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Abstract

Mitigating the climate crisis requires a rapid transition towards lower carbon energy.
Catalyst materials play a crucial role in the electrochemical reactions involved in
a great number of industrial processes key to this transition, such as renewable
energy storage and electrofuel synthesis. To reduce the amount of energy spent
on such processes, we must quickly discover more efficient catalysts to drive the
electrochemical reactions. Machine learning (ML) holds the potential to efficiently
model the properties of materials from large amounts of data, and thus to accelerate
electrocatalyst design. The Open Catalyst Project OC20 data set was constructed
to that end. However, most existing ML models trained on OC20 are still neither
scalable nor accurate enough for practical applications. Here, we propose several
task-specific innovations, applicable to most architectures, which increase both
computational efficiency and accuracy. In particular, we propose improvements in
(1) the graph creation step, (2) atom representations and (3) the energy prediction
head. We describe these contributions and evaluate them on several architectures,
showing up to 5× reduction in inference time without sacrificing accuracy.

1 Introduction

To mitigate climate change at a global scale, it is imperative to reduce the carbon emissions of
ubiquitous industrial processes like cement production or fertiliser synthesis, as well as to develop
infrastructures for storing low-carbon energy at scale, in order to re-use it wherever and whenever
needed. Since such processes rely on electrochemical reactions, they require the design of more
efficient electrocatalysts [28] to become more environmentally and economically viable.

However, discovering easy-to-exploit low-cost catalysts that drive electrochemical reactions at high
rates remains an open challenge. In fact, today’s catalyst discovery mostly relies on expensive
quantum mechanical simulations such as the Density Functional Theory (DFT) to approximate
the behaviour of the materials involved in the targeted chemical reaction. Unfortunately, the high
computational cost of these simulations limits the number of candidates that may be efficiently tested,
and consequently stagnates further advances in the field.
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Machine learning (ML) holds the potential to approximate these calculations while reducing the
time needed to assess each candidate by several orders of magnitude [29]. This capability would
transform the search for new catalysts from evaluating O(1, 000) of manually handpicked candidates
to powerful AI-guided design of catalysts spanning millions or even billions of candidates [29].

To enable to use of ML for catalyst discovery, the Open Catalyst Project released OC20 [5], a
large data set of adsorbate-catalyst systems and their relaxed energy—a relevant metric to assess
how good a catalyst is for a given chemical reaction—computed with DFT from the initial atomic
structure. Despite recent progress [9, 27], major challenges remain. First, state-of-the-art models
have not yet reached high enough performance for practical applications. Second, they are still too
computationally expensive to allow the millions of inferences required to explore the large space of
potential catalysts. Third, the graph neural networks (GNN) typically used were designed for general
3D molecular prediction tasks rather than specifically for catalyst discovery, whose complexity may
benefit from task-specific architectures.

To address these challenges, we propose multiple model improvements to increase the accuracy and
scalability of generic GNNs applied to catalyst discovery. In particular, our contributions are (1) a
graph construction that is tailored to the task at hand, (2) richer physics-based atom representations,
and (3) an energy head that learns a weighted sum of per-atom predictions. We provide a broad
evaluation of these contributions on OC20 and a thorough ablation study. In sum, our proposed
improvements increase the performance by 5-8% while dividing compute time by a factor of 3 to 5.
We believe our work provides valuable insights for future research as it leverages domain-specific
knowledge to improve parts of the pipeline that were not investigated up to now. The resulting
performance and scalability gains open the door to a practical use of GNNs for new electrocatalyst
design, the ultimate end goal of this line of research.

2 Background

The problem we address is the prediction of the relaxed energy y ∈ R of an adsorbate-catalyst
system from its initial configuration in space (X,Z), where X ∈ RN×3 is the matrix of 3D atom
positions and Z ∈ NN contains atom characteristic numbers. This is commonly represented as a
graph regression task, where each sample is represented as a 3D graph G with node set V of dimension
N and adjacency matrix A ∈ RN×N . H ∈ RN×H represents atom embeddings and T ∈ {0, 1, 2}N
corresponds to tag information (see 3.1). ML models designed for this task generally adopt graph
neural networks as an architecture, as it naturally suits 3D molecular prediction. Such GNNs typically
share a common pipeline for how they are applied, as depicted in Fig. 1.

Graph Creation Embedding Interaction (x3) Output

Figure 1: Common GNN inference pipeline for 3D molecular prediction. The graph creation step
remains unchanged across all methods: it creates A using cutoff distances and periodic boundary
conditions. The Embedding and Output blocks slightly differ but the core underlying idea is the same.
The Embedding block learns a representation for each chemical element and the Output block applies
a global pooling of each node’s representation to obtain the energy prediction. The key distinction
between methods lies essentially in the Interaction block, where the message passing schemes vary.

In 3D molecular prediction tasks, it is desirable to endow ML models with relevant symmetry
properties. In particular, we want predictions to be invariant to translations, rotations and (often)
reflections. Many models enforce these physical priors within the architecture, making it explicitly
invariant or equivariant to the desired transformations. Formal definitions are included in A.1.

Many GNNs in prior work focus on enforcing equivariance, though it is not strictly required for relaxed
energy prediction, which calls for invariance. Equivariant GNNs [22, 2, 8, 3, 4] are expressive and
generalize well, but are very expensive computationally as they are constrained by equivariant filters
built on spherical harmonics and the Clebsch-Gordan tensor product [4]. Recent methods [18, 16, 21]
model equivariant interactions in Cartesian space using both invariant and vector representations. They
are faster but their architectures are still very complex and lack theoretical guarantees. Alternatively,
E(3)-invariant methods [17, 23, 19, 27, 1] do not use atom positions directly in their internal workings.
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Instead, these methods extract and use quantities that remain invariant under rotations and reflections.
Dimenet++ [13, 12], for example, includes a directional message passing (MP) mechanism that
incorporates bond angles in addition to atom relative distances. However, distances and bond angles
do not suffice to uniquely identify the graph 3D structure. This is achieved by SphereNet [14] and
GemNet [9], which additionally extract torsion information (between quadruplets of nodes). On
the downside, these methods are very computationally expensive as they require considering 3-hop
neighbourhoods for each update step. Importantly, all these MP methods aim at broad applicability
and do not leverage the specific constraints of individual tasks.

3 Proposed Method

In this section, we describe PhAST, a Physics-Aware, Scalable, and Task-specific GNN framework
for catalyst design. Notably, the architecture innovations in our proposed framework are applicable to
most current GNNs used in catalyst discovery. These include a new graph creation step, richer atom
representations and an advanced energy head for graph-level prediction.

3.1 Graph creation

Although the graph construction step is critical in graph ML tasks, it has received little of no attention
by previous work on the OC20 data set. Most methods reuse the original proposal in [5]. In OC20,
each graph’s atoms are tagged as part of the adsorbate (tag 2), the catalyst’s surface (tag 1), or its
sub-surface volume (tag 0). Tag 0 atoms were originally added in DFT simulations to represent more
explicitly the repeating pattern of the slab. They are, by definition, further away from the adsorbate
and are fixed by construction, unlike tag 1 and tag 2 atoms, which can move during the relaxation. As
a result, we hypothesise they contain redundant information, making them of lesser importance to
predict the final relaxed energy. Besides, since they account for ∼ 65% of the nodes B.3, and since
SOTA GNNs often depend on multiple hops to compute bond and torsion angles, we propose to
remove these nodes from the graph. This should greatly reduce inference time without impacting
expressivity. Additionally, we explore forming super nodes that aggregate tag 0 atoms to avoid a
potential information loss caused by their total removal. We briefly describe these changes below,
with more details in A.2.

remove-tag-0 removes all atoms with tag 0 (ti = 0) from the graph, adapting correspondingly all
graph attributes (X, A, Z, T, etc.).

one-supernode-per-graph aggregates all tag 0 nodes from G into a supernode s with position
xs =

1
|S|

∑
i∈S xi, adjacency Ais = max(Aij : j ∈ S) and a new zs.

one-supernode-per-atom-type replicates the above strategy but creates one super node per chemical
element in the catalyst subsurface. Its attributes are defined based on its components, as previously.

3.2 Atom Embeddings

In all previous GNNs, atom representations are learned from scratch based on atomic number
H = HZ. We propose to leverage domain information to improve these representations. First, we
hypothesise that whether a given atom belongs to the adsorbate, the catalyst surface, or its subsurface
is important information. We therefore include tag information as an additional embedding HT .
Second, we know from previous studies that some atomic properties (e.g. atomic radius or density)
are useful for catalyst discovery [20, 25]. We leverage them as an additional embedding vector
HF (see A.3 for the full list of properties). Lastly, we include an embedding for the group and
period information (HP,HG) since atoms belonging to the same group or period often share similar
behaviours [26]. As a result, our proposed atom embedding H is a concatenation of all of the above.

3.3 Energy head

In the literature, there is often limited focus on the energy head, which is the part of the output
block responsible for the energy computation from final atom representations hL

i . To the best of
our knowledge, all GNNs compute the relaxed energy using global pooling y =

∑
i∈V hi, where

node embeddings are reduced to a scalar hi by linear layers. We identify two limitations in this
procedure: First, all atoms are assigned the same importance, even though the properties of an atom
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are normally influenced by what element it is. Second, the graph topology is neglected by simply
summing all atom encodings regardless of their 3D positions. To overcome these limitations, we
explore alternative energy heads.

First, a weighted sum of node representations, which grants adaptive importance to each chemical
element, expressed as ŷ =

∑
i∈V α(hL

i ) ·hi or ŷ =
∑

i∈V α(h0
i ) ·hi, where the learnable importance

weights α(·) depend either on the embedding block initial encodings h0
i or final ones hL

i .

Second, a hierarchical pooling approach endowed with the following energy head pipeline: hL
i →

[Pooling → GCN] (×2) → Global Pooling → MLP → ŷ. By applying a graph convolutional
network (GCN) [11] on a coarsened graph, we propagate information differently, allowing us to
capture hierarchical graph information. We implement two pooling operators: (1) GRACLUS [6]: a
deterministic way to regroup topologically close nodes together based on the mincut problem. (2)
HOSCPOOL [7]: an end-to-end operator that learns a cluster assignment matrix using a loss function
inspired by motif spectral clustering. Contrary to GRACLUS, it leverages node features, captures
higher-order connectivity patterns and is differentiable.

4 Evaluation

In this section, we evaluate the performance and scalability of our contributions for three well-known
GNNs on the OC20 dataset [5].

Dataset. OC20 contains 1,281,040 DFT relaxations of randomly selected catalysts and adsorbates
from a set of plausible candidates. In this paper, we focus on the Initial Structure to Relaxed Energy
(IS2RE) task [29], that is the direct prediction of the relaxed adsorption energy from the initial atomic
structure. It comes with a pre-defined train/val/test split, 450,000 training samples and hidden test
labels. Experiments are evaluated on the validation set, which has four splits of ∼ 25K samples:
In Domain (ID), Out of Domain Adsorbates (OOD-ads), Out of Domain catalysts (OOD-cat), and
Out of Domain Adsorbates and catalysts (OOD-both). We measure performance by the energy mean
average error (MAE) on each validation split, and scalability by the inference time (seconds) over the
ID validation set.

Baselines. We study the enhancements brought by our components to three key GNN architectures
for molecular predictions: SchNet [17], DimeNet++ [12] and ForceNet [10]. We describe their
functioning in B.1. We have selected these three baselines based on their popularity and ease-
of-implementation but note that PhAST improvements are applicable to all recent 3D molecular
prediction GNNs (to the best of our knowledge). We use the hyperparameters, training settings and
model architectures provided in the original papers. We compare every baseline with their PhAST
counterpart, incorporating the best components of each category, that is graph creation (3.1), enriched
atom embedding (3.2) and advanced energy-head (3.3), as determined by an ablation study, described
below and in the Appendix B.2.

Ablation. Sub-surface atoms appear to contain redundant information as remove-tag-0 does not cause
performance drop and aggregating it into super nodes does not yield better results. There are two
potential explanations: (1) the data generation process of DFT simulations is not optimal and tag 0
does contain redundant information (2) ML models do not manage to extract meaningful information
from this repeated pattern, in which case our approach could be used by future work to demonstrate
a better usage of this long range context info. remove-tag-0 also dramatically decreases compute
time. Enriched atom embeddings improve performance and generalisation, especially when adding
tag information (available in the data set). Hierarchical pooling approaches are not very successful,
either due to the difficulty of the task or the absence of hierarchical structures; but both energy-head
weighted sums are beneficial. For a finer understanding of individual contributions, refer to the full
ablation study in B.2. In conclusion, we obtain the following best components for the PhAST version
of our models: remove-tag-0, full concatenation of atom embeddings and predicting the system
energy as a learned weighted sum of per-atom predictions.

Results. From Table 1, we conclude that our set of PhAST enhancements consistently improve both
performance and inference time upon the original baselines. More precisely, we improve average
MAE over the four validation splits by 7.75%, 5.25% and 5.80% compared to SchNet, D++ and
ForceNet, while reducing model inference time by factors of 2.85, 5.25, and 5.03, respectively.
Moreover, we observe an MAE improvement of 12.3% over SchNet and 9.0% over DimeNet++ on
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Baseline / MAE ID OOD-ad OOD-cat OOD-both Average Inference time (s)

SchNet 0.637 0.734 0.661 0.703 0.683 15.04± 0.49
PhAST-SchNet 0.618 0.677 0.611 0.616 0.630 5.26± 0.36

D++ 0.571 0.722 0.561 0.661 0.628 110.11± 0.57
PhAST-D++ 0.568 0.654 0.560 0.597 0.595 20.49± 0.63

ForceNet 0.658 0.701 0.632 0.628 0.654 167.08± 0.52
PhAST-ForceNet 0.612 0.664 0.592 0.597 0.616 33.18± 0.60

Table 1: Comparing model performances on OC20 IS2RE. Average is computed over all validation
splits. Our PhAST models all show improved performance and drastic speedups. Note that PhAST-
SchNet almost matches the original DimeNet++ while being 21 times faster.

val OOD-both(compared to a 7.75% and 5.25% decrease in mean MAE). This points to the fact that
PhAST models generalise better than the original baselines. From the ablation study conducted in
B.2, this is due to the combination of our extensions, as they all contribute to significantly better per-
formance on out-of-distribution adsorbate-catalyst systems (OOD-both). Finally, note that inference
time gains are doubled from SchNet, a 1-hop message passing (MP) approach, to DimeNet++, a
2-hop MP approach (from 2.85 to 5.25). We can therefore expect even better computational scaling
gains on newer models like GemNet[9], which builds on 3-hop MP methods.

5 Conclusion

In this work, we presented several enhancements targeted to catalyst discovery and applicable across
existing GNN models. We showed that (1) enriching atom representations with physics-based
properties, (2) weighting atoms’ importance when computing the system energy, and (3) tailoring the
graph creation to the specific task at hand, all reduce inference time by a factor of 3–5 with better
accuracy. Our results suggest that complex practical applications like catalyst discovery benefit from
task-specific methods rather than general 3D molecular prediction GNNs and that focusing on all
aspects of the pipeline instead of only the message passing block is beneficial.
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A Method

A.1 Invariance and equivariance to symmetries

Let ϕ : V → R and Φ : V → W be arbitrary functions where W,V are linear spaces. Let G be a
group describing a symmetry which we want to incorporate into ϕ, Φ (e.g. euclidean symmetries
E(3)). We use group representations ρ1 : G → GL(V ) and ρ2 : G → GL(W ), where GL(V ) is the
space of invertible linear maps V → V to represent how the symmetries g ∈ G are applied to vectors
X ∈ V,W . ϕ is an G-invariant function if it satisfies ϕ(ρ1(g)X) = ϕ(X), ∀g ∈ G and X ∈ V .
Φ is an G-equivariant function if it satisfies Φ(ρ1(g)X) = ρ2(g)Φ(X), ∀g ∈ G and X ∈ V .

In this paper, we focus on accelerated catalysis and thus on adslab relaxed adsorption energy prediction.
Like for most 3D molecular prediction tasks, we want GNNs to predict the same energy for two
rotated, translated or reflected versions of the same system, since their energy is equal in real-life.
Hence, we target E(3)-invariant models, where E(3) is the Euclidean group in a 3D space (we have
3D atom positions), that is, the transformations of that 3D space that preserve the Euclidean distance
between any two points (i.e. rotations, reflections, translations). Note that we do desire reflection
invariance because we rotate the whole adsorbate-catalyst system and not just the adsorbate, in which
case chiral molecules may have a different behaviour and shall be considered distinctly.

A.2 Graph creation

A.2.1 OC20

Chanussot, Lowik, et al. [5] create each OC20 sample by choosing a bulk material from the Materials
Project database2. Then, they select a surface from the bulk using Miller indices (at random) and
replicate it at depth of at least 7 Å and a width of at least 8 Å. The final slab is defined by a unit cell
that is periodic in all directions with a vacuum layer of at least 20 Å applied in the z direction. Next,
they pick a binding site on this surface to attach the adsorbate onto the catalyst. The graph is now a
set of atoms with their 3D positions. Last but not least, edges are created between any two nodes
within a cutoff distance c = 6Å of each other (considering periodic boundary conditions).

2https://materialsproject.org/
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A.2.2 PhAST graph creation process

Although well grounded, the assumptions of this graph creation process are rarely questioned. We
do, with the objective of making the graph sparser and more informative for subsequent GNNs. We
describe more formally the three proposals evoked in 3.1.

remove-tag-0. We denote the set of tag 0 atoms by S = {i ∈ V : ti = 0}. The graph we create has
attributes X = XS where XS is the position of all atoms except those in S. Similarly for Z = ZS
and T = TS . A is defined as usual based on cutoff distance (and pbc): Aij = 1 if ||xi − xj || < c, 0
otherwise. The remaining graph attributes (cell offsets, distances, etc.) are updated correspondingly.

one-supernode-per-graph. The position of the new super node is the mean of its components:
xs = 1

|S|
∑

i∈S xi (with S as defined above), and we associate it to a new characteristic number
zs (corresponding to a new element in atomic table) and adjacency Ais = max(aij : j ∈ S). We
now remove all tag-0 atoms using the above method, and finally add a tag-0 attribute ti = 0 to the
supernode. Note that we also remove self-loop for the supernode.

one-supernode-per-atom-type. This extension is similar to the previous one, except that we create
one supernode for each chemical element in the sub-surface catalyst. This complexify a bit the
graph definition. Let a be the number of distinct elements with tag 0 in the graph (a = 1, 2, 3 by
construction) and ak be their characteristic number. Let Sak

= {i ∈ V|ti = 0 and zi = ak} be
the set of atoms corresponding to each distinct tag-0 element ak. Each supernode sk is defined
with xsk = 1

|Sak
|
∑

i∈Sak
xi, zk = ak, Aisk = max(Aij : j ∈ Sak

) (∀i ∈ V) and Ask′sk = 1,
Asksk = 0.

For both super-node methods, we encode the number of tag-0 nodes aggregated into each super node
with Positional Encodings ([24]) to represent their "cardinal".

A.3 Atom properties for the Embedding block

In atom embeddings, we use the following properties from the mendeleev Python package ([15]):

1. atomic radius,

2. atomic volume

3. atomic density

4. dipole polarizability

5. electron affinity

6. electronegativity (allen)

7. Van-Der-Walls radius

8. metallic radius

9. covalent radius

10. ionization energy (first and second order).

B Experiments and ablation study

B.1 Baseline description and hyperparameters

We target three well-known GNN baselines to study the impact of our contributions. As evoked in Fig
1 of the paper, they all follow a similar pipeline, mainly differing in their interaction blocks, which
we briefly detail below.

SchNet [17] is a simple message passing architecture that leverages relative distances to update atom
representations via a continuous filter: h(l+1)

i =
∑

j h
l
j ⊙ W l(xi − xj) where W l(xi − xj) is a

radial basis function to encode distance between atom pairs.

DimeNet++ [12] is an optimised version of DimeNet [12], which proposes a directional message
passing. In different terms, they compute and update edge representations instead of atoms) using
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interatomic distances eRBF (encoded via bessel functions) and bond angles aSBF (encoded via 2D
spherical Fourier-Bessel basis):

m
(l+1)
ij = fupdate

(
m

(l)
ij ,

∑
k∈Nj\i

fint(m
(l)
ij , e

(ij)
RBF ,a

(ki,ji)
SBF )

)
ForceNet [10] is a scalable force-centric GNN that does not impose explicit physical constraint
(energy conservation, rotational invariance), thus avoiding some memory intensive computations.
It still attempts to enforce invariance by efficient rotation-based data augmentation. Model-wise,
it adopts a node message passing approach that leverages node positions directly via a spherical
harmonics basis.

Hyperparameters. We use each method’s optimal set of parameters, provided in the config
folder of the OCP repository for the IS2RE task, for the full dataset: https://github.com/
Open-Catalyst-Project/ocp/tree/main/configs/is2re/all. Since ForceNet was not ap-
plied to IS2RE before, we adapted its S2EF configuration file to fit the IS2RE task. The only change
is the smaller number of epochs used for DimeNet++ (10 instead of 20) and SchNet (20 instead of
30), as these additional epochs only lead to a small performance gain for a large amount of additional
compute time.

B.2 Ablation study

Notation. For the embedding block, tag-embed defines atom embeddings H using atom tag in-
formation and characteristic number: H = HZ ||HT , where || denotes concatenation. Similarly,
phys-embed defines H = HZ ||HF . l-phys-embed is a learnable alternative H = HZ ||MLP (HF ).
pg refer to period and group embeddings: H = HZ ||HP ||HG. All is a concatenation of all five
embeddings: H = HZ ||HF ||HG||HP ||HT . For the graph creation step, we have defined these
approaches in A.2.2 (note: sn stands for supernode). For the energy head part, w-init (w-final )
denote the weighted sum of initial (final) atom embeddings. graclus and hoscpool refer to the two
hierarchical pooling approaches.

See Tables 2, 3, 4. The results are reported in a similar fashion as for Table 1. The symbol � indicates
that a result is better than the baseline model. Bold font shows the best extension for each PhAST
improvement category.

Table 2: SchNet ablation study on OC20 IS2RE.

Method / MAE Average ID OOD-ad OOD-cat OOD-both Inference time (s)

tag-embed 0.648� 0.637 0.690� 0.629� 0.638� 15.390 +/- 0.337
phys-embed 0.662� 0.644 0.700� 0.639� 0.654� 15.482 +/- 0.389
l-phys-embed 0.678� 0.650 0.733� 0.649� 0.679� 15.590 +/- 0.377
pg 0.673� 0.646 0.725� 0.644� 0.676� 15.441 +/- 0.528
All 0.659� 0.665 0.690� 0.651� 0.630� 15.469 +/- 0.461

remove-tag-0 0.648� 0.627� 0.705� 0.627� 0.634� 4.749 +/- 0.501
sn-graph 0.654� 0.633� 0.705� 0.633� 0.646� 5.545 +/- 0.681
sn-atom-type 0.663� 0.628� 0.738 0.626� 0.659� 6.386 +/- 0.453

w-init 0.657� 0.635� 0.715� 0.631� 0.646� 15.370 +/- 0.480
w-final 0.668� 0.647 0.713� 0.644� 0.670� 15.418 +/- 0.385
graclus 0.950 0.910 0.994 0.946 0.950 16.655 +/- 0.605
hoscpool 0.667� 0.650 0.719� 0.636� 0.662� 53.931 +/- 1.369

SchNet 0.683 0.637 0.734 0.661 0.703 15.401 +/- 0.498

B.3 Graph-Rewiring: impact on the number of edges and nodes
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Table 3: Dimenet++ ablation study on OC20 IS2RE*

Method / MAE Average ID OOD-ad OOD-cat OOD-both Inference time (s)

tag-embed 0.579� 0.551� 0.659� 0.545� 0.594� 110.042 +/- 0.890
phys-embed 0.590� 0.561� 0.671� 0.555 0.606� 110.082 +/- 0.747
l-phys-embed 0.612� 0.566� 0.700� 0.557� 0.626� 110.121 +/- 0.755
pg 0.624� 0.564� 0.710� 0.568 0.652� 110.184 +/- 0.717
All 0.602� 0.550� 0.691� 0.540� 0.626� 110.034 +/- 0.770

remove-tag-0 0.610� 0.576 0.684� 0.568 0.627� 20.152 +/- 0.553�
sn-graph - - - - - 25.046 +/- 1.548
sn-atom-type - - - - - 27.220 +/- 0.940

w-init 0.611� 0.568� 0.686� 0.560� 0.630� 110.238 +/- 0.815
w-final 0.601� 0.571 0.660� 0.566 0.606� 110.169 +/- 0.769
graclus 0.620� 0.567� 0.701� 0.567 0.648� -
hoscpool 0.618� 0.565� 0.703� 0.563 0.642� 252.559 +/- 0.455

D++ 0.628 0.571 0.722 0.561 0.661 110.113 +/- 0.578
* Unfortunately we did not manage to train DimeNet++ with the super node extensions.

For a very wide range of learning rates, the training loss consistently reached NaN values.

Table 4: ForceNet ablation study on OC20 IS2RE.

Method / MAE Average ID OOD-ad OOD-cat OOD-both Inference time (s)

tag-embed 0.640� 0.639� 0.690� 0.616� 0.617� 168.646 +/- 0.733
phys-embed 0.653� 0.657� 0.702 0.626� 0.627� 172.049 +/- 0.983
l-phys-embed 0.667 0.654� 0.734 0.626� 0.650 167.981 +/- 0.714
pg 0.634� 0.644� 0.669� 0.618� 0.603� 170.701 +/- 0.966
All 0.637� 0.622� 0.680� 0.603 0.615� 169.236 +/- 0.846

remove-tag-0 0.628� 0.637� 0.668� 0.611� 0.598� 17.065 +/- 0.584
sn-graph 0.635� 0.640� 0.676� 0.617� 0.607� 55.309 +/- 1.861
sn-atom-type 0.632� 0.641� 0.672� 0.616� 0.601� 70.557 +/- 0.157

w-init 0.639� 0.639� 0.687� 0.611� 0.616� 170.719 +/- 0.600
w-final 0.660 0.655� 0.716 0.627� 0.644 170.720 +/- 1.618
graclus 0.671 0.622� 0.722 0.634 0.646 172.494 +/- 1.101
hoscpool 0.655 0.621� 0.703 0.638 0.638 202.034 +/- 1.231

ForceNet 0.654 0.658 0.701 0.632 0.628 167.089 +/- 0.525
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Rewiring Atoms Edges

Train
Full graph 35 789 459 1 309 308 840
remove-tag-0 32.53% 16.61%
one-supernode-per-graph 33.81% 17.76%
one-supernode-per-atom-type 35.45% 19.09%

ID
Full graph 1 939 553 70 825 106
remove-tag-0 32.54% 16.65%
one-supernode-per-graph 33.83% 17.80%
one-supernode-per-atom-type 35.47% 19.13%

OOD-ads
Full graph 1 918 704 69 877 652
remove-tag-0 32.42% 16.50%
one-supernode-per-graph 33.72% 17.64%
one-supernode-per-atom-type 35.38% 18.97%

OOD-cat
Full graph 1 917 954 70 314 085
remove-tag-0 32.88% 16.78%
one-supernode-per-graph 34.18% 17.95%
one-supernode-per-atom-type 35.90% 19.34%

OOD-both
Full graph 2 094 709 80 074 123
remove-tag-0 31.12% 15.33%
one-supernode-per-graph 32.31% 16.37%
one-supernode-per-atom-type 34.17% 17.83%

Table 5: Comparison of the number of nodes and edges in the original 5 datasets (training and 4
validation splits) and the remaining number of nodes and edges after the various rewiring strategies
are performed. We can see that our rewiring methods generally remove 65+% of the atoms and 80+%
of the edges.
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