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Abstract

Materials discovery and design require characterizing material structures at the
nanometer and sub-nanometer scale. Four-Dimensional Scanning Transmission
Electron Microscopy (4D-STEM) resolves the crystal structure of materials, but
many 4D-STEM data analysis pipelines are not suited for identification of anoma-
lous and unexpected structures. This work introduces improvements to the iterative
Non-Negative Matrix Factorization (NMF) method by implementing consensus
clustering for ensemble learning. We evaluate the performance of models during
parameter tuning and find that consensus clustering improves performance in all
cases and is able to recover specific grains missed by the best performing model
in the ensemble. The methods introduced in this work can be applied broadly to
materials characterization datasets to aid in the design of new materials.

1 Introduction

Acceleration of materials discovery and design necessitates versatile and robust characterization
tools that can resolve nm and sub-nm structures. Four-Dimensional Scanning Transmission Electron
Microscopy (4D-STEM) is a technique that allows for structural maps to be created over micron field
of view at high spatial resolution [1]. 4D-STEM datasets consist of a 2D diffraction pattern for each
position in a 2D real space scan (Figure 1a). Crystallographic orientations [2–5], phases [6, 7], and
properties [8–11] have been extracted from 4D-STEM datasets, but automated and semi-automated
analysis pipelines have not been universally established for novel material systems [12].

Researchers have designed protocols for data analysis using template matching procedures [6, 13–16]
and machine learning [17–20]. Template-based techniques can be useful when the phases present in
the material are known and the classification problem is simple, but complex or anomalous structures
often arise during the process of designing new materials. Deep learning approaches often depend on
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simulated data for training, which may not reflect the complexity of new materials where structures
or properties outside the training set may arise. Supervised methods cannot capture information that
deviates from our current knowledge, which can prevent these methods from aiding in materials
discovery and design pipelines. Thus, unsupervised learning is a practical alternative to rapidly
identify regions of self-similarity within a dataset [21].

Unsupervised learning pipelines for 4D-STEM data analysis have been introduced in the past [5, 19,
22–24].These approaches primarily focus on either detecting unique Bragg reflections and using this
form for clustering [5] or virtual imaging [22, 24]. Here, we present guidelines for the implementation
of unsupervised learning and new approaches for improved performance. We first discuss the impact
of parameter selection on performance to guide the implementation process for different feature
sets. We then apply consensus clustering [21, 25, 26] to improve performance of our pipeline. The
approaches we present can be extended broadly to other materials characterization techniques, where
experts can design relevant featurization protocols [27].

2 Methods

We simulated 3 datasets containing Ag grains with different extents overlapping regions. The
maximum diffraction pattern and true cluster labels for the datasets are shown in Figure 1b and 1c,
respectively. We extracted features from these datasets using a mean virtual imaging method referred
to as the Angular Average (AA) [24] and the detected Bragg Disk intensities and positions (BD) [5]
using methods available in py4DSTEM[28]. We used a binning of 3x3 for the BD representation and
an averaging step of 5 pixels for the AA representation. These choices maintained integrity of the
individual disk positions and intensities while significantly reducing the size of the input feature set.
These selections are not universally optimal and different binning and averaging steps are needed
for datasets with different imaging conditions. Labels were generated from the simulated dataset for
scoring purposes, but were not used during modeling. More details regarding our methods can be
found in the Appendix.

Iterative NMF was introduced as a computational method in Allen et al. [5] and used in Bruefach
et al. [24]. NMF (||V − WH||F ,W ≥ 0, H ≥ 0) reduces the feature matrix (V, n × m) into a
set of weighted linear combinations [29, 30]. We first apply NMF to the feature set, then merge
the columns of the reduced component matrix (W,n × c) that are correlated above the defined
merge threshold. This is repeated until there are no components that are correlated above the merge
threshold. The final columns in the component matrix become the clusters, with each pattern (n)
having a weight associated with the clusters. This method mitigates the need to define the number of
components, but the selection of the maximum components and merge threshold can greatly impact
the performance of the model. We investigated the impact of the input parameters by running 25
models with different initialization conditions for each of four parameter sets (P1-P4, Table 1) for the
AA and BD featurizations, leading to a total of 200 models trained per dataset.

Table 1: Parameter Sets for NMF Models

Feature Parameter Set Input Components Correlation Threshold

AA 1 50 0.35
AA 2 50 0.40
AA 3 60 0.35
AA 4 60 0.40
BD 1 60 0.20
BD 2 60 0.25
BD 3 75 0.20
BD 4 75 0.25

P1 and P3 have lower merge thresholds than P2 and P4, and P1 and P2 lower number of initial
components than P3 and P4. The initial number of input components controls the maximum number
of clusters that can be output from the model. If the value of initial components is too low, there
may be some grains that do not get detected. While a value too large may not directly impact the
quality of results, it does cause runtimes that are unnecessarily long. The merge threshold controls
how correlated similar clusters must be in order to be merged into one, thus a value larger than or
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equal to 1 would reduce the Iterative method to traditional NMF. If the selected merge threshold is
too large (but still less than 1), patterns with the same underlying grain identity may be split into two
clusters. Conversely, if this threshold is too low, dissimilar grains may be merged into one cluster.

Consensus clustering is performed by consolidating the clusters discovered from the 25 models
per parameter set into one model. Unlike in supervised learning, the cluster assignment does not
represent a class label and the number of clusters is not consistent among all models. To address these
complications, we performed label correspondence to determine which clusters should be combined
for the consensus. We selected the model with the maximum number of clusters out of the 25 trained
models and used these as the foundation set. The remaining clusters were matched to the foundation
set (A) using the sum of the weights in the intersection of the current cluster (Bj) and the foundational
cluster (Ai) in the initialized bins (i) based on the equation bin(Bj) = argmax(

∑i=n
i=1(Ai

⋂
Bj).

We created a new bin if no match was found. All bins that contained less than two clusters were
dropped. After matching the clusters, the average was taken in each bin and used as the consensus.
We calculated the True Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate (TNR),
False Negative Rate (FNR) and F1 Score for the independent and consensus cluster models.

3 Results and Discussion

While many models successfully segmented the data (Figure 1d), we observed three distinct types
of model failures (Figure 1e). The first is the inability of the model to retain information, leading
to low F1 scores and high NMF reconstruction error. This type of error is easy to detect both
computationally and visually (Figure 1e, middle row). Failure to retain information is likely due
to poor initialization conditions and typically doesn’t impact an entire parameter set, except for the
P3 models using the BD feature for the Ag2 dataset. The AA feature also had several models per
parameter set that failed in this way. The second type of failure can be observed from the Ag1 BD
model results shown in Figure 1e (top row). This is associated with too high of a merge threshold,
which leads to multiple clusters representing single grains instead of one cluster. These two failure
cases underpin the necessity to test parameter sets for specific datasets when performing Iterative
NMF as the primary clustering model. The last failure case is the inability to detect the overlapping
grains as two distinct clusters, shown in Figure 1e, (bottom row). We observe this failure primarily
in models using the BD feature. Previous work has shown that the BD feature has the tendency to
overfit the overlapping regions by clustering them into separate classes rather than containing two
distinct grains [24]. In addition to these failures, none of the models detect all of the grains in the
datasets. This can be observed in the Ag1 cluster map in Figure 1d (top row), where the model omits
some grains present in the Figure 1c true cluster maps.

Figure 1: Overview of 4D-STEM with visual representation of datasets and results. (a) Diagram of
the 4D-STEM dataset. (b) Maximum diffraction patterns and (c) true cluster labels for the 3 simulated
datasets, Ag1 (top), Ag2 (middle) and Ag3 (bottom). (d) Example of a successful model for each
dataset, (e) example of a failed model for each dataset.
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The F1 scores for the models trained for Ag1, Ag2, and Ag3 are shown in Figure 2a, 2b, and 2c,
respectively. Additional performance scores are presented in Table S1. We found that the model set
using P1 performs well across all 3 datasets using the BD representation. We believe the success of
P1 changes for different datasets. First, the lower merge threshold leads to improved performance for
Ag1 by preventing independent grains from being put into separate clusters. In Ag3, the enhanced
performance from P1 may be due to the lower number of components. All parameter sets applied to
Ag2 overfit to the overlapping grain regions, but the lower number of components may prevent some
of the overlapping regions from being clustered as distinct from the parent grains. The lower number
of components initializes fewer clusters, thus this could reduce the number of overlapping regions
that are initially identified as an independent cluster. We find that even when datasets are very similar,
parameter tuning is a crucial step for optimizing independent model performance.

The models developed using the AA feature with P4 perform consistently well across all datasets.
We believe that the high number of components for the AA feature is important for Ag1, which may
provide a higher possibility of initializing cluster for more of the independent grains in the dataset.
The higher merge threshold in this set leads to high performance of P4 on the Ag2 and Ag3 datasets,
which prevents dissimilar grains from being merged into a single cluster. It is possible that the lower
merge threshold tends to merge dissimilar grains when applying to the AA feature when there is some
extent of grain overlap. If not much is known about the content of the dataset, using AA feature with
P4 would be a good choice as these models have the best overall performance across the datasets,
with an average overall F1 score of 0.84 across the 75 models and 3 datasets (Table S2).

Figure 2: Comparison of consensus cluster and F1 scores. Measurements and consensus cluster maps
for Ag1 (a), Ag2 (b) and Ag3 (c) trained using 4 different parameter sets for the AA (top) and BD
(bottom) representations.

We observed that the Ag2 dataset is more sensitive to input parameters for the BD feature. All sets
using the BD feature for the Ag1 and Ag3 datasets have narrow distributions (average variance 0.001),
yet the models using the BD feature for Ag2 tend to have broader distributions (average variance
0.04). We believe the small regions of overlapping grains is the cause of the variability. Since these
regions are small relative to the grain size, only a few models per parameter set may see these regions
as distinct. This theory is underpinned by the reproducible poor performance of all of the models
created using the BD feature for Ag3 (F1best = 0.68). The Iterative NMF method may have difficultly
determining minority phases if they are only present in few patterns per dataset, especially if there is
significant overlap with majority crystallographic features in the sample. The BD feature is more
sensitive to detecting these regions as they become larger. This may be beneficial or detrimental
based on the classification problem. For example, the BD representation has a tendency to fail at
identifying overlapping regions correctly, but for the same reason is more likely to properly identify
distinct precipitates in a matrix or minority phases in a material system.
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Next, we compared how consensus clustering performed against individual models in each parameter
set. In all cases, the consensus cluster F1 score (F1consensus) (Figure 2, diamond markers) improves
above the average of the parameter set (F1avg) and in several cases beats the best model (F1best)
within a parameter set. The largest performance enhancement occurs in sets containing some models
that failed to retain information. However, consensus clustering did not improve clustering in
parameter sets that did not retain any information, such as P3 using the BD feature for the Ag2
dataset. In addition to the benefit of improved performance, we observe from the cluster maps that
information from individual grains that top performing models omit can be recovered using consensus
clustering. For example, the top model for Ag1 using the AA feature in Figure 1b omits some grains,
but these are now observed in the consensus cluster map for this parameter set. Thus, more grains
can be accurately detected when taking the consensus over the best performing model.

Table 2: Average, best, and consensus F1 Scores in select parameter sets

Value Ag1, AA
P1

Ag2, AA
P3

Ag3, AA
P3

Ag1, BD
P4

Ag2, BD
P4

Ag3, BD
P3

F1avg 0.37 0.38 0.69 0.67 0.70 0.57
F1best 0.78 0.77 0.80 0.68 0.81 0.64

F1consensus 0.92 0.93 0.82 0.75 0.92 0.74

Finally, the consensus clustering approach mitigates the impact of parameter selection on performance.
The performance of the consensuses are relatively stable across parameter sets, as the F1consensus
has a narrower distribution than both the F1avg and F1best. However, the consensus clustering
protocol applied in this work does not address the overfitting problem plaguing the models trained on
the BD representation. Future work could address this shortcoming by incorporating merging and
splitting rules to the consensus method.

4 Conclusion

Unsupervised data analysis methods for materials characterization are crucial for advancement of
materials discovery and design efforts. This work introduces the nuances of parameter selection and
performance variability in Iterative NMF applied to 4D-STEM datasets using engineered features as
model inputs. We find datasets that have equally sized grains are less sensitive to input parameters.
The models tend to have more difficulty resolving minority regions within a dataset, as indicated
by the high model variance in the Ag2 dataset. While there is no universally superior feature set or
parameter set for all material systems, the AA feature with P4 had the best average performance
across our test sets. In general, we find the AA representation performs better when the number of
unique structures per pattern increases, but the BD feature would be a better choice when attempting
to identify minority phases. Consensus clustering consistently reduces error and recovers information
that is lost in individual cluster sets, and reduces the impact of parameter selection on performance.
We anticipate that these findings and methods will be applied to other materials characterization
datasets to further support materials discovery efforts.
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A Appendix

A.1 Expanded Methods

A.1.1 Dataset generation and feature preparation

Three simulated polycrystalline Ag films (referred to as Ag1, Ag2, Ag3) with varying grain sizes
((35 Å x 41 Å x 40 Å), (52 Å x 62 Å x 60 Å), (70 Å x 82 Å x 80 Å)) were generated using a custom
MATLAB code. The 4D-STEM simulations were performed using custom MATLAB scripts that
implement the multislice algorithm Cowley and Moodie [32] and methods defined by Kirkland [33]
and the plane wave reciprocal space interpolated scattering matrix (PRISM) algorithm[34]. The
patterns were generated using an acceleration potential of 300 keV, a probe semiconvergence angle of
1.05 mrad, a 5 Å pixel size in real space, and a 0.01 Å−1 pixel size in reciprocal space. More details
about the dataset generation and simulation can be found in Bruefach et al. [24].

Rigorous data calibration steps have been introduced by Ophus [1] and Savitzky et al. [28]. In this
work, we follow the pattern alignment and elliptical distortion correction methods using the publicly
available methods in py4DSTEM [28]. We then extract the Angular Average (AA) and Bragg Disk
(BD) representations following the methods discussed in Bruefach et al. [24]. A binning of 3x3 for
the BD representation and an averaging of 5 pixels for the AA representation were chosen because
they maintained integrity of the individual disk positions and intensities while reducing the size of
the input data. These selections are not universally optimal and different parameters may be a better
fit for datasets with different imaging conditions.

A.1.2 Compute Details

Iterative NMF was performed as discussed in the main text, using the implementation of NMF
in scikit-learn[35] at each iteration. Runtime was measured using a MacBook Pro equipped
with a 2.3 GHz 8-Core Intel Core i9 processor, and ranged from 65 minutes to 270 minutes. The
implementation of the Iterative NMF is the compute bottleneck for this pipeline, all other data
preparation and analysis methods take minimal time. Typically, smaller number of components
and larger merge thresholds yield smaller compute times. This implementation is currently only
implemented for use on a CPU and we expect significant speedups upon implementing for GPU.
More specific details are presented in a prior study [24].

A.1.3 Spatial Separation and Size Refinement

We spatially separated the components and filtered out small grains using the real space cluster maps
in order to score the datasets. We transformed each column of the NMF output components into 2D
arrays of the size of the real space scans (100 x 100 in the simulated dataset). The yen threshold
function from scikit-image [36] was applied to each image produced from the NMF output, which
allowed for the identification of spatially independent clusters within the cluster image. All values
below the threshold in each image were set to 0. Any spatially independent components containing
less than 25 pixels were removed. The clusters were separated based on the detected labelled region.
This method can be applied to experimental data if the analysis of the size, diameter, and shape of
detected clusters is desired. However, applying spatial separation would prevent spatially separated
clusters of similar orientation from maintaining the same cluster label.

A.1.4 Scoring

The Ag labels for the three Ag datasets were generated based on the Ag structures at each probe
position. To determine the best match grain, the sum of the weights in the intersect of the grain and
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cluster was calculated. The best match was After the best match was found and the True Positive
Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR), False Negative Rate (FNR), and
F1 Score were calculated for each pair within a cluster. The average of each of these parameters was
calculated for each model and variations within and across parameter sets were evaluated. In this
work, we use the F1 score to gauge model performance, but all values are tabulated in the SI.

A.2 Tables

Table S1: Average metrics, per parameter set

Dataset Feature Parameter Set TPR FPR TNR FNR F1 Score
Ag1 AA P1 0.27 0.00 1.00 0.73 0.37
Ag1 AA P2 0.64 0.00 1.00 0.36 0.70
Ag1 AA P3 0.70 0.01 0.99 0.30 0.75
Ag1 AA P4 0.79 0.01 0.99 0.21 0.82
Ag1 BD P1 0.80 0.00 1.00 0.20 0.85
Ag1 BD P2 0.62 0.00 1.00 0.38 0.72
Ag1 BD P3 0.74 0.00 1.00 0.25 0.81
Ag1 BD P4 0.55 0.00 1.00 0.45 0.67
Ag2 AA P1 0.87 0.01 0.99 0.13 0.90
Ag2 AA P2 0.81 0.02 0.98 0.19 0.83
Ag2 AA P3 0.28 0.00 1.00 0.72 0.38
Ag2 AA P4 0.86 0.02 0.98 0.14 0.88
Ag2 BD P1 0.77 0.02 0.98 0.23 0.82
Ag2 BD P2 0.73 0.01 0.99 0.26 0.82
Ag2 BD P3 0.47 0.01 0.99 0.53 0.55
Ag2 BD P4 0.60 0.01 0.99 0.40 0.70
Ag3 AA P1 0.76 0.01 0.99 0.24 0.81
Ag3 AA P2 0.70 0.00 1.00 0.30 0.78
Ag3 AA P3 0.62 0.00 1.00 0.38 0.69
Ag3 AA P4 0.75 0.01 0.99 0.25 0.80
Ag3 BD P1 0.52 0.00 1.00 0.48 0.65
Ag3 BD P2 0.48 0.00 1.00 0.52 0.62
Ag3 BD P3 0.44 0.00 1.00 0.56 0.57
Ag3 BD P4 0.40 0.00 1.00 0.60 0.55

Table S2: Averaged model metrics across datasets

Feature Parameter Set TPR FPR TNR FNR F1 Score
AA P1 0.64 0.01 0.99 0.36 0.69
AA P2 0.72 0.01 0.99 0.28 0.77
AA P3 0.54 0.00 1.00 0.46 0.61
AA P4 0.80 0.01 0.99 0.20 0.84
BD P1 0.70 0.01 0.99 0.30 0.77
BD P2 0.61 0.00 1.00 0.39 0.72
BD P3 0.55 0.01 0.99 0.45 0.64
BD P4 0.52 0.00 1.00 0.48 0.64
AA all 0.67 0.01 0.99 0.33 0.73
BD all 0.59 0.00 1.00 0.41 0.69
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Table S3: Average metrics, Consensus

Dataset Feature Parameter Set TPR FPR TNR FNR F1 Score
Ag1 AA P1 0.91 0.02 0.98 0.09 0.92
Ag1 AA P2 0.97 0.02 0.98 0.03 0.97
Ag1 AA P3 0.91 0.02 0.92 0.09 0.92
Ag1 AA P4 0.83 0.01 0.99 0.17 0.86
Ag1 BD P1 0.87 0.00 1.00 0.13 0.90
Ag1 BD P2 0.69 0.00 1.00 0.31 0.78
Ag1 BD P3 0.81 0.00 1.00 0.19 0.85
Ag1 BD P4 0.65 0.00 1.00 0.35 0.75
Ag2 AA P1 0.93 0.04 0.96 0.07 0.93
Ag2 AA P2 0.93 0.04 0.96 0.07 0.93
Ag2 AA P3 0.92 0.03 0.97 0.08 0.93
Ag2 AA P4 0.91 0.04 0.96 0.09 0.91
Ag2 BD P1 0.95 0.05 0.95 0.05 0.95
Ag2 BD P2 0.82 0.01 0.99 0.18 0.87
Ag2 BD P3 0.98 0.20 0.80 0.02 0.92
Ag2 BD P4 0.89 0.03 0.97 0.11 0.92
Ag3 AA P1 0.83 0.02 0.98 0.17 0.85
Ag3 AA P2 0.81 0.01 0.99 0.19 0.85
Ag3 AA P3 0.77 0.02 0.98 0.23 0.83
Ag3 AA P4 0.77 0.02 0.98 0.23 0.81
Ag3 BD P1 0.65 0.01 0.99 0.35 0.75
Ag3 BD P2 0.58 0.00 1.00 0.42 0.69
Ag3 BD P3 0.64 0.01 0.99 0.36 0.74
Ag3 BD P4 0.55 0.00 1.00 0.45 0.67
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