular audiences.

A Analysis of CEB and IB

From Equation (5) and the definition of CEB in Equation (6), the following equivalence between
CEB and IB is obvious:

CEB ≡ I(X; Z|Y) − I(Y; Z) = I(X; Z) − 2I(Y; Z) ≡ IB2 (22)

where we are parameterizing IB with β on the I(Y; Z) term for convenience. This equivalence
generalizes as follows:

IB = I(X; Z) − βI(Y; Z) (23)

CEB = I(X; Z|Y) −
β

2
I(Y; Z) (24)

In Figure 4, we show the combined information planes for CEB and IB given the above parameteriza-
tion. The figures show the simple geometry that determines a point on the pareto-optimal frontier
for both objectives. Every such point is fully determined by the function ε(β) for a given model and
dataset, where ε is the closest the model can approach the true optimal surface. ε(β) = 0 corresponds
to the “infinite” model family that exactly traces out the boundaries of the feasible region. The full
feasible regions can be seen in Figure 2.

From this geometry we can immediately conclude that if an IB model and a CEB model have the
same value of ε > 0 at equivalent β, the CEB model will always yield a value of I(Y; Z) closer to
I(X; Y). This is because the slope of the tangent lines for CEB are always lower, putting the tangent
points higher on the ε ball. This gives part of a theoretical justification for the empirical observations
above that VIB0.5 (equivalent to IB2 in the parameterization we are describing here) fails to capture

14

Under review as a conference paper at ICLR 2019

as much of the necessary information as the CEB model. Even at the pareto-optimal frontier, VIB0.5
cannot get I(Y; Z) as close to I(X; Y) as CEB can. Of course, we do not want to claim that this effect
accounts for the fairly substantial difference in performance – that is likely to be due to a combination
of other factors, including the fact that it is often easier to train continuous conditional distributions
(like b(z|y)) than it is to train continuous marginal distributions (like m(z)).

We also think that this analysis of the geometry of IB and CEB supports our preference for targeting
the MNI point and treating CEB as an objective without hyperparameters. First, there are only
a maximum of 4 points of interest in both the IB and CEB information planes (all 4 are visibile
in Figure 2): the origin, where there is no information in the representation; the MNI point; the
point at (I(Y; Z) = I(X; Y), I(X; Z) = H(X)) (which is an MDL-compatible representation (Grünwald,
2007)); and the point at (I(Y; Z) = 0, I(X; Z) = H(X|Y)) (which would be the optimal decoder for
an MNI representation). These are the only points naturally identified by the dataset – selecting a
point on one of the edges between those four points seems to need additional justification. Second, if
you do agree with the MNI criterion, for a given model it is impossible to get any closer to the MNI
point than by setting CEB’s β = 1, due to the convexity of the pareto-optimal frontier. Much more
useful is making changes to the model, architecture, dataset, etc in order to make ε smaller. One
possibility in that direction that IB and CEB models offer is inspecting training examples with high
rate or residual information to check for label noise, leading to a natural human-in-the-loop model
improvement algorithm. Another is using CEB’s residual information as a measure of the quality of
the trained model, as mentioned in Appendix C.

A final point of interest is what happens when I(X; Y) = H(X). In this case, the feasible region for CEB
collapses to the line segment I(X; Z|Y) = 0 with 0 ≤ I(Y; Z) ≤ I(X; Y). Similarly, the corresponding
IB feasible region is the diagonal line I(X; Z) = I(Y; Z). This case happens if we choose as our task to
predict images given labels, for example. We should expect such label-conditional generative models
to be particularly easy to train, since the search space is so simple. Additionally, it is never possible
to learn a representation that exceeds the MNI, I(X; Z) ≤ H(X) = I(X; Y).

B Mutual Information Optimization

As an objective function, CEB is independent of the methods used to optimize it. Here we focus on
variational objectives because they are simple, tractable, and well-understood, but any approach to
optimize mutual information terms can work, so long as they respect the side of the bounds required
by the objective. For example, both Oord et al. (2018); Hjelm et al. (2018) could be used to maximize
the I(Y; Z) term.

There are many approaches in the literature that attempt to optimize mutual information terms in
some form, including Krause et al. (2010); Chen et al. (2016); Hu et al. (2017); Hjelm et al. (2018);
Oord et al. (2018). It is worth noting that none of those approaches by themselves are compatible
with the MNI criterion. Some of them explicitly maximize I(X; ZX), while others maximize I(Y; ZX),
but leave I(X; ZX) unconstrained. We expect all of these approaches to capture more than the MNI in
general.

C Training

Because of the properties of ReX/Y , we can consider training algorithms that don’t rely on observing
validation set performance in order to decide when to lower the learning rate. The closer we can
get ReX/Y to 0 on the training set, the better we expect to generalize to data drawn from the same
distribution. One simple approach to training is to set a high initial learning rate (possibly with
reverse annealing of the learning rate (Goyal et al., 2017)), and then lower the learning rate after
any epoch of training that doesn’t result in a new lowest mean residual information on the training
data. This is equivalent to the logic of dev-decay training algorithm of Wilson et al. (2017), but does
not require the use of a validation set. Additionally, since the training set is typically much larger
than a validation set would be, the average loss over the epoch is much more stable, so the learning
rate is less likely to be lowered spuriously. The intuition for this algorithm is that ReX/Y directly
measures how far from optimal our learned representation is for a given c(y|zX). At the end of training
ReX/Y indicates that we could improve performance by increasing the capacity of our architecture or

15

Under review as a conference paper at ICLR 2019

Algorithm 1: Training algorithm that lowers the learning rate when the mean ReX/Y of the
previous epoch is not less than the lowest Re

∗

X/Y seen so far. The same idea can be applied to
training VIB and deterministic models by tracking that the training loss is always going down.
For the experiments in Section 7, we set the values specified in the Input section.

Input : learning_rate=10−3, min_learning_rate=10−6, lowering_scale=1 − 1
e ,

first_epoch_when_lowering_learning_rate_is_permitted=40

1 epoch = 0
2 Re

∗

X/Y = ∞

3 progress = true
4 while learning_rate > min_learning_rate do
5 while progress do

// Train and get the mean residual information.

6 ReX/Y = train_model_for_1_epoch()
7 epoch = epoch +1
8 if ReX/Y > Re

∗

X/Y then
9 progress = false

10 else
11 Re

∗

X/Y = ReX/Y

12 if epoch ≥ first_epoch_when_lowering_learning_rate_is_permitted then
13 learning_rate = learning_rate * lowering_scale
14 else
15 Re

∗

X/Y = ∞

considering ways in which our model may be misspecified. See Algorithm 1 for psuedocode. We do
not claim that this algorithm is optimal.

D Model Details

All of the models in our experiments have the same core architecture: A 7×2 Wide Resnet (Zagoruyko
& Komodakis, 2016) for the encoder, with a final layer of D = 4 dimensions for the latent representa-
tion, followed by a two layer MLP classifier using ELU (Clevert et al., 2015) activations with a final
categorical distribution over the 10 classes.

The stochastic models parameterize the mean and variance of a D = 4 fully covariate multivariate
Normal distribution with the output of the encoder. Samples from that distribution are passed into the
classifier MLP. Apart from that difference, the stochastic models don’t differ from Determ during
evaluation. None of the five models uses any form of regularization (e.g., L1, L2, DropOut (Srivastava
et al., 2014), BatchNorm (Ioffe & Szegedy, 2015)).

The VIB models have an additional learned marginal, m(zX), which is a mixture of 240 D = 4 fully
covariate multivariate Normal distributions. The CEB model instead has the backward encoder,
b(zX |y) which is a D = 4 fully covariate multivariate Normal distribution parameterized by a 1 layer
MLP mapping the label, Y = y, to the mean and variance. In order to simplify comparisons, for CEB
we additionally train a marginal m(zX) identical in form to that used by the VIB models. However,
for CEB, m(zX) is trained using a separate optimizer so that it doesn’t impact training of the CEB
objective in any way. Having m(zX) for both CEB and VIB allows us to compare the rate, R, of each
model except Determ.

D.1 Distributional Families

Any distributional family may be used for the encoder. Reparameterizable distributions (Kingma &
Welling, 2014; Figurnov et al., 2018) are convenient, but it is also possible to use the score function
trick (Williams, 1992) to get a high-variance estimate of the gradient for distributions that have no
explicit or implicit reparameterization. In general, a good choice for b(z|y) is the same distributional

16

Under review as a conference paper at ICLR 2019

family as e(z|x), or a mixture thereof. These are modeling choices that need to be made by the
practitioner, as they depend on the dataset. In this work, we chose normal distributions because
they are easy to work with and will be the common choice for many problems, particularly when
parameterized with neural networks, but that choice is incidental rather than fundamental.

D.2 Regularization

Note that we did not use additional regularization on the deterministic model, but all models have a
4 dimensional bottleneck, which is likely to have acted as a strong regularizer for the deterministic
model. Additionally, standard forms of regularization, including stochastic regularization, did not
prevent the CW attack from being successful 100% of the time in the original work (Carlini & Wagner,
2017b). Nor did regularization cause the deterministic networks in Zhang et al. (2016) to avoid
memorizing the training set. Thus, we don’t think that our deterministic baseline is disadvantaged on
the tasks we considered in Sections 7 and 11.

D.3 Finitness of theMutual Information

It is worth noting that the conditions for infinite mutual information given in Amjad & Geiger (2018)
do not apply to either CEB or VIB, as they both use stochastic encoders e(zX |x). In our experiments
using continuous representations, we did not encounter mutual information terms that diverged to
infinity, although it is possible to make modeling and data choices that make it more likely that there
will be numerical instabilities. This is not a flaw specific to CEB or VIB, however, and we found
numerical instability to be almost non-existent across a wide variety of modeling and architectural
choices for both variational objectives.

E Additional CEB Objectives

Here we describe a few of the more obvious variants of the CEB objective.

E.1 Conditional Generation

In the above presentation of CEB, we derived the objective for what may be termed “classification”
tasks (although there is nothing in the derivation that restricts the form of either X or Y). However,
CEB is fully symmetric, so it is natural to consider the second task defined by our choice of dataset,
conditional generation of X given Y = y.

In this case, we can augment our graphical model with a new variable, ZY , and derive the same CEB
objective for that variable:

min I(Y; ZY |X) = min I(Y; ZY) − I(X; ZY) (25)
⇒min−H(ZY |Y) + H(ZY |X) (26)

(27)
max I(X; ZY) = max H(X) − H(X|ZY) (28)

⇒max−H(X|ZY) (29)

In the same manner as above, we can derive variational bounds on H(ZY |X) and H(X|ZY). In particular,
we can variationally bound p(zY |x) with e(zY |x). Additionally, we can bound p(x|zY) with a decoder
distribution of our choice, d(x|zY).

Because the decoder is maximizing a lower bound on the mutual information between ZY and X, it
can never memorize X. It is directly limited during training to use exactly H(Y) nats of information
from ZY to decode X. For a mean field decoder, this means that the decoder will only output a
canonical member of each class. For a powerful decoder, such as an autoregressive decoder, it will
learn to select a random member of the class.

For discrete Y , this model can trivially be turned into an unconditional generative model by first
sampling Y from the training data or using any other appropriate procedure, such as sampling Y
uniformly at random.

17

Under review as a conference paper at ICLR 2019

H(X) H(Y)

H(Z1)

H(Z2)

Figure 5: Information diagram for the basic hierarchical CEB model, Z2 ← Z1 ← X ↔ Y .

E.2 Bidirectional Generation

Given the presentation of conditional generation above, it is natural to consider that both c(y|z) and
d(x|z) are conditional generative models of Y and X, respectively, and to learn a Z that can handle both
tasks. This can be done easily with the following bidirectional CEB model: ZX ← X ↔ Y → ZY . This
corresponds to the following factorization: p(x, y, zX , zY) ≡ p(x, y)e(zX |x)b(zY |y). The two objectives
from above then become the following single objective:

min −H(ZX |X) + H(ZX |Y) + H(Y |ZX) (30)
− H(ZY |Y) + H(ZY |X) + H(X|ZY) (31)

A natural question is how to ensure that ZX and ZY are consistent with each other. Fortunately, that
consistency is trivial to encourage by making the natural variational approximations: p(zY |x) →
e(zY |x) and p(zX |y)→ b(zX |y). The full bidirection variational CEB objective then becomes:

min
〈
log e(zX |x)

〉
−

〈
log b(zX |y)

〉
−

〈
log c(y|zX)

〉
+

〈
log b(zY |y)

〉
−

〈
log e(zY |x)

〉
−

〈
log d(x|zY)

〉
(32)

At convergence, we learn a unified Z that is consistent with both ZX and ZY , permitting generation of
either output given either input in the trained model, in the same spirit as Vedantam et al. (2018), but
without any objective function hyperparameter tuning.

E.3 Hierarchical CEB

Thus far, we have focused on learning a single latent representation (possibly composed of multiple
latent variables at the same level). Here, we consider how to learn a hierarchical model with CEB.

Consider the graphical model Z2 ← Z1 ← X ↔ Y . This is the simplest hierarchical supervised
representation learning model. The general form of its information diagram is given in Figure 5.

The key observation for generalizing CEB to hierarchical models is that the target mutual information
doesn’t change. By this, we mean that all of the Zi in the hierarchy should cover I(X; Y) at convergence,
which means maximizing I(Y; Zi). It is reasonable to ask why we would want to train such a
model, given that the final set of representations are presumably all effectively identical in terms of
information content. The answer is simple: doing so allows us to train deep models in a principled
manner such that all layers of the network are consistent with each other and with the data. We need
to be more careful when considering the residual information terms, though – it is not the case that
we want to minimize I(X; Zi|Y), which is not consistent with the graphical model. Instead, we want
to minimize I(Zi−1; Zi|Y), defining Z0 = X.

This gives the following simple Hierarchical CEB objective:

CEBhier ≡min
∑

i

I(Zi−1; Zi|Y) − I(Y; Zi) (33)

⇔min
∑

i

−H(Zi|Zi−1) + H(Zi|Y) + H(Y |Zi) (34)

18

Under review as a conference paper at ICLR 2019

Because all of the Zi are targetting Y , this objective is as stable as regular CEB. Note that if all of the
Zi have the same dimensionality, in principle they may all use the same networks for b(zi|Y) and/or
c(y|zi), which may substantially reduce the number of parameters in the model. All of the individual
loss terms in the objective must still appear, of course. There is no requirement, however, that the Zi
have the same latent dimensionality, although doing so may give a unified hiearchical representation.

E.4 Sequence Learning

Many of the richest problems in machine learning vary over time. In Bialek & Tishby (1999), the
authors define the Predictive Information:

I(Xpast, X f uture) =

〈
log

p(xpast, x f uture)
p(xpast)p(x f uture)

〉
This is of course just the mutual information between the past and the future. However, under an
assumption of temporal invariance (any time of fixed length is expected to have the same entropy),
they are able to characterize the predictive information, and show that it is a subextensive quantity:
limT→∞ I(T)/T → 0, where I(T) is the predictive information over a time window of length 2T
(T steps of the past predicting T steps into the future). This concise statement tells us that past
observations contain vanishingly small information about the future as the time window increases.

The application of CEB to extracting the predictive information is straightforward. Given the Markov
chain X<t → X≥t, we learn a representation Zt that optimally covers I(X<t, X≥t) in Predictive CEB:

CEBpred ≡min I(X<t; Zt |X≥t) − I(X≥t,Zt) (35)
⇒min−H(Zt |X<t) + H(Zt |X≥t) + H(X≥t |Zt) (36)

Note that the model entailed by this objective function does not rely on Z<t when predicting X≥t. A
single Zt captures all of the information in X<t and is to be used to predict as far forward as is desired.
“Rolling out” Zt to make predictions is a modeling error according to the predictive information.

Also note that, given a dataset of sequences, CEBpred may be extended to a bidirectional model, as
in Appendix E.2. In this case, two representations are learned, Z<t and Z≥t. Both representations
are for timestep t, the first representing the observations before t, and the second representing the
observations from t onwards. As in the normal bidirectional model, using the same encoder and
backwards encoder for both parts of the bidirectional CEB objective ties the two representations
together.

Modeling and architectural choices. As with all of the variants of CEB, whatever entropy remains
in the data after capturing the entropy of the mutual information in the representation must be modeled
by the decoder. In this case, a natural modeling choice would be a probalistic RNN with powerful
decoders per time-step to be predicted. However, it is worth noting that such a decoder would
need to sample at each future step to decode the subsequent step. An alternative, if the prediction
horizon is short or the predicted data are small, is to decode the entire sequence from Zt in a single,
feed-forward network (possibly as a single autoregression over all outputs in some natural sequence).
Given the subextensivity of the predictive information, that may be a reasonable choice in stochastic
environments, as the useful prediction window may be small.

Multi-scale sequence learning. As in WaveNet (Van Den Oord et al., 2016), it is natural to consider
sequence learning at multiple different temporal scales. Combining an architecture like time-dilated
WaveNet with CEB is as simple as combining CEBpred with CEBhier (Appendix E.3). In this case,
each of the Zi would represent a wider time dilation conditioned on the aggregate Zi−1. The advantage
of such an objective over that used in WaveNet is avoiding unnecessary memorization of earlier
timesteps.

E.5 Unsupervised CEB

Pure unsupervised learning is fundamentally an ill-posed problem. Without knowing what the task is,
it is impossible to define an optimal representation directly. We think that this core issue is what lead
the authors of Bengio et al. (2013) to prefer barely compressed representations. But by that line of

19

Under review as a conference paper at ICLR 2019

reasoning, it seems that unsupervised learning devolves to lossless compression – perhaps the correct
representation is the one that allows you to answer the question: “What is the color of the fourth pixel
in the second row?”

On the other hand, it also seems challenging to put the decision about what information should
be kept into objective function hyperparameters, as in the β VAE and penalty VAE (Alemi et al.,
2018) objectives. That work showed that it is possible to constrain the amount of information in
the learned representation, but it is unclear how those objective functions keep only the “correct”
bits of information for the downstream tasks you might care about. This is in contrast to all of the
preceeding discussion, where the task clearly defines the both the correct amount of information and
which bits are likely to be important.

However, unsupervised representation learning is still an interesting problem, even if it is ill-posed.
Our perspective on the importance of defining a task in order to constrain the information in the
representation suggests that we can turn the problem into a data modeling problem in which the
practitioner who selects the dataset also “models” the likely form of the useful bits in the dataset for
the downstream task of interest.

In particular, given a dataset X, we propose selecting a function f (X)→ X′ that transforms X into a
new random variable X′. This defines a paired dataset, P(X, X′), on which we can use CEB as normal.
Note that choosing the identity function for f results in maximal mutual information between X and
X′ (H(X) nats), which will result in a representation that is far from the MNI for normal downstream
tasks. In other words, representations learned by true autoencoders are unlikely to be any better than
simply using the raw X.

It may seem that we have not proposed anything useful, as the selection of f (.) is unconstrained, and
seems much more daunting than selecting β in a β VAE or σ in a penalty VAE. However, there is a
very powerful class of functions that makes this problem much simpler, and that also make it clear
using CEB will only select bits from X that are useful. That class of functions is the noise functions.

E.5.1 Denoising CEB Autoencoder

Given a dataset X without labels or other targets, and some set of tasks in mind to be solved by a
learned representation, we may select a random noise variable U, and function X′ = f (X,U) that we
believe will destroy the irrelevant information in X. We may then add representation variables ZX ,ZX′

to the model, giving the joint distribution p(x, x′, u, zX , zX′) ≡ p(x)p(u)p(x′| f (x, u))e(zX |x)b(zX′ |x′).
This joint distribution is represented in Figure 6.

Denoising Autoencoders were originally proposed in Vincent et al. (2008). In that work, the authors
argue informally that reconstruction of corrupted inputs is a desirable property of learned represen-
tations. In this paper’s notation, we could describe their proposed objective as min H(X|ZX′), or
equivalently min

〈
log d(x|zX′ = f (x, η))

〉
x,η∼p(x)p(θ) .

Here we make this idea somewhat more formal through the MNI criterion and the derivation of CEB
as the optimal objective for that criterion. We also note that, practically speaking, we would like to
learn a representation that is consistent with uncorrupted inputs as well. Consequently, we are going
to use a bidirectional model.

CEBdenoise ≡min I(X; ZX |X′) − I(X′; ZX) + I(X′; ZX′ |X) − I(X; ZX′) (37)
⇒min−H(ZX |X) + H(ZX |X′) + H(X′|ZX) − H(ZX′ |X′) + H(ZX′ |X) + H(X|ZX′) (38)

This requires two encoders and two decoders, which may seem expensive, but it permits a consistent
learned representation that can be used cleanly for downstream tasks. Using a single encoder/decoder
pair would result in either an encoder that does not work well with uncorrupted inputs, or a decoder
that only generates noisy outputs.

If you are only interested in the learned representation and not in generating good reconstructions,
the objective simplifies to the first three terms. In that case, the objective is properly called a Noising
CEB Autoencoder, as the model predicts the noisy X′ from X:

CEBnoise ≡min I(X; ZX |X′) − I(X′; ZX) (39)
⇒min−H(ZX |X) + H(ZX |X′) + H(X′|ZX) (40)

20

Under review as a conference paper at ICLR 2019

H(X) H(X′)

H(ZX) H(ZX′)

H(U)

ZX X X′

U

ZX′

Figure 6: Information diagram and graphical model for the Denoising CEB Autoencoder.

In these models, the noise function, X′ = f (X,U) must encode the practitioner’s assumptions about
the structure of information in the data. This obviously will vary per type of data, and even per
desired downstream task.

However, we don’t need to work too hard to find the perfect noise function initially. A natural first
choice for f is:9

f (x, η) = clip(x + η,D) (41)
η ∼ λU(−1, 1) ∗ D (42)
D = domain(X) (43)

In other words, add uniform noise scaled to the domain of X and by a hyperparameter λ, and clip
the result to the domain of X. When λ = 1, X′ is indistinguishable from uniform noise. As λ → 0,
this maintains more and more of the original information from X in X′. For some value of λ > 0,
most of the irrelevant information is destroyed and most of the relevant information is maintained,
if we assume that higher frequency content in the domain of X is less likely to contain the desired
information. That information is what will be retained in the learned representation.

Theoretical optimality of noise functions. Above we claimed that this learning procedure will
only select bits that are useful for the downstream task, given that we select the proper noise function.
Here we prove that claim constructively. Imagine an oracle that knows which bits of information
should be destroyed, and which retained in order to solve the future task of interest. Further imagine,
for simplicity, that the task of interest is classification. What noise function must that oracle implement
in order to ensure that CEBdenoise can only learn exactly the bits needed for classification? The answer
is simple: for every X = xi, select X′ = x′i uniformly at random from among all of the X = x j
that should have the same class label as X = xi. Now, the only way for CEB to maximize I(X; ZX′)
and minimize I(X′; ZX′) is by learning a representation that is isomorphic to classification, and that
encodes exactly I(X; Y) nats of information, even though it was only trained “unsupervisedly” on
X, X′ pairs. Thus, if we can choose the correct noise function that destroys only the bits we don’t
care about, CEBdenoise will learn the desired representation and nothing else (caveated by model,
architecture, and optimizer selection, as usual).

E.6 Semi-Supervised CEB

Given any amount of paired data X,Y immediately improves our ability to learn a semantic rep-
resentation. Fortunately, it is easy to reincorporate paired data in combination with noising and

9White noise is probably a better choice for audio signals, and may be the right choice for most real-valued
signals, including images and videos.

21

Under review as a conference paper at ICLR 2019

Y X

ZX

X′ U

ZX′

Figure 7: Graphical model for Semi-Supervised CEB.

denoising CEB, introduced above. We present the assumed graphical model in Figure 7. We give the
corresponding Semi-Supervised CEB directly:

CEBsemi ≡min I(X; ZX |X′) − I(X′; ZX) + I(X′; ZX′ |X) − I(X; ZX′) (44)
+ 1Y∈(X,Y)

[
I(X′; ZX′ |Y) − I(Y; ZX′)

]
(45)

⇒min−H(ZX |X) + H(ZX |X′) + H(X′|ZX) − H(ZX′ |X′) + H(ZX′ |X) + H(X|ZX′) (46)
+ 1Y∈(X,Y)

[
− H(ZX′ |Y) + H(ZX′ |Y) + H(Y |ZX′)

]
(47)

1Y∈(X,Y) is the indicator function, equal to 1 when a Y is part of the paired data, and equal to 0
otherwise. In other words, if we have Y = y paired with a given X = x, we can include those terms in
the objective. If we do not have that, we can simply leave them out.

Note that it is straightforward to generalize this to semisupervised learning with two or more
observations that are both being learned unsupervisedly, but also have some amount of paired
data. For example, images and natural language, assuming we have a reasonable noise model for
unsupervisedly learning natural language.

F Visualizations

Here we provide some visualizations of the Fashion MNIST tasks.

In Figure 8, we show a trained 2D CEB latent representation of Fashion MNIST. The model learned
to locate closely related concepts together, including the cluster of “shirt” classes near the center, and
the cluster of “shoe” classes toward the lower right. In spite of the restriction to 2 dimensions, this
model achieves ∼ 92% on the test set.

In Figure 9, the 10,000 test images and their 10,000 adversaries are shown for four of the models.
It is easy to see at a glance that the CEB model organizes all of the adversaries into the “trousers”
class, with a crisp devision between the true examples and the adversaries. In contrast, the two VIB
models have adversaries mixed throughout. However, all three models are clearly preferable to the
deterministic model, which has all of the adversaries mixed into the “trousers” class with no ability
to distinguish between adversaries and true examples.

22

Under review as a conference paper at ICLR 2019

Figure 8: A trained 2D latent space for a Fashion MNIST CEB model.

23

Under review as a conference paper at ICLR 2019

a b

c d

Figure 9: All adversarial images sorted by predicted class, showing the difference between robust and
non-robust models. Each predicted class is sorted by the model’s rate, R (H is used for d), from low
to high. Images with a red bar along their top are adversarial. a is CEB, b is VIB0.5, c is VIB0.01, d is
Determ.

24

	Introduction
	Optimal Representations
	Minimum Necessary Information
	The Conditional Entropy Bottleneck
	The Information Bottleneck
	MNI Optimality of CEB
	Classification Experiments
	Calibration
	Out-of-Distribution Detection
	Adversarial Example Robustness and Detection
	Information-Free Generalization Experiments
	Conclusion
	Analysis of CEB and IB
	Mutual Information Optimization
	Training
	Model Details
	Distributional Families
	Regularization
	Finitness of the Mutual Information

	Additional CEB Objectives
	Conditional Generation
	Bidirectional Generation
	Hierarchical CEB
	Sequence Learning
	Unsupervised CEB
	Denoising CEB Autoencoder

	Semi-Supervised CEB

	Visualizations

