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Abstract

Characterization of material structure with X-ray or neutron scattering using e.g.
Pair Distribution Function (PDF) analysis most often rely on refining a structure
model against an experimental dataset. However, identifying a suitable model is
often a bottleneck. Recently, new automated approaches have made it possible to
test thousands of models for each dataset, but these methods are computationally
expensive, and analysing the output, i.e., extracting structural information from the
resulting fits in a meaningful way is challenging. Our Machine Learning based
Motif Extractor (ML-MotEx) trains an ML algorithm on thousands of fits, and uses
SHAP (SHapley Additive exPlanation) values to identify which model features are
important for the fit quality. We use the method for 4 different chemical systems
including disordered nanomaterials and clusters. ML-MotEx opens for a new type
of modelling where each feature in a model is assigned an importance value for the
fit quality based on explainable ML.1

1 Introduction

The development of advanced, functional materials builds on an understanding of the intricate relation-
ship between material structure and properties, and over the past century, crystallographic methods
using scattering and diffraction have thus been essential for materials science. Crystallography allows
ab initio determination of crystal structures from diffraction data, and has provided us with the vast
knowledge of crystal chemistry that is now used in design of functional materials. However, in the
case of nanomaterials with limited long-range order, crystallographic methods are challenged, and ab

1A complete version of this manuscript is accepted at npj Computational Materials
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initio structure determination, or structure solution, is not currently possible. Over the past decades,
total scattering with Pair Distribution Function (PDF) analysis has become an essential tool for
characterisation of nanomaterial structure.[1, 2] The PDF is the Fourier transform of normalized and
corrected X-ray, neutron, or electron scattering intensities, and is a function in real space representing
a histogram of interatomic distances in the sample. Compared to crystallographic methods relying on
long-range order, PDF analysis can be applied for nanomaterials,[3-5] disordered[1, 6, 7] or amor-
phous materials.[3, 5, 8] However, structure solution from the PDF is not possible except in a very
few simple cases,[9] using either the Reverse Monte Carlo method[10] or the LIGA algorithm.[11,
12] In the absence of broadly applicable ab initio nanostructure determination methods, it is therefore
necessary to propose reasonable starting models and to then ‘refine’ the model parameters against
the data using local minimization methods. The step of finding a starting model can be a major
challenge and is thus a bottleneck in complex material characterization. In the case of PDF analysis
of nanomaterials, such models are often guessed at by considering related bulk materials, however
these are often not good starting models for very small clusters and nanoparticles, where significant
structural changes may take place.[3, 5, 13, 14] A way of building plausible starting models is thus
needed, where structure models can be built capturing local bonding topologies suggested by known
chemistries.

Recently, automated methods such as ‘structure mining’ and ‘cluster mining’ have appeared in the
literature to help overcome this challenge.[15-17] In a study of the structure of metallic nanoparticles,
Banerjee et al. automatically generated thousands of discrete metal nanocluster structures and fitted
PDFs from each of them to experimental data to identify the best model in an automated manner.[17]
In a recent study of molybdenum oxide nanomaterials, a new approach were introduced, where a large
number of MoOx cluster structure models were automatically generated and compared their PDFs to
experimental data in order to identify dominating structural motifs in the sample, i.e. arrangements of
atoms that dominate the material structure on the local scale.[7] The authors hypothesised that the
structural motifs present in amorphous molybdenum oxides can also be found in crystalline structures,
and therefore used crystal structures of molybdenum oxides as starting models. From these models,
they cut out thousands of different cluster structure models of different sizes to build a ‘catalogue’ of
structure candidates. These models were all tested against the experimental PDFs to identify the best
fitting structural motif. In another study, a similar approach were used for identification of a bismuth
oxido cluster intermediate structure in a study of cluster growth.[18]

While these approaches can extend the structural space searched when identifying models for structure
refinement, new challenges arise. Firstly, the refinement processes can be computationally heavy,
which can limit the number of catalogue structures that are tested. For example, our brute force
approach for cluster identification above generates 2N − 1 structures for starting model sizes with N
atoms. Each structure must have its PDF computed and then refined against the target measured PDF,
so that its fit quality can be evaluated. This process is computationally costly and does not scale well
with number of structure candidates. Furthermore, for disordered, amorphous, and nanostructured
systems many hundred models may provide similar fit qualities, and if only reporting a few of them,
it is difficult to assess which structural features of these models are important. We therefore need
effective and unbiased methods to compare many fits to extract structural information. Here, we
introduce a completely new approach that uses an explainable Machine Learning (ML) model that,
after training, will predict the agreement factor for a test cluster with a given dataset. Furthermore,
the use of explainable ML informs which features in the model are important for the agreement
factor.[19-24] Our Machine Learning based Motif Extractor (ML-MotEx) model is illustrated in
Figure 1. Firstly, it builds a large catalogue of thousands of candidate structural motifs, which are
‘cut outs’ from a chosen bulk structure[7, 18] (step 1). The PDF is then computed from each one,
and each model is fit to the target dataset (step 2). The structures and Rwp values (explained in the
Methods section) from each fit are handed to an ML algorithm applying gradient boosting decision
trees (GBDTs),[25] which learns to predict Rwp values for new fits based on an atomic structure
model (step 3). The ML-MotEx algorithm then outputs quantified values of how important each atom
or feature in the starting structure is for the fit to yield a low Rwp value with the given fitting-algorithm
(step 4). This is done by using SHAP (Shapley Additive exPlanation)[26, 27] values, which is a
known method for explaining tree-based ML models. The amplitude of the SHAP value reflects how
important a structural feature is for the fit quality, while the sign of the SHAP value reflects whether
the feature affects the Rwp value of the fit towards 1 (poor fit) or 0 (perfect fit), in other words why it
is important.
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Figure 1: Illustration of the ML-MotEx process. Firstly, a starting model is provided. Using this
starting model, a structure catalogue is generated, and the structures in the catalogue are fitted to the
experimental data in question. An ML algorithm is then trained to predict Rwp values and finally
calculating quantified values of feature importance for the fit quality.

Compared to the automated, brute-force methods previously introduced for PDF analysis,[7, 15-17]
we can much faster screen a larger number of structures. Our method only needs to screen a sub-
sample (≈ 10.000) of the much larger number of motifs that can be generated from a bulk material to
learn how to predict which structures provide a good agreement with the data. The analysis done for
the examples presented below would take ≈ 24 days for starting models with 24 atoms, ≈ 3 · 106
years for starting models with 48 atoms and ≈ 6 · 1013 years for starting models with 72 atoms
using a brute-force approach (section A in the SI), while ML-MotEx analysis is done in minutes or
hours. Furthermore, the use of explainable ML provides a way to better analyse the output of the
screening: instead of just identifying the model that provides the lowest Rwp value, we are able to
output a measure of how important each atom or feature (e.g. size or shape) in the starting model is
for the fit to yield a low Rwp value (step 4). This procedure is automated, can be done in quasi-real
experimental time and without human bias.

We illustrate the use of ML-MotEx using 4 different examples. We first show the principles of the
method using a simple model system based on simulated X-ray PDF data from a C60 buckyball.
We further demonstrate the use of ML-MotEx on experimental X-ray PDF data from amorphous,
disordered molybdenum oxides[7] and tungstate α-Keggin clusters in solution,[28] where it allows
identifying the main structural motifs present in the samples using different starting models. Lastly,
we extend the method to use a ‘cookie-cutter’ strategy to generate structures for the catalogue of
candidate motifs. Here, the algorithm is used to identify a bismuth oxido cluster by using a cut-out
of the β-Bi2O3 structure as starting model. The examples illustrate that it is possible to obtain
knowledge of dominating structural motifs from PDF in an automated manner using ML.

2 Results

2.1 ML-MotEx algorithm

ML-MotEx consists of four steps. These four steps are shown in Figure 1. In the first step, a starting
structure model is used to generate a catalogue of candidate structure motifs. As detailed in the
Methods section, the structures are generated by removing different numbers of atoms from the
original starting structure which results in thousands of smaller, candidate structure motifs. In the
second step, a fitting script is used to fit the generated candidate structures to the dataset. In the third
step, the fitting results are handed to the explainable ML algorithm which is optimised and trained.
By using this information, SHAP values of the atoms or structural features in the starting model are
calculated in the fourth step. The output of the algorithm is thus the starting model along with SHAP
values, indicating the importance of each individual atom in the structure for the fit quality, or in other
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words; how much each individual atom or feature affects the Rwp value either positively or negatively.
We refer to this value as the “atom contribution value”. We furthermore define the ratio between
the atom contribution value and its uncertainty as the “confidence factor”. Further definitions and
descriptions of the individual steps of the algorithm are given in the Methods section.

2.2 Example 1: Proof-of-concept: Identification of the C60 buckyball

We first show the use of ML-MotEx with a simple, proof-of-concept example, using a calculated
PDF from an ideal C60 buckyball (Figure 2A). The aim is to identify the structural motif, the C60

buckyball, from the data. We first need a starting structure that contains the motifs we are looking for.
In this simplified example, we use a single unit cell of the crystal structure of C60.[29] However, we
discarded all symmetry and generated a discrete structure model corresponding to the 132 atoms in
one unit cell. This model is shown in Figure 2B, where one whole C60 structure (Figure 2A) is seen
along with fragments of the neighbouring C60 buckyballs. The simulated PDF of the C60 buckyball
and the starting model are shown in Figure 2C. We can now use this starting model to generate
a catalogue of structures, which are all fitted to the data. The structures are created by removing
different numbers of atoms from the original starting structure, which results in thousands of smaller,
candidate structure motifs. This model generation and fitting steps are identical to our previously
reported brute-force approach, where we simply compare the Rwp values of all the fits to identify the
best structure motif. We first consider this simple approach. One of the limitations of the brute-force
method is that the possible candidate structures is exponential in N, the number of atoms in the model.
Since each atom in the starting model can be present or absent, the number of possible sub-clusters
is equal to 2N − 1. For large models such as the C60 starting model containing 132 atoms, this is
≈ 1040, a gigantic number, making it impossible to investigate all candidate structures. For this
example, we used 384,260 structures to train ML-MotEx, which is only a very small fraction of the
2132 − 1 possible candidate structures. Note that the model with a single C60 buckyball was not in
the generated structure catalogue. All these 384,260 structures were fitted to the PDF calculated from
the C60 cluster. Only a scale factor, an isotropic expansion/contraction factor, and isotropic Atomic
Displacement Parameters (ADPs) were refined, as detailed in the Methods section. We note that
refinement of the atom positions can be added to the fitting procedure to expand the chemical space
that is investigated. However, this would be computationally expensive and it would allow deviations
from the chemical topologies set up in the starting model.

To get an overview of the results from these fits, we plot the Rwp value versus the number of atoms in
the structure, Figure 2D. To further investigate the results, one must visually inspect the fits of the
catalogue of candidate structure motifs and their Rwp value. Some of the candidate structure motifs
are shown as inserts in Figure 2E, where transparent grey atoms represent atoms deleted from the
models. The fits of these structures to the dataset are presented in Figure 2E, along with the Rwp

values. The Rwp value appears to drop when the ‘outer’ atoms are removed, while it increases when
the atoms that are part of the center C60 buckyball are removed. From investigating these few, but
manually selected, structures and their corresponding fitted Rwp value, one can hypothesize that
the structure giving the best fit should be the C60 buckyball. However, this method can be biased
by human interaction, and it is time-consuming and difficult to go through the many fits to extract
structural information. We therefore move on to the ML-MotEx method. Using the catalogue of
candidate structure motifs and the corresponding Rwp values obtained above, we train a GBDT model
on the training set to predict the Rwp value of the candidate structure motifs. Figure 2F shows the
predicted Rwp values of the ML algorithm versus the Rwp value of the structures when they are fitted
to the simulated C60 dataset in DiffPy-CMI.[30] For the structures used in the test set, the GBDT
model predicts the Rwp value with a mean absolute error of 2.0 %. We now use explainable ML to
explain Rwp values with the use of the feature importance tool SHAP values.[27] As described in
detail in the Methods section, a SHAP value is calculated for each structural feature (here each atom
and the cluster size) for each candidate structure motif that is fitted to the PDF during the training
process. The amplitude of the SHAP value reflects how important a structural feature is for the fit
quality, while the sign of the SHAP value reflects whether the feature affects the Rwp value of the fit
towards 1 (poor fit) or 0 (perfect fit), in other words why it is important.

Figure 3A shows the most important results from the SHAP value analysis. The first feature we
consider is the number of atoms, with SHAP values shown in the top part of Figure 3A. The plot
represents SHAP values for the cluster size feature with the size shown on a colour scale, going from
small (blue) to large clusters (red). From the large amplitude of some of the SHAP values observed
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Figure 2: A) C60 buckyball, B) single C60 unit cell,[29] treated as a discrete structure with 132 atoms
and C) their simulated PDFs. The simulation parameters (presented in section B in the SI) mimic
typical values of a PDF dataset. D) Rwp values obtained in the fits using the C60 structure catalogue,
plotted as a function of number of atoms in the structure motifs. Note that the model with a single
C60 buckyball is not included in the set of 384,260 structures tested. This would result in a perfect
fit with Rwp = 0 %. E) Examples of candidate structure motifs with their corresponding fits to the
simulated C60 buckyball data. Grey, semitransparent atoms are removed from the starting model. F)
Predicted Rwp values versus true Rwp values. Rwp values from the fits of the catalogue structures to
the simulated C60 dataset, plotted versus the predicted Rwp values from the GBDT model from the
same structures. The mean squared error (MSE) and the mean absolute error (MAE) are based on all
76,852 predictions in the test set, which are structures the model has not been trained on.

from this feature, we see that the number of atoms in the structure motif is the most important feature
for the Rwp value. All small clusters (0–34 atoms, plotted in blue colours) show a large positive
SHAP value, which implies that the Rwp value of the fit to the PDF data is high, i.e. the fit quality is
low. All small clusters can thereby be discarded as structural models for satisfyingly describing the
data. Next, we can investigate the SHAP values obtained for the individual atoms in the structure. We
first consider atom 13, as labelled in the structure drawing in Figure 3B. The SHAP values obtained
from this atom for each of the fits in the training set are all plotted on the SHAP axis. For the models
where the atom is not present in the model, the SHAP value is shown in blue, while it is shown in
red for the atoms where it is present in the model. If first considering the cases where the atom is
kept in the model, the atom 13 SHAP values are generally negative, which means that the presence
of this atom pushes the Rwp value towards 0. We interpret this as ML-MotEx wants to keep the
atom in the model. The SHAP values obtained for the fits without the atom present are positive,
which confirms that if removing the atom, the fit quality becomes worse. Based on the SHAP values
obtained for the atom in each fit, we calculate an atom contribution value. The atom contribution
value is defined in the Methods section, and is calculated as the difference between the average SHAP
values obtained for the atom when kept in the model, and when removed from the model. A negative
atom contribution value means that the atom pushes the Rwp value down if kept in the structure. The
atom contribution value obtained for atom 13 is negative, and we therefore colour it yellow in the
structural representation in Figure 3B to indicate that it should be kept in the model. We use this
strategy to automatically go through all the atoms in the starting model and colour them yellow/black
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Figure 3: A) Plot of the SHAP values obtained in the C60 analysis, showing if atoms in the starting
model are favourable for the fit quality. For the models where the atom is not present in the model,
the SHAP value is shown in blue, while it is shown in red for the atoms where it is present in the
model. The SHAP values are plotted as a violin plot. B) Structural visualisation of kept and removed
atoms. The atoms with the 60 lowest atoms contribution values have been coloured yellow, while the
rest are coloured black. Section C in the Supporting Information (SI) shows a similar representation
using a continuous colorbar for the atom contribution values.

based on their impact on the Rwp value. The result can be seen in Figure 3B where the 60 atoms with
the lowest atom contribution values are coloured yellow. The results are also shown in section C in
the SI, where the atom contribution values are plotted using a continuous colour bar. The results
show that ML-MotEx mainly favours the atoms comprising the central buckyball. While the average
confidence factor (as defined in the Methods section) is 1.26 for all of the atoms in the starting
model, we observe that the average confidence factor of the mislabelled atoms is 0.37, meaning that
ML-MotEx is less confident about the atom contribution values of those.

The ML-MotEx algorithm thus provides an unbiased method to extract important motifs from PDF
data, without any inputs other than a starting model and a fitting script. We emphasize that the
structural motifs extracted with ML-MotEx are based on the Rwp value of the fits and are thereby not
necessarily physically reasonable. It is therefore important to still critically consider the extracted
motif with chemical knowledge, in the same manner as for conventional PDF refinements. In this
process, one could refine additional parameters such as atom positions. Consequently, in Figure 3B,
the user should identify the full C60 buckyball as the structural motif rather than just choosing the
motif of the yellow atoms. Another approach to avoid unphysically results from ML-MotEx would
may be to include e.g., density function theory (DFT) calculations in the goodness-of-fit value.

2.3 Example 2: Identification of the ionic cluster structure from PDFs

To investigate the reproducibility of the ML-MotEx method, we investigate if similar re-
sults are achieved with different starting models, all containing the correct structure motif.
We here model a PDF obtained from a solution of 0.05 M ammonium metatungstate hy-
drate, (NH4)6[H2W12O40]·H2O in water, which dissolves to form monodisperse α-Keggin
clusters.[28] Experimental details are provided in section D in the SI. To test the ML-
MotEx method we use four different starting models of tungstate oxide crystals, all includ-
ing the α-Keggin cluster motif with varying complexity. Unit cells from the 4 following
crystal structures were used as starting models: [Hpy]4H2[H2W12O40] (py=pyridine) (1),[31]
(CH3)4N)4SIW12O40 (2),[32] (((CH3)2NH2)6(Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)2
[33] (3), and (CH3)2NH2)3(PW12O40) (4).[34] Again, we discarded all symmetry and generated
discrete structure model corresponding to the atoms in one single unit cell. All other atoms than
tungsten and oxygen were furthermore removed from the structures before catalogue structures were
created. Figure 4A shows the experimental dataset with simulated PDFs from the 4 different starting
models. Figure 4B illustrates a W12O40 α-Keggin structure.
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Again, we first build structure catalogues based on the starting models (step 1) and fit them to the
experimental PDF (step 2). In this case, we extract 104 structures from each starting model, which is
just a small fraction of all possible structures that can be made from the starting models that have
24 (2), 48 (1) and (3), and 72 (4) atoms that are permuted. Again, a GBDT model was trained to
predict the Rwp values of the structures (step 3), and SHAP values were obtained to calculate atom
contribution values (step 4). The resulting SHAP value plots can be seen in section D in the SI.
While ML-MotEx takes about 100 seconds on an AMD Ryzen Threadripper 3990X with 64-core
2.9/4.3GHz using 104 fits on a structure with 48 atoms, it would take about ≈ 3 · 106 years (section
A in the SI) to make fits of all the 248 − 1 possible structures using the brute-force approach. Table
S1 in the SI shows the exact computer time of the fits on a MacBook Pro and a Threadripper, which
clearly demonstrates the scalability of ML-MotEx.

Figure 4C-F shows the results of applying ML-MotEx to the 4 different starting models. For structures
(1), (3), and (4), the 24 atoms most preferred by ML-MotEx were coloured yellow, while the rest
were coloured black. For structure (2), 12 atoms were coloured yellow. In all 4 examples, the yellow
atoms have a motif of a α-Keggin cluster, however, in Figure 4E–F, we see a few mislabelled atoms
(2 of 24 atoms in the worst case). The mislabelled atoms are found in the starting models containing
most atoms, i.e. with the highest permutation value N. To achieve a better prediction, we could have
built larger catalogues of candidate structure motifs and thus performed more fits. We therefore
conclude that the ML-MotEx method is not completely insensitive to the starting model, but that it
yields very similar results for all the tested starting models if it contains similar motifs. Furthermore,
the example shows that ML-MotEx can be used to investigate PDF data from clusters in solution,
whose structure also is part of known crystal structures. As described in section E in the SI, we
performed an identical analysis of a different dataset also obtained from a second solution of 0.05 M
ammonium metatungstate hydrate. This analysis provided highly comparable results. This illustrates
the reproducibility of the method. In section F in the SI, we discuss what happens if a poor staring
model is used, and how one can identify if the starting model does contain the right motif using the
confidence factor. In the SI, we describe two other examples where we have used ML-MotEx. Firstly,
we have used the ML-MotEx method to identify the main structural motifs present in an amorphous,
disordered molybdenum oxide[7] from its experimental X-ray PDF. This example is described in
Section G of the SI. Secondly, we have identified a larger ionic cluster, namely [Bi38O45], from an
experimental PDF. Here, we use the β-Bi2O3 structure as starting model, and used a ‘cookie-cutter’
strategy to generate structures for the motif catalogue. This example, and the ‘cookie-cutter’ approach,
are described further in Section I of the SI.

3 Discussion

In the 4 examples presented above, we have shown how explainable ML can aid in identifying struc-
tural motifs in nanostructured materials and presented a new approach to structure characterization.
Traditional PDF analysis investigates how an entire structure model agrees with an experimental PDF,
rather than identifying how different features in the model affect the fit quality. Instead, ML-MotEx
provides a quantitative measure of how each atom or feature contributes to the fit. The use of ML
furthermore allows screening of a large number of models in an automated and fast manner. In the
examples described here, ML-MotEx has been used with various starting models with up to 256 metal
atoms, however, the algorithm can handle larger systems, as it is highly scalable. In comparison, a
full brute-force approach is computationally restricted to systems with up to 15–30 atoms. For the
type of systems described here, it is possible to use the method in quasi-experimental time which
could, for example, be useful for analysis of time-resolved scattering data, where the structural motifs
present might change with time, which would be revealed by changing SHAP values.

ML-MotEx shares some similarities with the cluster build-up algorithm LIGA,[11, 12] which au-
tomatically builds clusters of different sizes based on information that is contained in inter-atomic
distance lists extracted from the PDF. LIGA has shown to be successful at automatically reconstruct-
ing clusters (up to 150 atoms) with no user input except the interatomic distance list, extracted from
an experimental PDF, and at low computational cost. However, its use has not caught on because
extracting the distance list from the data presents significant practical difficulties, and is not unique.
As with ML-MotEx it uses the error each atom in a cluster contributes to the fit to weight the decision
about which atom to include in the model. Presumably, part of the success of LIGA and ML-MotEx is
its use of this atom contribution for rapidly finding good candidate motifs. Unlike LIGA, ML-MotEx
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Figure 4: A) Comparison of experimental data from a 0.05 M ammonium metatungstate
hydrate solution, and simulated PDFs from the four different starting models (1)–(4). The
simulation parameters mimic typical values of a PDF dataset and can be seen in sec-
tion B in the SI. B) The W12O40 α-Keggin structure. C-F) Results from ML-MotEx on
a PDF from a solution of ammonium metatungstate hydrate, using four different start-
ing models: C) [Hpy]4H2[H2W12O40] (py=pyridine),[31] D) (CH3)4N)4SIW12O40,[32]
E) (((CH3)2NH2)6(Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)2,[33] F)
(CH3)2NH2)3(PW12O40).[34] Atoms kept by ML-MotEx are shown in yellow while re-
moved atoms are shown in black. The kept atoms were chosen as the 24 atoms (1), 12 atoms (2), 24
atoms (3), and 24 atoms (4) with the lowest atom contribution values. In section D in the SI a similar
representation is shown using a continuous colorbar for the atom contribution values.

requires a starting model that contains the target structural motif, and it leverages ML to rapidly
compute the atom contributions. It can therefore be positioned between traditional refinement (where
the complete starting model is needed) and LIGA (which is ab initio) as it finds structural motifs from
within a larger model as a starting model for a subsequent refinement. However, it has the significant
advantage over LIGA that it works directly on the measured PDF and does not require the inter-atomic
distance list to be extracted from the PDF data and we expect it to be of great practical value. It may
be considered as a significant drawback that ML-MotEx requires as an input a structure fragment that
contains the target motif within it in order to work. We provide a confidence factor for the starting
model but ML-MotEx still requires significant chemical/structural knowledge and intuition to be of
use. We first note that such intuition is widespread in the chemistry community and is unlikely to be
a significant drawback in practice. For example, ML-MotEx has recently been used to identify the
structure of intermediates in the formation of transition metal tungstates from polyoxometalate ions
using in situ PDF data, and for identifying stacking fault domain sizes in manganese oxides from
PDF and PXRD.[36, 37] We also note that the method is sufficiently fast that it would be possible to
combine it with structural screening applications such as structureMining@PDFitc.[15, 37] Given
chemical information about elements that are present, structureMining searches structural databases
for candidate structures. These are then refined to a target dataset and a rank ordered list returned
to the user. If the PDF represents a signal from a short-range ordered structural motif, we could
insert ML-MotEx between the database mining and refinement steps to search over sets of plausible
structures to look for structural sub-motifs. It may be possible to first use structure mining to identify
starting models, which could then be used for ML-MotEx analysis. The models could then be further
evaluated using both the resulting Rwp values and confidence factor. The ML-MotEx method is
currently limited to PDF analysis in the fitting procedure of the algorithm (step 2), however, the rest
of ML-MotEx (step 1+3+4) is ready to use with data from other techniques. We are confident that a
similar approach, taking advantage of explainable ML and SHAP values can be broadly useful for
enhancing and developing how models for data analysis are identified and constructed.
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4 Methods

4.1 Step 1: Creation of a catalogue of candidate structure motifs

The first step in ML-MotEx is to use a starting structure model to generate a catalogue of candidate
structure motifs, which are all fitted to the data. The structures are generated by removing different
numbers of atoms from the original starting structure resulting in thousands of smaller, candidate
structure motifs. This process, which we refer to as ‘structure permutation’, is illustrated in Figure 1,
step 1. Here, the starting model contains 4 metal atoms, which are each bonded to 6 oxygen atoms.
Before candidate structure motifs are generated, we select which atom type should be included in the
permutation process. For the project discussed here, this selection is based on the X-ray scattering
power of the atoms (i.e., heavier atoms scatter X-rays strongly, while lighter ones do not), and we
therefore choose to permute over the 4 metal atoms in the structure rather than oxygen atoms. The
total number of atoms that are selected for permutation (here 4) is referred to as the permutation
number, N. Note that we do not take symmetry into account in this process. The selected atoms are
removed or kept in the model by randomly associating them with zeros and ones, where 0 means
that we remove the atom and 1 means we keep it. This is repeated multiple times to generate a large
catalogue of candidate structure motifs. The total number of possible motifs from the permutations
is equal to 2N -1, but only a small fraction of these needs to be produced for ML-MotEx to provide
satisfactory results. In section J in the SI, we discuss how large a catalogue of candidate structure
motifs ML-MotEx needs as training data to output reasonable results. This is likely to be highly
system dependent and especially dependent on N and structure symmetry. For the examples presented
in the paper, we use ≈ 140–3000 structure motifs per N. The atoms which were not chosen for
permutation, in this case oxygen, are removed if they are not within a distance threshold from any
other atom. The threshold is user-defined and can be set according to PDF peaks and/or chemically
valid distances (i.e., bond lengths) for the expected compounds.

4.2 Step 2: Fitting the catalogue of candidate structure motifs to the data

We fit each of the candidate structures in the catalogue to the experimental PDF using the Python-
based program DiffPy-CMI[30, 38-40]. We apply the Debye equation for calculation of scattering
intensities and PDFs from the structures. The fitting strategies and parameters for all 4 examples are
listed in section K in the SI including a description of the fit quality measure, Rwp.

4.3 Step 3: Predicting Rwp values using Gradient Boosting Decision Trees

GBDTs[25] are a tool that can do classification or regression using decision trees. In this work, we
are using XGBoost[25] as the GBDT algorithm to do the regression task of predicting the fit quality
(step 2) based on the structural input given as zeros or ones (step 1) and the number of atoms in the
structure. Section L in the SI demonstrates how the structure can be given as a input to the GBDT
model. The optimisation is done by making trees of ‘yes’ and ‘no’ questions on whether to keep an
atom in the structure or not, based on the resulting Rwp value. A hypothetical example of a simple
tree can be seen in Figure 1, step 3. When atom 4 is present in the structure, the GBDT model will
predict a Rwp value which is 5 % lower than if atom 4 is not present in the structure. In the same
way, it will predict an Rwp value which is 12 % lower if atom 1 is present in the structure. In the
decision tree, the algorithm will therefore say ‘yes’ to keep both atoms 1 and 4 in the structure. In
this project, the GBDT model predicts the Rwp value using a weighted average of 100 trees. The
GBDT model performance is improved with a large amount of training data, which in this tool is
provided by creating a larger catalogue of candidate structure motifs and fitting them to the data. The
GBDT model is trained on 80 % of the data, which is referred to as the training set. XGBoost[25]
were used with default parameters except for learning rate and max depth, which were optimised
with the use of Bayesian optimization using 50 iterations and cross-validation split on 3.[41, 42]
While this procedure automates the hyperparameter tuning, we demonstrate in section M in the SI
that similar results are achieved across various hyperparameters. The last 20 % of the data is used to
evaluate the performance of the algorithm and is referred to as test set.
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4.4 Step 4: Quantifying the contribution of each atom using SHAP values

SHAP values are used to analyse the Rwp values resulting from the process described above. For
each fit (step 2), each atom in the starting model is assigned a SHAP value. The amplitude of
the SHAP value reflects how important a structural feature is for the fit quality, while the sign of
the SHAP value reflects whether the feature affects the Rwp value of the fit towards 1 (poor fit)
or 0 (perfect fit), in other words why it is important. Each atom in the starting model will thus
get F number of SHAP values, where F corresponds to the number of fits made in step 2 of the
algorithm. We divide the F number of SHAP values into two categories; firstly the ones where the
atom was kept in the structure motif (kept atom SHAP value list) and secondly the ones where the
atom was removed to create the structure motif (removed atom SHAP value list). From each of the
two lists, an average SHAP value for the atoms can be calculated, defined as SHAPaverage−kept

and SHAPaverage−removed. We then define an atom contribution value, which is calculated as the
difference between two average SHAP values, i.e. atom contribution value = SHAPaverage−kept

- SHAPaverage−removed. We also define the uncertainty on this value as: atom contribution value
RMS = (SHAP2

average−kept – SHAP2
average−removed)

2. We define a confidence factor for each atom
that describes how confident we can be about including/excluding that atom in a structural motif;
Confidence factor = atom contribution value / atom contribution value RMS. ML-MotEx outputs a
VESTA[43] and CrystalMaker[44] file where all the atoms are coloured with regard to their atom
contribution value.

5 Data and Code Availability

The authors declare that the data and code supporting this study are available within
the paper, its Supplementary Information files and the associated Github to the paper:
https://github.com/AndySAnker/ML-MotEx. Additional data that support the findings of this study
are available from the corresponding author upon request.
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