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Abstract

Rapid and in-depth exploration of the chemical space of high molecular
weight synthetic polypeptides via the ring-opening polymerization (ROP) of N-
carboxyanhydride (NCA) is a viable approach towards protein mimics and func-
tional biomaterials. Here, we develop an efficient chemistry for the high throughput
diversification of polypeptides based on a click-like reaction between selenolate and
various electrophiles in aqueous solutions. With the assistance of automation and
machine learning, iterative exploration of the random heteropolypeptides (RHPs)
library efficiently and effectively identifies hit materials from a model system
of which we have little prior knowledge. This automated and high-throughput
platform provides a useful interface between wet and dry experiment, which would
accelerate the discovery of new polypeptide materials for unmet challenges such as
de novo design of artificial enzyme, biomacromolecule delivery, and understanding
of intrinsically disordered proteins.

1 Introduction

Proteins are natural biopolymers with vast chemical space and sophisticated functions such as binding,
catalysis, transportation and signaling. For decades, an overarching goal of polymer science is to
create protein-like functional polymeric materials for not only fundamental understanding of proteins
but also solving real-world challenges [1–5]. To this end, synthetic polypeptides prepared by the
ring-opening polymerization (ROP) of N-carboxyanhydrides (NCA) have emerged as promising
protein mimics with the potential to combine the advantages of both peptides and synthetic polymers
[6–11]. Specifically, polypeptides possess the same backbone and secondary conformations as
protein and can be efficiently produced at up to kilogram scales in a high number-averaged molecular
weight (Mn) [12]. Nevertheless, similar to other polymers, polypeptides are subjected to the curse of
dimensionality, i.e. the combination of just a few residues can lead to a chemical space that is too
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Figure 1: (A) Schematic illustration of the post polymerization modification strategy for making
homopolypeptides (left) and random heteropolypeptides (RHP, right). (B) The selenopolypeptide
PSeO2Na, derived from the selenoxide elimination of P(pAm-SeHC), could be derivatized to various
structures.

large to be fully explored [13, 14]. To reach functional protein-mimicking polypeptides from the
enormous chemical space, one needs to:

1. Facilely prepare polypeptides from the design space with high fidelity,

2. Establish an efficient strategy for effective exploration of the space at affordable labor and
time cost.

While application of automated and data-driven technologies to accelerated discovery was proven to
be effective for many materials [14–20], attempts to incorporate the NCA and polypeptide chemistry
to this workflow have been challenging and sparse. This is mainly owing to the high moisture
sensitivity of NCA, which makes the purification, storage and polymerization of the monomer really
tricky. In a pioneer work, Deming et al. synthesized around 500 RHPs within 2 weeks through parallel
polymerization [21]. Though the recent advance of methodology might increase the water tolerance
during polymerization [22–24], most of the strategies were still performed in a low throughput fashion
because of the instability of the monomer and experimental setup. Meanwhile, nowadays there is
still limited data available for machine learning (ML)-assisted polymer design [25]. While most
studies exploited data from literature and virtual experiments (e.g., electronic structure calculations
or simulations), an ideal platform should be capable of performing new experiments to support model
training.

To address these challenges, we developed a high-throughput synthesis (HTS) platform in aqueous
solutions for polypeptides based on a click-like reaction between selenolate and electrophiles (Figure
1). This quantitative chemistry gave accurate control of the structure and molecular composition
of polypeptides. The process was amenable to off-the-shelf automated liquid handling platform
and allowed efficient generation and purification of over 1200 polymers within one day, which
greatly increase the synthesis capability of the materials. With the assistance of ML model-guided
optimization, a closed-loop discovery workflow was established. We were able to perform iterative
exploration of the RHP chemical space for enzyme mimics and identified candidates with improved
activity in a more efficient and effective way.
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Figure 2: Post polymerization of PSeO2Na with activated and inactivated halides.a yield = purification
yield, b GE: grafting efficiency based on the 1H NMR spectra of the product, c Prepared from PEG-b-
PSeO2Na, a poly(ethylene glycol) block copolymer of PSeO2Na.

2 Results

We designed and synthesized a selenopolypeptide, P(pAm-SeHC), whose pendant group is a latent
selenolate, a highly nucleophilic species in organic chemistry. Oxidation of P(pAm-SeHC) leads to
selenoxide elimination, generating PSeO2Na (Figure 1B). PSeO2Na could be reduced with NaBH4

in water, affording the selenolate-bearing polypeptide (PSeNa) for further functionalization with
organohalides (Figure 2). The modification of PSeNa showed remarkable tolerance to various
functionalities. We were able to prepare many polypeptides with potential applications in biomedical
engineering including those that are hard to be introduced directly through the ROP of NCA (Figure
2). When tried feeding with more than one organohalides, we found the molecular composition
correlated well with the feeding volume ratio of the organohalides (Figure S1). A map from the
feeding volume ratio to the molecular composition was thus directly created, which saves tremendous
amount of times from additional characterization.

Based on these findings, the HTS of RHPs was established with the assistance of a commercialized
automated workstation for dispensing stock solutions of organohalides to plates. This semi-automated
workflow greatly boosted the synthesis capability and enabled the parallel preparation of 400 RHPs
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Figure 3: Closed-loop optimization of GPx activity of the RHPs via HTS and machine learning. (A)
Cartoon illustration of the closed-loop workflow containing four modules, namely HTS, parallel
purification, activity read-out, and Bayesian optimization. (B) Structure of the seven selected
organohalides for RHP library generation and aim of optimization. The molecular composition of
RHPs are described as seven-dimensional vectors x = (x1, . . . , x7), where xn (n = 1 to 7) is the relative
volume ratio of the organohalides and the program will perform BO on this seven-dimensional
consecutive space,. (C) GPx-like activity of RHPs in each iteration via random searching (blue) or
Bayesian optimization (red). (D) Comparison of the GPx-like activity of the two RHP hits with the
seven homopolypeptides each modified with one individual organohalide used in HTS (n = 3). Hit-1:
(0.12, 0.12, 0, 0, 0, 0, 0.76) and Hit-2: (0, 0.24, 0.22, 0, 0, 0, 0.54). All polymers are synthesized
in flask and then purified for GPx activity. Error bars represent the standard deviation. *Activity of
the homopolypeptide (0, 0, 0, 0, 0, 1, 0) cannot be measured properly owing to precipitation during
testing.

(4 plates) in one day. The throughput could be easily improved to 1200 RHPs (12 plates) per day if
only activated organohalides were used for modification. We applied a Bayesian optimization (BO)
[26, 27] framework based on BoTorch and Ax [28] and established a closed-loop material discovery
workflow (Figure 3A).

For demonstration, we chose glutathione peroxidase-like (GPx-like) activity [29] of the materials as
a optimization target (Figure 3A). Seven organohalides with different properties were selected for
modification (Figure 3B). Within 4 days, four iterations comprising a total of 660 experiments were
performed with 166 experiments per iteration. We did not find any similar system that studies the
influence of the side chain structure and composition on the GPx-like activity of the selenopolypeptide
the literature. So 166 RHPs were randomly chosen initially from the designed space to train a
Gaussian process (GP) regression model. Candidates for successive iterations were chosen by
selecting compositions that optimized an expected improvement (EI) acquisition function, subject
to the constraint that total mole fractions equal 1. To avoid trapping in local minimums, random
search and BO were performed simultaneously in each round. Both were used to select 83 RHPs
compositions to synthesize, evaluate, and retrain the surrogate GP before proposing the candidates
for the next iteration. The results showed that while random search consistently found candidates
with activities near a range of 150-200, BO efficiently found RHPs with substantially higher GPx-like
activity, particularly in the third and fourth iteration (Figure 3C). T-distributed stochastic neighbor
embeddings (t-SNE) showed that BO quickly identified an area in the design space that achieves
higher activity (Figure S2). Two hits from BO were synthesized in flask and their GPx-like activity
normalized to the amount of selenium was evaluated. Hit-1 exhibited 2 times higher GPx-like
activity than the most active homopolypeptide in the design space (Figure 3D), which meant that
activity of RHPs is not merely the normalized average of the activity of each component.
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3 Discussion

While the above results indicate the establishment of a closed-loop discovery workflow for polypep-
tides, there are still remaining challenges. The primary challenge is the precipitation during mod-
ification. In the preliminary trials, precipitation was observed when (1) the content of relatively
hydrophobic modifiers was high (e.g. higher than 0.5 in some cases), (2) the contents of negatively
and positively charged modifiers were roughly equal to each other, which neutralized the net charge
and led to insoluble polyplex, (3) the conversion of the side chain was incomplete and the residual
selenolate were gradually oxidized into diselenide and formed a crosslinked network. To avoid
such undesired precipitation, one could try adding organic solvent and adjusting the pH during the
modification. Attaching a polyethylene glycol (PEG) block to the precursor polymer were also proven
to be useful. Meanwhile, under such synthesis throughput, the property characterization could be a
rate-limiting step. For the characterization assays that are feasible to set up and quick to perform, such
as reading fluorescent signal directly with microplate reader, it is possible to perform the synthesis
and characterization of 1200 polypeptides within one day. But for many other assays (such as the GPx
assay in this manuscript), the maximum throughput per day is limited because of human intervention.
We believe further application of automation on characterization could boost the throughput, which
will further accelerate the process.

The application of this platform is not limited to the discovery of catalytic materials. Since
organohalides, the most abundant building blocks in organic chemistry, were used as the modi-
fiers, the strategy opens many possibility for applications. For example, by integrating different
pendant groups (positively charged, hydrophobic and zwitterionic etc.) and redox property of se-
lenium, the platform could be used to the development of novel antimicrobial materials. As the
modification is mostly carried out in aqueous solution, products from HTS could be easily adapted to
cellular assay with only one additional parallel purification step. Thus the platform would also enable
accelerated discovery of biomaterials for therapeutic purposes such as bio-molecules delivery. We
understand the presence of selenium might not be necessary for some applications. In that case, the
strategy could still offer a viable way for rapid prototyping of polypeptides for the exploration design
space. Compared with other click-type reactions, this modification reaction only introduce a selenium
atom as a miniature linker, which pose minimum influence on the overall polymer structure and
makes generalization to other types of polypeptide more likely to succeed. After gathering enough
knowledge of the system through HTS, a non-selenium version could be synthesized by e.g. replacing
selenium to carbon.

4 Conclusion

In summary, we report a robust, quantitative, and divergent strategy for the rapid expansion of
polypeptide library based on a universal precursor selenopolypeptide. This post polymerization
modification strategy avoided the laborious efforts of making a variety of NCA that are synthetically
challenging. The potential of this modification chemistry was highlighted by the establishment of a
closed-loop optimization workflow for the discovery of functional RHP. Enabled by the efficiency of
the reaction, a map from the feeding volume ratio to the molecular composition was directly created.
Because all polypeptides were derivatized from the same precursor, this strategy could be particularly
useful to generate standardized dataset. Moreover, the HTS was performed in aqueous solutions and
open air, which allowed convenient transferring of the resulting polymers to subsequent biological
assays. As a proof-of-concept, we demonstrated a concise workflow enabling the rapid identification
of RHPs with promising GPx-like activity. While detailed structure-activity relationship is still under
investigation, these results underscored the power of this system in accelerating material discovery
by exploring polypeptide chemical space of which people have little knowledge. We envision that
the potential of this platform is far beyond artificial enzymes and can accelerate the discovery of
antimicrobial agents, understanding of protein phase separation, and development of intracellular
delivery systems for therapeutic biomacromolecules, etc.
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