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Abstract

In many applications of machine learning, like drug discovery and material design,
the goal is to generate candidates that simultaneously maximize a set of objectives.
As these objectives are often conflicting, there is no single candidate that simul-
taneously maximizes all objectives, but rather a set of Pareto-optimal candidates
where one objective cannot be improved without worsening another. Moreover,
these objectives, when considered in practice are often under-specified, making
diversity of candidates a key consideration. The existing multi-objective optimiza-
tion methods focus predominantly on covering the Pareto front, failing to capture
diversity in the space of candidates. Motivated by the success of GFlowNets for
generation of diverse candidates in a single objective setting, in this paper we con-
sider Multi-Objective GFlowNets (MOGFNs). MOGFNs consist of a Conditional
GFlowNet which models a family of single-objective sub-problems derived by
decomposing the multi-objective optimization problem. Our work is the first to
empirically demonstrate conditional GFlowNets. Through a series of experiments
on synthetic as well as practically relevant material design and drug discovery
tasks, we empirically demonstrate that MOGFNs outperform existing methods in
terms of hypervolume, R2-distance and candidate diversity. We also demonstrate
the effectiveness of MOGFNs over existing methods in active learning settings.

1 Introduction

Decision making in practical applications often involves reasoning about multiple, often conflicting,
objectives [21]. For instance, in the design of materials for photovoltaic cells, the goal is to generate
novel candidate materials (molecules) which have high energy-conversion efficiency, stability, ease of
synthesizability and robustness to the elements [27]. These objectives are conflicting – molecules with
high energy-conversion efficiency can be less stable and harder to synthesize – so there is no single
candidate that maximizes all the objectives simultaneously. Such problems fall under the umbrella
of Multi-Objective Optimization (MOO) [12, 29, MOO], wherein one is interested in identifying
Pareto-optimal candidates. The set of Pareto-optimal candidates cover all the best tradeoffs among
the objectives, i.e., the Pareto front, where each point on that front corresponds to a different set of
weights associated with each of the objectives.

In-silico design of materials is typically driven by proxies that only approximate the true objectives.
Since these proxies are generally models trained using finite data, there is epistemic uncertainty
associated with their predictions. This makes it critical to generate diverse candidates to ensure
that at least some candidates end up working in downstream evaluations [19]. Generative Flow
Networks [4, 5, GFlowNets] are a recently proposed family of probabilistic models which tackle the
problem of diverse candidate generation. Contrary to the reward maximization view of reinforcement
learning (RL) and Bayesian optimization (BO), GFlowNets generate candidates with probability
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proportional to the reward. Sampling candidates, as opposed to greedily generating them, implicitly
encourages diversity in candidate generation. GFlowNets have shown promising results in single
objective problems of molecule generation [4] and biological sequence design [19].

In this paper, we study Multi-Objective GFlowNets (MOGFNs), extensions of GFlowNets to tackle
multi-objective optimization problems. We consider two variants of MOGFNs – (a) Preference-
Conditional GFlowNets (MOGFN-PC) combining Reward-Conditional GFlowNets [5] with Weighted
Sum Scalarization [12] and (b) MOGFN-AL an extension of GFlowNet-AL [19] for multi-objective
active learning settings. We empirically demonstrate the advantage of these MOGFNs over existing
approaches on a wide variety of tasks relevant for material design: the generation of small molecules,
as well as the design of DNA Aptamers and fluorescent proteins. Our contributions are the following

C1 We introduce two new GFlowNet variants for multi-objective optimization: MOGFN-PC and
MOGFN-AL.

C2 We empirically demonstrate the efficacy of MOGFN-PC in high-dimensional MOO problems.
Our work is the first successful empirical validation of Reward-Conditional GFlowNets [5].

C3 Through a series of experiments on practically relevant tasks of molecule generation and sequence
generation, we demonstrate that MOGFN-PC generates diverse Pareto-optimal candidates.

C4 In a challenging multi-objective active learning task for protein design, we show that MOGFN-AL
results in significant improvements in sample-efficiency.

2 Related Work

Evolutionary Algorithms: Traditionally, evolutionary algorithms such as NSGA-II have been widely
used in various multi-objective optimization problems [12, 24, 6]. More recently, [30] incorporated
graph neural networks into evolutionary algorithms enabling them to tackle large combinatorial
spaces. Unlike MOGFNs, evolutionary algorithms do not leverage any type of data, including any
past experience, and therefore are required to solve each instance of a MOO from scratch rather than
amortize computation during training in order to quickly generate solutions at run-time.

Multi-Objective Reinforcement Learning: MOO problems have also received significant interest in
the reinforcement learning (RL) literature [17]. Traditional approaches broadly consist of learning sets
of Pareto-dominant policies [35, 38, 34]. Recent work has focused on extending Deep RL algorithms
for multi-objective settings such as Envelope-MOQ [41], MO-MPO [1, 2] , and MOReinforce [26].
A general shortcoming of RL based approaches is that they only discover a single mode of the reward
function, and thus cannot generate diverse candidates, which also persists in the multi-objective
setting.

Multi-Objective Bayesian Optimization (MOBO): Bayesian optimization (BO) has been used in
the context of MOO when the objectives are expensive to evaluate and sample-efficiency is a key
consideration. MOBO approaches consist of learning a surrogate model of the true objective function,
which is used to define an acquisition function such as expected hypervolume improvement [13, 9, 10]
and max-value entropy search [3], as well as scalarization-based approaches [32, 45]. The key
drawbacks of MOBO approaches are that they do not consider the need for a diversity of generated
candidates, and they mainly consider continuous state spaces. [36] proposed LaMBO, which uses
language models in conjunction with BO for sequence design.

Other Works: [47] introduced LaMOO, which tackles the MOO problem by iteratively splitting
the candidate space into smaller regions, whereas [11] introduce MORBO, which performs BO in
parallel on multiple local regions of the candidate space. Both these methods, however, are limited to
continuous candidate spaces.

3 Background

3.1 Multi-Objective Optimization

Multi-objective optimization (MOO) involves finding a set of feasible candidates x⋆ ∈ X which all
simultaneously maximize a set of objectives.
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max
x∈X

(R1(x), . . . , Rd(x)) . (1)

In general the objectives being optimized can be conflicting such that there is no single x⋆ which
simultaneously maximizes all objectives. Consequently, the concept of Pareto optimality is adopted
as an alternative solution in MOO.

Given x1, x2 ∈ X , x1 is said to dominate x2 written (x1 ≻ x2) iff Ri(x1) ≥ Ri(x2) ∀i ∈ {1, . . . , d}
and ∃k ∈ {1, . . . , d} such that Rk(x1) > Rk(x2). A candidate x⋆ is Pareto optimal if there exists
no other solution x′ ∈ X which dominates x⋆. In other words, for a Pareto optimal candidate it
is impossible to improve one objective without sacrificing another. The Pareto set is the set of all
Pareto optimal candidates in X , and the Pareto front is defined as the image of the Pareto set in
objective-space. It is important to note that since the objectives being optimized in general might not
be injective, any point on the Pareto front can be the image of several candidates in the Pareto set.

In practice, MOO problems can be challenging when they have high-dimensional objectives and
candidates. A standard strategy is to decompose the multi-objective optimization problem into simpler
single objective optimization problems. Weighted sum scalarization [12, 29] is a widely used method
for this. We can assign a set of convex weights (preferences) ωi to the objectives Ri, such that ωi ≥ 0

and
∑d

i=1 ωi = 1. The MOO problem in Equation 1 is then decomposed into solving single objective
sub-problems of the form

max
x∈X

d∑
i=1

ωiRi(x). (2)

Solutions to these sub-problems are Pareto optimal and, under certain assumptions, each Pareto
optimal candidate for Equation 1 is a solution to a sub-problem for some ω [12]. Thus, in principle,
solving the MOO problem can be viewed as solving a family of single objective optimization
problems, each defined by the preference vector ω.

3.2 GFlowNets

Generative Flow Networks [4, 5, GFlowNets] are a family of probabilistic models which generate
compositional objects x ∈ X with probability proportional to a given reward R : X → R+. The
sequential construction of x ∈ X can be described as a trajectory τ ∈ T in a weighted directed
acyclic graph (DAG)3 G = (S, E), starting from an empty object s0, using building blocks (actions)
A. The nodes S of this graph (states) correspond to the set of all possible objects (including partially
constructed objects, i.e. X ⊂ S), that can be constructed using sequences of actions in A. An edge
s

a−→ s′ ∈ E indicates that action a at state s leads to state s′. The set of terminal nodes in G is the set
of fully constructed objects X , i.e. there is no outgoing edge from the fully constructed objects. A
complete trajectory in G, τ = (s0 → s1 · · · → x) results in the generation of an object x. 4

A forward policy PF (· | s) is a distribution over the children of state s. Objects can be constructed by
sampling trajectories using PF starting from s0. A backward policy PB(· | s) defines a distribution
over the parents of state s which can generate backward trajectories starting at any state, e.g.,
iteratively sampling PB from terminal state x shows a way to construct x. Let π(x) be the marginal
likelihood of sampling trajectories following PF that terminate in x, and partition function Z =∑

x∈X R(x). The learning problem solved by GFlowNets is to estimate PF such that π(x) ∝ R(x).
We focus on the trajectory balance objective [28] to learn PF (· | s; θ), PB(· | s; θ), Zθ which
approximate the forward and backward policies and partition function, parameterized by θ:

L(τ ; θ) =
(
log

Zθ

∏
s→s′∈τ PF (s

′|s; θ)
R(x)

∏
s→s′∈τ PB(s|s′; θ)

)2

. (3)

During training, trajectories are sampled from a mixture of the current forward policy PF and a
uniform random policy U , with a parameter δ which controls the fraction of actions sampled from
U . In many problem settings, one would like to focus on the modes, which can be achieved by
exponentiation of the reward with a constant β, resulting in π(x) ∝ R(x)β .

3If the object is constructed in a canonical order (say a string constructed from left to right), G is a tree.
4In a DAG G there can be several trajectories that result in the generation of the same object.
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4 Multi-Objective GFlowNets

We broadly categorize Multi-Objective GFlowNets (MOGFNs) as GFlowNets that solve a family
of subproblems derived from a MOO problem. In this section we consider two instantiations: (a)
Preference-Conditional GFlowNets (MOGFN-PC), which leverage weighted-sum scalarization and
(b) MOGFN-AL, which leverages multi-objective acquisition functions for active learning.

4.1 Preference-Conditional GFlowNets

Reward-conditional GFlowNets [5] are a generalization of GFlowNets that simultaneously model a
family of reward functions, rather than a single reward function. Let C denote a set of conditioning
information. Each c ∈ C induces a unique reward function R(x|c). We can define a family of weighted
DAGs {Gc = (Sc, E) , c ∈ C}, which describe the construction of x ∈ X , with conditioning
information c available at all states.

A Reward-Conditional GFlowNet consists of the tuple (PF (s
′ | s, c), PB(s | s′, c), Z(c)), parame-

terized by θ. PF (s
′ | s, c) and PB(s | s′, c) are the conditional forward and backward policies and

Z(c) is the conditional partition function. In other words, Reward-conditional GFlowNets model the
family of rewards R(x|c), ∀c ∈ C simultaneously. We refer the reader to [5] for a more thorough
discussion on conditional GFlowNets.

Recall from Section 3.1 that multi-objective optimization problems can be decomposed into a family
of single-objective problems each defined by a preference ω over the objectives. We can thus employ
reward-conditional GFlowNets to model the family of reward functions, by using ∆d (the d-simplex)
as the conditioning set C, i.e., possible values of the convex preference weights ω.

Preference-Conditional GFlowNets (MOGFN-PC) are reward-conditional GFlowNets, conditioned
on the preferences ω ∈ ∆d over a set of objectives {R1(x), . . . , Rd(x)}. MOGFN-PC models the
family of reward functions R(x|ω). R(x|ω) can be specified using the decomposition of the MOO
problems. We consider three choices:

• Weighted-sum (WS) [12]: R(x | ω) =
∑d

i=1 ωiRi(x)

• Weighted-log-sum (WL) [5]: R(x | ω) =
∑d

i=1 Ri(x)
ωi

• Weighted-Tchebycheff (WT) [7]: R(x | ω) = min
1≤i≤d

ωi|Ri(x)− z⋆i |, where z⋆i denotes some

ideal value for objective Ri.

Training MOGFN-PC: Training MOGFN-PC (or any reward-conditional GFlowNet) closely follows
that of a standard GFlowNet and is described in Algorithm 1. The objective is to learn the parameters
θ that parameterize the conditional policies PF (s

′ | s, ω) and PB(s | s′, ω), and the log-partition
function logZ(ω). To this end, we consider an extension of the trajectory balance objective for
reward-conditional GFlowNets:

LTB(τ, ω; θ) =

(
log

Z(ω)
∏

s→s′∈τ PF (s
′|s, ω)

R(x | ω)
∏

s→s′∈τ PB(s|s′, ω)

)2

. (4)

Another important consideration is the distribution p(ω) used to sample preferences during training.
p(ω) influences the regions of the Pareto front that are captured by MOGFN-PC. In our experiments
we primarily use a Dirichlet(α) to sample preferences. Note that α = 1 corresponds to a uniform
distribution over ∆d and results in uniform coverage of the entire Pareto front. Finally, following
Section 3.2, we use reward exponent β to focus on the modes of the conditional distribution R(x | ω).
MOGFN-PC and MOReinforce: MOGFN-PC is closely related to MOReinforce [26]. Both learn a
preference-conditional policy to sample Pareto-optimal candidates. The key difference is the learning
objective – MOReinforce uses a multi-objective version of REINFORCE [39], whereas MOGFN-PC
uses a preference-conditional GFlowNet objective. As discussed in Section 3.1, each point on the
Pareto front (corresponding to a unique ω) can correspond to multiple candidates in the Pareto set.
MOReinforce, given a preference ω will converge to sampling the single candidate that maximizes
R(x|ω). MOGFN-PC on the other hand, samples from R(x|ω) which enables generation of diverse
candidates from the Pareto set for a give ω. We demonstrate this empirically in Section 5.
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Algorithm 1: Training Multi-Objective GFlowNets
Input:
p(ω): Distribution for sampling preferences;
β: Reward Exponent;
δ: Mixing Coefficient for uniform actions in sampling policy;
N : Number of training steps;
Initialize:
(PF (s

′|s, ω), PB(s|s′, ω), logZ(ω)): Conditional GFlowNet with parameters θ;
for i = 1 to N do

Sample preference ω ∼ p(ω);
Sample trajectory τ following policy π̂ = (1− δ)PF + δUniform ;
Compute reward R(x)β for generated samples and corresponding loss L(τ, ω; θ) using

Equation 4;
Update parameters θ with gradients from the loss, ∇θL(τ, ω);

end

4.2 MOGFN-AL

In many practical scenarios, the objective functions are also often computationally or economically
expensive to evaluate. The goal here is to generate Pareto-optimal candidates with the fewest
evaluations of the objective function. Traditionally, these scenarios are tackled broadly with active
learning algorithms [49]. We focus on the task of biological sequence design with multiple objectives,
building upon initial work on active learning with GFlowNets [19].

We consider the sequence-design framework presented in [36]. To simplify the notation, we use
R(x) : X 7→ Rd to denote a function which returns a vector with all the objectives R(x) =

(R1(x), . . . , Rd(x)). We start with an initial dataset of D0 = (xi, yi)
N
i=1 of candidates xi ∈ X and

their corresponding objective values yi = R(x). Let P̂0 denote the set of non-dominated points in D0.
The MOO problem is solved sequentially over a number of rounds, each consisting of maximizing a
scalar acquisition function f : X 7→ R to find candidates x that improve the current approximation
of the Pareto front P̂i. At the end of each round the generated candidates are evaluated with R and
incorporated in the dataset for the next round Di. The acquisition function f is defined using an
approximate Bayesian model R̂ of the objectives, estimated using D. f accounts for the epistemic
uncertainty in R̂, using it as a signal for exploration. We use MOGFN-AL to broadly define methods
that tackle the MOO problem using GFlowNets to solve the sequence of sub-problems specified by
the acquisition function f .

LaMBO [36] leverages denoising autoencoders to propose mutations to candidates x ∈ P̂i to generate
x′ ∈ X , such that x′ ≻ x. LaMBO optimizes the acquisition function in the latent space of the
denoising autoencoder. Instead, we propose using GFlowNets to generate the mutations to optimize
the acquisition function. Given a sequence x, at each step, PF selects a position in l ∈ {1, . . . , |x|}
and a token v ∈ A to replace x[l]. We ensure acyclicity of G by only allowing a single mutation
at any position within a trajectory. Thus, we generate mutations proportionally to the acquisition
function, resulting in a diverse set of candidates to improve the Pareto front.

5 Empirical Results

In this section, we present our empirical findings across a wide range of tasks ranging from sequence
design to molecule generation. More specifically, we consider two classes of tasks as summarized in
Figure 1 - (a) Sequence generation where the trajectories τ induce a tree. (a) Graph generation where
the trajectories τ induce a DAG G. Through our experiments we answer the following questions:

Q1 Can MOGFNs model the preference-conditional reward distribution?
Q2 Can MOGFNs sample Pareto-optimal candidates?
Q3 Are candidates sampled by MOGFNs diverse?
Q4 Do MOGFNs scale to high-dimensional problems relevant in practice?
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Figure 1: Tasks Considered: We consider two classes of tasks where the G is a DAG or a Tree. In
this figure we represent the one step transition from the current State to a New State. Left All the
molecular tasks considered in this paper (QM9 and Fragments) presume a DAG structure. Right: All
the sequence modelling tasks (Strings and DNA generation) presume a tree structure.

Figure 2: (Left) Visualization of the distribution learned by MOGFN-PC (Top) and ground truth
(Bottom) on hypergrid of size 32 × 32 with 3 objectives. (Middle) Average test loss between the
MOGFN distribution and the true distribution across objectives. (Right) Generational Distance +
metrics of MOGFN-PC across objectives.

To answer these questions, we rely on standard performance indicators used in the multi-objective
optimization literature that quantify the Pareto front approximation such as the Hypervolume
Indicator (HV), Generational Distance+ (GD+), and the R2 indicator. To quantify diversity we
rely on the Top-K Diversity and Top-K Reward metrics from [4]. The metrics are described in
detail in Section A. For all our empirical evaluations we sample a set of preferences which are fixed
for all the baselines and MOGFN-PC. For each preference, we sample 128 candidates from which
we pick the top 10, and we report their scalarized reward and diversity averaged over preferences. We
use these sets of samples to compute the HV and R2 indicators. We pick the best hyperparameters
for both MOGFN-PC and baselines based on the HV indicator, and report the mean and standard
deviation across three seeds for all quantities.

5.1 Synthetic Tasks

5.1.1 Hyper-Grid

We first study the ability of MOGFN-PC to capture the preference-conditional reward distribu-
tion, in a multi-objective version of the HyperGrid task from [4]. Consider an n-dimensional
hypercube gridworld where each cell in the grid corresponds to a state. The agent starts at
the top left coordinate marked as (0, 0, . . . ) and is allowed to move only towards the right,
down, or stop. When the agent performs the stop action, the trajectory terminates and the
agent receives a non-zero reward. In this work, we consider the following reward functions -
brannin(x), currin(x), sphere(x), shubert(x), beale(x). See Appendix B.1 for more
details on the reward functions.
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Table 1: Results for the regex_3 and regex_3_conf synthetic string tasks.
Algorithm regex_3 regex_3_conf

Reward (↑) Diversity (↑) HV (↑) R2 (↓) Reward (↑) Diversity (↑) HV (↑) R2 (↓)
Envelope-MOQ 0.05±0.04 0±0 0.012±0.013 19.66±0.66 0.08±0.015 0±0 0.023±0.011 21.18±0.72
MOReinforce 0.12±0.02 0±0 0.015±0.021 20.32±0.93 0.031±0.001 0±0 0.036±0.009 21.04±0.51

MOSoftQL 0.28±0.03 21.09±0.65 0.093±0.025 15.79±0.23 0.3639±0.011 23.131±0.6736 0.105±0.014 12.803±0.2617

MOGFN-PC 0.44±0.01 19.79±0.08 0.220±0.017 9.97±0.45 0.3773±0.001 22.712±0.2376 0.121±0.015 11.388±0.1653
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Figure 3: Pareto front of candidates generated by MOGFN-PC on the regex_3_conf (Left) and
regex_3 (Right) tasks

We present our qualitative and quantitative results in Figure 2. Since this is a toy setting, we
can compute the Multi-Objective GFlowNets (MOGFN)-PC learnt distribution in closed form. To
answer Q1, in Section 5.1.1, we visualize the learned distribution of MOGFN conditioned on a fixed
preference vector ω and contrast it with the true distribution. We can clearly see that the learned
distribution of MOGFN-PC is almost the same as the true distribution. Moreover, MOGFN-PC is
able to capture all the modes in the distribution, which suggests that diversity is captured, answering
Q3. We answer Q2 and Q4 quantitatively; more specifically, we present the average L1-loss between
the MOGFN-PC distribution and the true distribution averaged across a set of fixed test preference
vectors covering the simplex in Section 5.1.1. We can see that for all objectives considered the loss is
consistently low. Finally, to test the Pareto performance, we measure the Generational Distance +
(GD+) across different numbers of objectives. We observe that the MOGFN-PC not only learns a
distribution that is close to the true distribution but also learns to sample from the Pareto front.

5.1.2 String

We consider variants of the synthetic sequence design task from [36]. Given an alphabet of available
actions, the task is to generate sequences (of maximum length 32) which maximize the set of
objectives {R1, . . . , Rd}. Each reward Ri is defined as the number of occurrences of a given pattern
in the sequence. We consider two tasks: regex_3 with patterns ["AC", "CV", "VA"] (correlated
objectives, i.e. multiple objectives can be maximized simultaneously) and regex_3_conf with
patterns ["A", "C", "V"] (conflicting rewards, i.e. one objective cannot be improved without
making another worse). Note that as the reward depends only on the number of occurrences of the
patterns, there can be multiple sequences corresponding to the same reward, making the notion of
diversity important. We use the edit distance as the measure of distance between two candidates.
We present further details in Appendix B.2. We use MOReinforce [26], Envelope-MOQ [41]
and MOSoftQL (same formulation as MOReinforce and MOGFN-PC, but trained with the Soft
Q-Learning [15] objective) as baselines.

In Table 1, we can observe that MOGFN-PC significantly outperforms all other methods in terms
of the Hypervolume and R2 distance metrics, indicating that it learns a better approximation of the
true Pareto front. We also observe that MOGFN-PC results in significantly more diverse and high
reward candidates. Figure 3 visualizes the Pareto front of candidates generated with MOGFN-PC. We
observe that for regex_3_conf, the Pareto front is a plane as it is not possible to improve any two
objectives simultaneously, whereas for regex_3 MOGFN-PC discovers candidates that maximize
multiple objectives simultaneously. We also observe that the MOReinforce and Envelope-MOQ
baselines struggle in this task as the rewards are sparse.
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Table 2: Results for the atom-based QM9 task
Algorithm Reward (↑) Diversity (↑) HV (↑) R2 (↓)

MOGFN-PC 0.76±0.00 0.93±0.00 1.40±0.18 2.44±1.88

MOA2C 0.61±0.05 0.39±0.28 1.16±0.08 6.28±0.67
Envelope QL 0.65±0.06 0.85±0.01 1.26±0.05 5.80±0.20

MOREINFORCE 0.57±0.12 0.53±0.08 1.35±0.01 4.65±0.03

Table 3: Results for the Fragment-based Molecule Generation Task

Algorithm Reward (↑) Diversity (↑) HV (↑) R2 (↓)
MOReinforce [26] 0.41±0.07 0.01±0.007 0±0 9.88±1.06

MARS [40] NA NA 0.85±0.008 1.94±0.03

MOA2C [31] 0.76±0.16 0.48±0.39 0.75±0.01 3.35±0.02

Envelope QL [41] 0.70±0.10 0.15±0.05 0.74±0.01 3.51±0.10

MOGFN-PC 0.89±0.05 0.75±0.01 0.90±0.01 1.86±0.08

5.2 Benchmark Tasks

5.2.1 QM9

In this section, we consider a small-molecule generation task based on the QM9 dataset [33]. We
generate molecules atom-by-atom and bond-by-bond with up to 9 atoms and use 4 reward signals.
The main reward is obtained via a proxy [46] trained on QM9 to predict the HOMO-LUMO gap. The
auxiliary rewards are Synthetic Accessibility (SA score), a molecular weight target, and a molecular
logP target. All rewards are normalized so that they are between 0 and 1. 5 We present the results in
Table 2. We train MOGFN-PC and the baselines to generate 1M molecules and sample 128 molecules
from a fixed set of test preferences and calculate the HV and R2 indicators, as well as the Top-K
Reward & Diversity score. We can see that MOGFN-PC outperforms all baselines in terms of Pareto
performance and diverse candidate generation. We compare MOGFN against MOReinforce [26],
MOA2C, which is a preference-conditioned based A2C algorithm [31], and Envelope Q-Learning
[41].

5.2.2 Fragment-Based Molecule Generation

In this section, we consider the fragment-based [25] drug design task of [4], where the task is to gener-
ate molecules by linking fragments to form a junction tree [20]. The main reward function is obtained
via a pretrained proxy, available from [4], trained on molecules docked with AutodockVina [37] for
the sEH target. The other rewards are based on Synthetic Accessibility (SA), drug likeliness (QED),
and a molecular weight target. We detail the reward construction in Appendix B.4. We perform
experiments with these four objectives and report HV, R2, top-k reward, and top-k diversity. We
compare MOGFN against MARS [40], MOReinforce [26], MOA2C [31], and Envelope Q-Learning
[41].

Similarly to QM9, we sample 128 molecules per preference by conditioning MOGFN-PC on a fixed
set of test preferences and calculate Top-K Rewards, Top-K Diversity, and HV and R2 indicators. We
report our results in Table 3. We observe that MOGFN-PC is consistently outperforming baselines
not only in terms of HV and R2, but also candidate diversity score.

5.2.3 DNA Sequence Generation

We also considered the generation of DNA aptamers, that is single-stranded nucleotide sequences that
are popular in biological polymer design due to their specificity and affinity as sensors in crowded
biochemical environments [48, 8, 42, 22]. We generated sequences by adding one nucleobase (A,
C, T or G) at a time, with a maximum length of 60 bases. For multi-objective optimization, we

5Since the gap proxy is an approximate model, it can output higher values than those found in its training set,
meaning the gap reward can exceed 1; it is clipped at 2.
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considered three objectives: the free energy of the secondary structured calculated with the software
NUPACK [44], the number of base pairs and the inverse of the sequence length to favour shorter
sequences. We use MOReinforce [26] as the baseline for comparison.

As in the other tasks, we evaluate MOGFN-PC and the baselines by calculating the hypervolume,
Top-K rewards, Top-K diversity and R2 distance. We report the results in Table 4. In this case, the
largest hypervolume is obtained by the multi-objective RL algorithm [26]. However, it achieves so
by finding a quasi-trivial solution with the pattern GCGCGC... for most lengths, yielding very low
diversity. While MOGFN does not match the hypervolume of the best baseline, it obtains much
higher diversity and Top-K rewards, while achieving a relatively high optimal hypervolume.

Table 4: Metrics obtained in the DNA sequence generation task by MOGFN-PC with different reward
exponent β and the reinforcement learning baseline.

Algorithm Reward (↑) Diversity (↑) HV (↑) R2 (↓)

MOGFN-PC (β = 80) 0.663±0.006 18.846±0.101 0.490±0.013 2.500±0.056

MOGFN-PC (β = 60) 0.558±0.004 25.027±0.184 0.396±0.011 2.905±0.176

MOReinforce [26] 0.104±0.002 0.826±0.003 0.630±0.021 1.923±0.006

5.3 Active Learning

Finally, to evaluate MOGFN-AL, we study biological sequence design in an active learning setting.
We consider the Proxy RFP task proposed by [36], to generate novel proteins with red fluorescence
properties, optimizing for stability and solvent-accessible surface area. As discussed in section 4.2, we
generate batches within each round of active learning by generating mutations for sequences in the set
of non-dominated candidates in the current dataset. We adopt all the experimental details from [36],
only switching the candidate generation with MOGFN-AL. We describe the details in Appendix B.6.
We use LaMBO, NSGA-2 and and Model-based EA from [36] as baselines for comparison. We
use the improvement in Hypervolume (relative to the initial dataset) and the diversity of generated
candidates, measured by the average pairwise BLAST score (e-value).

We observe in Figure 4 (Left) that MOGFN-AL significantly outperforms the baselines in terms of
the relative hypervolume improvement. In fact, MOGFN-AL matches the performance of LaMBO
within half the number of black-box evaluations (evaluations of the true objective function). Table 5
shows that MOGFN-AL generates candidates that are more diverse than the candidates. We present
the Pareto front of candidates generated by MOGFN-AL in Figure 4 (Right).
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Figure 4: (Left) Relative Hypervolume Improvement and
(Right) Pareto front of candidates by MOGFN-AL for the Proxy
RFP active learning task.

Table 5: Diversity of candidates
generated in Proxy RFP active
learning task.

Algorithm Diversity (↑)

NSGA-2 0.07±0.03
MTGP + NEHVI + GA 0.12±0.02

LaMBO 0.18±0.03

MOGFN 0.25±0.01

6 Conclusion

In this work, we extended GFlowNets for multi-objective optimization problems. In particular
we considered two instantiations of MOGFN: MOGFN-PC which leverages reward-conditional
GFlowNets proposed in [5] to model a family of single objective sub-problems derived from the
MOO problem, and MOGFN-AL which sequentially solves a set of single-objective problems defined
by multi-objective acquisition functions. Through a series of experiments on sequence and graph
generation tasks, we empirically demonstrated the efficacy of MOGFNs in terms of generating
diverse Pareto optimal candidates. Future work should focus on the development of preference-
conditioned acquisition functions and consider applications of MOGFNs to other novel material
discovery objectives.
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